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Symbols

Tm	 Melting temperature
η	 Viscosity
H, H(T )	 Enthalpy
V	 Volume
Cp	 Heat capacity
Tg	 Glass transition temperature
η∞	 Viscosity at infinite temperature
EA	 Activation energy for viscous flow
M	 Fragility
∞G 	 Infinite frequency shear modulus

T0	� Characteristic temperature of the VFT 
equation

TK	 Kauzmann temperature
Sc	 Configurational entropy
τ	 Structural relaxation time
¯ ⟨ ⟩=r r 	 Network mean coordination number
S(k)	 Static structure factor
g(r)	 Pair correlation function
kFSDP	� First sharp diffraction peak position of 

S(k)
∆kFSDP	� Width of the first sharp diffraction peak 

of S(k)
β	� Kohlrausch exponent characterizing the 

stretched exponent
fc	� Non-ergodicity parameter characterizing 

the β-relaxation plateau
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Abstract
Recent progress in the description of glassy relaxation and aging are reviewed for the wide 
class of network-forming materials such as GeO2, GexSe1−x, silicates (SiO2–Na2O) or 
borates (B2O3–Li2O), all of which have an important usefulness in domestic, geological or 
optoelectronic applications. A brief introduction of the glass transition phenomenology is 
given, together with the salient features that are revealed both from theory and experiments. 
Standard experimental methods used for the characterization of the slowing down of the 
dynamics are reviewed. We then discuss the important role played by aspects of network 
topology and rigidity for the understanding of the relaxation of the glass transition, while also 
permitting analytical predictions of glass properties from simple and insightful models based 
on the network structure. We also emphasize the great utility of computer simulations which 
probe the dynamics at the molecular level, and permit the calculation of various structure-
related functions in connection with glassy relaxation and the physics of aging which reveal 
the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure 
which leads to the concept of ‘dynamic heterogeneities’, and recent results in relation to this 
important topic for network glasses are also reviewed.
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tR	� Reaction time in glass homogeneity studies
σM	 Variance of fragility measurements
Tf	 Fictive temperature
Tw	� Temperature at which an aging experi-

ment is performed
q	� Heating rate during a glass transition 

measurement
R	 Ideal gas constant
Cpg	 Glass heat capacity
Cpe	 Equilibrium heat capacity

( )ω∗C ip 	 Complex heat capacity
( )ε ω∗ i 	 Complex permittivity

Ḣnr	� Non-reversing heat flow in MDSC 
experiments

Ḣrev	� Reversing heat flow in MDSC 
experiments

∆Hnr	� Non-reversing enthalpy in MDSC 
experiments

″Cp 	� Imaginary part of the complex heat 
capacity

( )ω∗M 	 Imaginary electrical modulus
( )σ ω∗ 	 Complex electrical conductivity

( )ωS k, 	 Dynamic structure factor
( ) ( )=F t F tk k, ,sinc 	� Incoherent or self intermediate scattering 

function
( )F tk,coh 	� Coherent intermediate scattering 

function
Cpm	 Melt heat capacity
∆ ∗h 	� Activation energy of the Tool–

Narayanaswamy–Moynihan model
x	� Non-linear parameter of the Tool–

Narayanaswamy–Moynihan model
Tx	 Crystallization temperature
⟨ ( )⟩r t2 	 Mean square displacement

( )ωg 	 Vibrational density of states
nc	� Number of topological constraints per 

atom
r	 Atomic coordination number
f	 Density of floppy modes
F 	 Free energy of the rigidity Hamiltonian

( )q Ti
j 	� Mauro–Gupta step function in topologi-

cal constraint theory
∆	� Activation energy for broken topological 

constraints
αT 	� Onset temperature beyond which topo-

logical constraints are intact
βB	 Boron bond-angle constraints
βSi	 Silicon bond-angle constraints

( )θP ij 	� Partial bond angle distributions appear-
ing in MD-based constraint counting

σθ	� Standard deviation of a partial bond 
angle distribution ( )θP ij

θ̄	� Mean bond angle in MD-based con-
straint counting

θ̄k	� Mean bond angle in MD-based con-
straint counting on individual atoms

σi	� Species related (e.g. i  =  Ge, Se) standard 
deviations

αβP 	 Molecular stress tensor
AH	� Area of the enthalpy hysteresis curve in 

a cooling/heating experiment across the 
glass transition

AV	� Area of the volume hysteresis curve in 
a cooling/heating experiment across the 
glass transition

N 	 Number of outer shell electrons
r̄c2	� Network mean coordination number at 

the stress transition
r̄c1	� Network mean coordination number at 

the rigidity transition
D or Di	 Diffusivity

( )αG r t,s 	� Self part of the van Hove correlation 
function for species

α αN 	 Number of atoms of species α.
( )α t2 	 Non-Gaussian parameter

Q(t)	� Overlap function in models for dynamic 
heterogeneities

( )f tr, 	� Mobility field in models for dynamic 
heterogeneities

( )g tr,4 	� Four-point correlation function 
used for the description of dynamic 
heterogeneities

( )S tk,4 	� Four-point structure factor used for the 
description of dynamic heterogeneities

( )χ t4 	 Dynamic susceptibility
ξ4	� Dynamic length scale of dynamic 

heterogeneities
/η≡R D TSE 	 Stokes–Einstein ratio

/η τ≡R TDSE 	 Debye-Stokes–Einstein ratio
ζ	� Parameter characterizing the fractional 

Stokes–Einstein relation
( )Ω eIS 	� Number of basins of energy eIS in an 

energy landscape picture
tw	� Waiting (aging) time before an experi-

ment is performed
Teff	� Effective temperature of a non-equilib-

rium system
X(t, tw)	 Fluctuation-dissipation ratio
∆ ∞H 	� Maximum enthalpy that can be relaxed 

in an aging experiment

Acronyms

AG	 Adam-Gibbs
AM	 Avramov–Milchev
BB	 Bond-bending
BS	 Bond-stretching
DSC	 Differential scanning calorimetry
ES	 Edge-sharing (tetrahedra)
FSDP	 First sharp diffraction peak (of S(k))
GK	 Green–Kubo
IP	 Intermediate phase
IRO	 Intermediate range order
IS	 Inherent structures
KWW	 Kohlrausch–Williams–Watt
MD	 Molecular dynamics
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mDSC	 Modulated differential scanning calorimetry
MYEGA	 Mauro–Yue–Ellison–Gupta–Allan
NDF	 Neighbor distribution functions
NMR	 Nuclear magnetic resonance
OTP	 orto-terphenyl
PBAD	 Partial bond angle distributions
PCS	 Photon correlation spectroscopy
RW	 Reversibility window
SLR	 Spin lattice relaxation in NMR experiments
TNM	 Tool–Narayanaswamy–Moynihan
VFT	 Vogel–Fulcher–Tamman

1.  Introduction

From glass windows and light bulbs to lenses and fiberglass 
insulation, advances in glass science and technology have 
indisputably played a vital role in enabling modern civiliza-
tion. The performance of every glass product, especially high-
technology glasses such as optical fibers, amorphous phase 
change DVDs or scratch-resistant flat panel displays (includ-
ing cell-phones) is governed by the underlying properties of 
the glass at the atomic scale.

What is a glass? This important question is poorly under-
stood, and remains unanswered today beyond the level of gen-
eral statements, albeit substantial progress in understanding 
has been made in recent years. Solving this problem represents 
a great challenge for the science, technology, and engineering 
communities at large, with obvious technological applications. 
It has led to intense research activity that spans over vast fields 
of inquiry, from theoretical physics of liquids to materials 
science. When a high temperature liquid can be cooled fast 
enough, it will usually be able to avoid crystallization at the 
melting temperature Tm and will become ‘supercooled’, which 
represents a thermodynamic metastable state with respect to 
the corresponding crystal. At very high temperatures, relaxa-
tion times to equilibrium are found to be of the order of the 
typical atomic vibrational period, i.e. of about τ = 0.1–1 ps, 
whereas the viscosity η is of the order of 10−4–10−2 Pa · s. 
Once the melting temperature has been bypassed, upon further 
cooling the viscosity and the relaxation time increase dramati-
cally to reach τ � 100 s–1000 s and η = 1012 Pa · s at a refer-
ence temperature that is defined in the literature as the glass 
transition temperature Tg. This empirical definition simply 
signals that below Tg, a liquid will be too viscous to flow on a 
laboratory timescale (i.e. days or years [1]), and the obtained 
material will be identified with a glass, i.e. a material that dis-
plays all the salient microscopic features of a liquid, but has the 
macroscopic characteristics of a solid. Once a glass has been 
obtained, there is, however, still thermal evolution towards 
equilibrium, but its complete experimental study is partially 
out of reach so that glasses are usually considered as being 
‘out-off equilibrium’. As a result, properties will evolve slowly 
with time, and measurements will depend on the waiting time 
at which they have begun, a phenomenon known as ‘aging’.

Of very special interest is the field of network glasses 
(figure 1), probably the most familiar and, historically, those 
which have attracted early interest. This is due, in part, to the 

effect of the x-ray determined structure at the local, inter-
mediate or long-range order which appears to be central to 
the understanding of many chemical physical properties 
including those revealing the slowing down of the dynamics. 
Appropriate (stoichiometric) mixtures of Group III-Group V 
elements (e.g. silicon, boron, germanium, etc) with Group 
VI oxides and chalcogenides (oxygen, sulphur, selenium) 
indeed lead to a network structure that is imposed at the very 
local level by geometrical building blocks typical of a short-
range order [3], e.g. the SiO4/2 tetrahedron in silicates. The 
disordered arrangement of such building blocks on longer 
scales is then representative of glasses which form a highly 
cross-linked network of chemical bonds. Addition of alkali 
and alkaline earth modifiers alter the network structure, and 
while such elements are usually present as ions, they compen-
sate by attracting nearby non-bridging Group VI atoms which 
induce a disruption of the network structure. The presence of 
such non-bridging atoms lowers the relative number of strong 
bonds in the glass and, in the liquid state, this will lead to an 
important modification of the melt viscosity, relaxation time, 
and various dynamic quantities. In fact, an appropriate alloy-
ing of such components permits one to tune dynamic quanti-
ties of glass-forming liquids in an almost systematic fashion, 
allowing for the detection of anomalies which provide a 
greater insight into the glass transition phenomenon.

In this contribution, we review experimental and theoretical 
methods and studies that have been reported recently on relax-
ation and aging of network glasses. Because of lack of space, 
and although some reported features may have an intrinsic 
interest for the present purpose, we will largely discard the vast 
body of literature on the relaxation of sphere liquids interact-
ing with very simple potentials that are not ‘realistic’ for any 
physical system. While non-equilibrium processes have been 
rather well-characterized and some generic behavior revealed 
from such crude models, the simplifed form of the interaction 
(in short, a repulsive core and an attractive interaction at long 
distances) is unable to reproduce basic features and structural 
properties of network glasses which are dominated by specific 
diffraction patterns for which every detail matters. This makes 
the correct structural reproduction a prerequisite to any theor
etical description. Indeed, for such glasses, aspects of struc-
ture control a large part of the dynamics and the relaxation 
phenomena taking place in the vicinity of the glass transition. 
However, as emphasized above, glassiness is not restricted 
to the archetypal silica system and/or to inorganic glasses 
because sugars, food, organic polymers, and more generally 
complex disordered systems will display this phenomenon as 
well, while the glass transition can also be achieved through 
an appropriate densification, and this indicates that glassy 
behavior can also be observed under jamming [4].

2.  Property changes across the glass transition

Although all quantities remain continuous across the glass 
transition, rapid changes in physical, thermal, rheological, 
mechanical, etc properties are observed. As the temperature 
increases from low temperature to above the glass transition 
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temperature, many of these properties suddenly change 
emphatically and manifest, e.g. by important variations in 
heat capacity, thermal expansion coefficient and/or viscoelas-
tic properties. There are two broad classes of measurements 
based either on rheological properties (viscosity η and modu-
lus G) or on thermal and thermodynamic properties (enthalpy 
H, volume V, heat capacity Cp, and expansion coefficient α), 
the latter usually allowing for a neat measurement of the glass 
transition temperature Tg from calorimetric/dilatometric mea-
surements, as discussed below.

2.1.  Viscosity plots and fragility

The evolution of viscosity (η) is probably one of the most 
spectacular observed changes as the melt is cooled down to 
its glass transition. Figure 2(a) represents the evolution of the 
viscosity for different network-forming liquids (selenium, 
silica, germania, GeSe4, etc) which can be formed in the 

supercooled state. These are also compared to other proto-
typal glass-forming liquids. It can be seen that the increase in 
viscosity is dramatic for certain substances, and, for organic 
glass formers such as o-terphenyl (OTP) or toluene, the 
temperature decrease can lead to a change in η by several 
orders of magnitude under only tens of degrees temperature 
change. The behavior of network glass-forming viscosities 
with T appears to be more moderate, although similar vis-
cosities (1012 Pa · s) are obtained at a reference temperature 
Tg that is usually found to be somewhat higher than that of 
organic glass-forming liquids. This temperature usually serves 
to rescale the viscosity data in an appropriate plot, initially 
introduced by Laughlin and Uhlmann [9], and subsequently 
popularized by Angell [10].

In this plot, the inverse temperature is rescaled with respect 
to this reference Tg at which the liquid reaches 1012 Pa · s, 
and the same viscosity data as figure 2(a) are now shown in 
figure  2(b). An immediate inspection of this figure  leads to 

Figure 1.  Typical network-forming glasses: (a) a stoichiometric glass former (SiO2, B2S3) whose structure and network connectivity can 
be altered by the addition (b) of two-fold coordinated atoms (usually chalcogens, S, Se) that lead to cross-linked chains. The structure 
can also be depolymerized (c) by the addition of a network modifier (alkali oxides or chalcogenides, Na2O, Li2S, etc). Glassy dynamics 
depends strongly on the network topology, i.e. the way bonds and angles arrange to lead to a connected atomic network. Note, that only 
chalcogenides can produce a mixture of these three kinds of basic networks, e.g. (1-x)GeySe1−y-xAg2Se [2]. Here, x  =  0 corresponds to case 
(b), y  =  33% corresponds to case (c), and both conditions together (x  =  0, y  =  33%) to case (a).

Figure 2.  (a) Behavior of the liquid viscosity η of different supercooled liquids as a function of temperature. (b) Uhlmann–Angell plot of 
viscosity rescaling the same data with respect to T Tg/  where Tg is defined by T 10g

12( )η =  Pa · s. Data taken from [5–8].
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the conclusion that such supercooled liquids behave very dif-
ferently close to their glass transition. Some of them show 
a behavior ( )η T  that follows an Arrhenius law of the form 

[ / ]η η= ∞ E Texp A , and typical examples are silica and germa-
nia [5] or GeSe4 [6]. However, as one moves down the fig-
ure, other liquids (e.g. B2O3, 2SiO2–Na2O, As2Se3 or Se) now 
exhibit a viscosity behavior that shows an important bending 
[6] at intermediate values of /T Tg , whereas organic glass form-
ers (OTP and toluene) display the most pronounced curvature 
and must involve a super-Arrhenius parametrization of the 
form [ ( )/ ]η η= ∞ E T Texp A  where the activation energy EA 
must now explicitly depend on temperature.

A simple means to separate liquids for which EA and the 
underlying relaxation is independent of temperature from 
those having an explicit temperature dependence, ( )E TA , and 
exhibiting a rapid increase of η close to / =T T 1g , is provided 
by the ‘strong’ versus ‘fragile’ classification which permits 
one to distinguish the two types of behavior [10–12]. This 
has led to the introduction of a ‘fragility index’ M which is 
defined by the slope of ( )η Tlog  versus /T Tg  at Tg:

/

⎡

⎣
⎢

⎤

⎦
⎥η≡
=

M
T T

d log

d
T T

10

g
g

� (1)

As detected from figure  2(b), large slopes will correspond 
to fragile glass formers displaying an important curvature, a 
variable ( )E TA  and a rapid evolution of η as one approaches 
Tg, while small slopes (i.e. small M ) will correspond to strong 
glass formers having a nearly Arrhenius variation involving 
a constant EA. Once examined over a wide variety of glass-
forming liquids [13], M is found to vary between a high value 
[14] of =M 214 for a polymer to a low value [15] of 14.8 
for the network-forming liquid Ge22Se78, a value that is actu-
ally found to be lower than the usual reported value of silica 
( =M 20 [13]). Note, also that the terms introduced ‘strong’ 
and ‘fragile’ are somewhat inappropriate given that they nei-
ther connect to underlying mechanical properties, nor to the 
possible inter-atomic interactions, although most of the strong 
glass formers have a directional iono-covalent interaction, but 
exceptions do exist [16].

Alternatively to the definition (1), several fragility indexes 
have been introduced to characterize the viscosity behavior 
of liquids, such as the Bruning–Sutton [17], Avramov [18] 
and Doremus [16] fragility parameters. All of these attempt to 
obtain within a single parameter the curvature or slope of the 
viscosity curves. For instance, the Bruning–Sutton approach 
[17] prefers to relate the viscosity behavior of supercooled liq-
uids with an apparent activation energy for viscous flow which 
is either constant (for strong liquids) or highly temperature-
dependent for fragile liquids close to the glass transition.

At high temperature, most of the liquids seem to converge 
to a value that is close to η =∞

−10 4 Pa · s. An analysis of 
viscosity curves [19] using a convenient fitting formula for 
silicate liquids and other liquids including metallic, molecu-
lar, and ionic systems, has shown that the high temperature 
viscosity limit of such liquids is about 10−2.93 Pa · s [19]. As 
there seems to be no systematic dependence of η∞ on compo-
sition, at least for the silicates given the narrow spread around 

the average value of 10−2.93 Pa · s, it is believed that η∞ has 
some kind of a universal character. A similar analysis has been 
performed by Russell and colleages [20] using alternative fit-
ting formulae for a series of silicate melts, and the prediction 
of the high temperature viscosity limit has been found to be 
of about − ±10 4.3 0.74 Pa · s to − ±10 3.2 0.66 Pa · s. While this issue 
may be considered as secondary for the present purpose, the 
degree of universality of η∞ appears to be central to the valid-
ity of proposed viscosity fitting formulae (see below) which 
all assume a universal high temperature limit of viscosity η∞ 
to derive the low temperature behavior of ( )η T  close to the 
glass transition. Given the highly non-linear behavior of vis-
cosity with temperature, the departure from an Arrhenius scal-
ing (figure 2(b)) reflects the influence of the second derivative 
of η with respect to the inverse temperature that might involve 
a high temperature parametrized limit embedded in η∞, and 
not only the effect of the low temperature behavior. As seen 
from equation (1), a non-Arrhenius character can, indeed, be 
solely parametrized with the fragility index, M, but the latter 
is a low temperature quantity representing only a first deriva-
tive of the viscosity curve at Tg.

2.2.  Fitting functionals

The temperature dependence of the viscosity data (or relax-
ation time given that one has η τ= ∞G  with ∞G  the infinite fre-
quency shear modulus) is often described approximately by 
convenient fitting functionals. The most popular one is given 
by the Vogel–Tammann–Fulcher (VFT) equation [21]:

η η= +
−∞
A

T T
log log10 10

0
� (2)

where A has the dimension of an activation energy, and T0 a 
reference temperature that leads to an Arrhenius behavior for 
T0  =  0. An alternative and perhaps more insightful form of the 
VFT equation (2) explicitly using the fragility and the glass 
transition temperature Tg is as follows:

( )
( )

( / ) ( )
η η

η
η

= +
−

− + −∞
∞

∞M
T

T T
log log

12 log

1 12 log10 10
10

2

g 10
� (3)
It should be noted that for = <T T T0 g, the viscosity will 
become infinite, and this might indicate some sort of phase 
transition, on which there has been quite some speculation and 
debate. For instance, it has been stated that T0 is very close to 
the Kauzmann temperature TK [22], a temperature at which the 
excess entropy of the liquid, with respect to the corresponding 
crystal, is supposed to vanish. This connects the kinetic view 
of the glass transition represented by the evolution of ( )η T  
with a thermodynamic one. However, this ‘entropy crisis’  
is rather counterintuitive because one does not expect the 
entropy of a glass to be lower than that of the corresponding 
crystal, given the increased number of accessible states for 
the former. In addition, neither does one expect, upon further 
cooling, the entropy of a liquid to become negative as this 
would violate the third law of thermodynamics. However, 
apart from the obvious argument stating that an ordered state 
of matter (the liquid) should not have an entropy lower than 
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the corresponding ordered state (the crystal), there is no gen-
eral principle ruling the various contributions of liquid- and 
solid-like materials so this apparent paradox may well be con-
sistent with the current experimental observation showing the 
entropy to vary in a very similar fashion to first derivatives of 
the free energy, without indication that it extrapolates to zero 
at some finite temperature.

In a rather systematic study on different glass formers, 
Richert and Angell [23] have shown that the ratio /T TK 0 is very 
close to one for fragile glass formers, but for common net-
work glasses (SiO2, GeO2) which are strong glass formers and 
have �T0  0, the fit of the viscosity behavior using equation (2) 
and its connection to the Kauzmann temperature appears to be 
inconclusive. However, a fit on Ge–Se liquids using the VFT 
form has shown that T0 goes through a minimum for 22% Ge 
[24], i.e. at the same composition at which a fragility mini-
mum has been measured [15]. Since the discussion about the 
relationship between T0 and TK depends on the functional used 

for the viscosity/relaxation time fitting, conclusions regarding 
the validity of �T T0 K can be quite contradictory [25, 26]

An interesting and insightful link between the configura-
tional entropy of the liquid and the relaxation (or viscosity) 
has been suggested by Adam and Gibbs [27]

⎡
⎣⎢

⎤
⎦⎥

η η= ∞
A

TS
exp

c
� (4)

Equation (4), which is central to many investigations of the 
glass transition (see below), provides an important connec-
tion between a kinetic and a thermodynamic viewpoint of 
the glass transition. In the latter, the configurational entropy 
variation with decreasing temperature is believed to result 
from the reduction of the number of possible minima in the 
complex energy landscape [28–30] characterizing the material. 
According to this picture, the slowing down of the relaxation, 
the dramatic increase of τ, result from the reduced ability 
of the system to explore the landscape in order to locate the 
energy minimum, driven by the strong reduction of the number 
of accessible energy minima as the temperature is decreased. 
Ultimately, structural arrest may occur and, since for an ideal 
glass at =T TK one has a single energy minimum only, the con-
figurational entropy vanishes and the relaxation time diverges.

There is actually not necessarily any need to have a func-
tional displaying a diverging behavior at some typical/critical 
temperature T0. Other popular fitting functionals can repro-
duce the non-exponentiality of the temperature evolution of 
viscosity, for example the Bässler law [31]:

⎡
⎣⎢

⎤
⎦⎥η η= ∞

D

T
exp ,

2� (5)

which yields a curvature in the Angell representation of  
liquids, or the Avramov–Milchev [32] form:

⎜ ⎟
⎛
⎝

⎞
⎠η η= +
α

∞
A

T
log log10 10� (6)

where α is the Avramov fragility parameter [18] which is equal 
to α = 1 for strong liquids, whereas liquids with higher α val-
ues become more fragile. Most of these models lead to a sys-
tematic error when they are extrapolated to low temperatures. 
A more recent and interesting contribution is due to Mauro 
and colleagues [33] which provide a viscosity model with a 
clear physical foundation based on the temperature depend
ence of the configurational entropy. It offers an accurate pre-
diction of low-temperature isokoms without any singularity at 
finite temperature. Using the Adam-Gibbs model for viscosity 
(equation (4)), the configurational entropy can be expressed as 
a function of topological degrees of freedom [34] (see below) 
that are temperature-dependent and thermally activated 
[35], and this leads to the Mauro–Yue–Ellison–Gupta–Allan 
(MYEGA) equation:

⎡
⎣⎢

⎤
⎦⎥η η= +∞

K

T

C

T
log log exp10 10� (7)

which avoids a divergence at low temperature found in the 
VFT equation  (figure 3, equation  (7)), and has been tested 
and compared to alternative viscosity forms (including VFT) 

Figure 3.  Comparison of different viscosity models [33]. (a) 
Temperature dependence of viscosity for VFT, (AM) and MYEGA 
(current) models, assuming 60=M  and log 410 η = −∞ . (b) Plot of 
The Adam-Gibbs exponential argument S T BTc g( )/  for >T Tg. The 
AM model yields a divergent configurational entropy in the limit of 
T →∞. (c) Plot of S T BTc g( )/  for T Tg< . As already mentioned, the 
VFT model predicts a vanishing of the configurational entropy at a 
finite T  =  T0. Copyright Proceedings of the National Academy of 
Sciences of the United States 2009.
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over hundreds of network glass-forming liquids (silicates) and 
organic supercooled liquids.

Given the huge number of possible compositions and 
thermodynamic conditions, it is nearly impossible to pro-
vide a full database of viscosity measurements for network 
glass-forming liquids. Useful references are the handbooks of 
Borisova [37] and Mazurin [38] for oxides and chalcogenides, 
and the handbook of Popescu on chalcogenides [39]. Instead, 
we prefer to focus on the forthcoming reported correlations 
between the fragility index M and some insightful physical or 
chemical properties.

2.3.  Fragility relationships

2.3.1.  Fragility-Tg scaling.  An interesting scaling law relat-
ing the fragility index to the glass transition temperature is 
provided by McKenna and colleagues [13]. There is, indeed, 
conventional wisdom suggesting that fragility increases with 
the glass transition temperature [10] which implicitly under-
scores the fact that energy barriers for relaxation increase with 
increasing Tg.

The derivation of this scaling law combines, for example, 
the VFT form of equation (2), and the definition of the fragility 
(equation (1)), and calculates the fragility and the activation 
energy EA as a function of the glass transition temperature. 
One obtains:

( )
=

−
M

AT

T T ln 10
g

g 0
2� (8)

and:

( )
=

−
E

AT

T T
A

g
2

g 0
2

� (9)

Because Tg is of the same order as T0, equations (8) and (9) 

reveal that M and EA will scale with Tg and Tg
2, respectively. 

Note that this scaling law can also be independently derived 
from alternative fitting forms for the viscosity, such as the 
similar Williams–Landel–Ferry form [36].

Using such scaling laws, Qin and McKenna [40] have 
shown that the correlations (8) and (9) are fulfilled in a large 
class of hydrogen bonding organics, polymeric and metallic 
glass formers. All these systems show a linear increase of M 

with Tg, and EA with Tg
2, whereas network glass formers do not 

seem to follow such scaling laws. From this study, M appears 
to be nearly independent of the glass transition temperature 
for the reported inorganic glass formers [40]. But, in a system-
atic study into the composition of chalcogenides, Boolchand 
and colleagues [15, 41] have demonstrated that this scaling 
holds in network glasses [40] at select compositions.

Figure 4 represents the behavior of the fragility index M 
as a function of measured glass transition temperature Tg for 
various network-forming glasses. An inspection of AsxSe1−x 
and GexSe1−x chalcogenides shows that when the non-stoichi-
ometric melts are followed as a function of tiny changes in 
composition, the scaling laws (8) and (9) are fulfilled for only 
selected compositions corresponding to the stressed rigid and 

intermediate phase compositions (see below) of these glasses 
[42, 43], i.e. one has a linear increase in M(Tg) for x  >  22% in 
Ge–Se [15], and for x  >  27% in As–Se [41]. A least-square fit 
to such compositions yields to ( ) ( )= − +M T7.53 5 0.061 7 g 
and to ( )= − +M T17.356 0.060 1 g for As–Se and Ge–Se, 
respectively [41]. The slope of both curves (≃0.06) is found 
to be somewhat lower than the one obtained [40] in polymers 
(0.28), metallic glass formers (0.17), and hydrogen bonded 
liquids (0.25).

For low glass transition temperatures (i.e. selenium rich in 
Ge–Se or As–Se), a negative correlation is found which obvi-
ously cannot be accounted for from the VFT equation given 
that it would lead to unphysical behaviors such as the diver-
gence of relaxation at a temperature >T T0 g or an increase in 
relaxation time τ with temperature [15]. It has been further-
more detected [41] that only the VFT equation (3) can lead to 
a positive correlation in the scaling law (8). For other fitting 
formula, such as the simple Arrhenius law /=M A T ln 10g  or 
the MYEGA equation (7), one obtains [41]:

[ / ]
⎛

⎝
⎜

⎞

⎠
⎟= +M

K

T

C

T
C T1 exp

g g
g� (10)

which decrease as Tg increases. In addition to Tg, M has also 
been proposed to correlate to the melting enthalpy ∆Hm [48] 
and nonpolymeric supercooled liquid shave has been found to 
display the empirical correlation:

=
∆

∆
M

C T

H

56 p g

m
� (11)

which, similarly to the Adam-Gibbs approach [27] provides 
another relationship between thermodynamics and dynamics 
of the glass transition.

2.3.2.  Qualitative fragility relationships.  In network glass-
forming liquids, the fragility index also appears to be deeply 
related to structural properties. Such a basic observation has 
been made recently and extensively documented by Side-
bottom [49]. By considering a two-state model for the glass 

Figure 4.  Fragility as a function of glass transition temperature 
in As–Se (red, [41]), Ge–S [47] and Ge–Se liquids (blue, [15]), 
together with data for typical network glass formers [13, 44, 45]  
and binary glasses [46].
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transition separating the intact bond state from a thermally 
excited broken bond state [50–52], a general variation of the 
configurational entropy with network connectivity can be 
proposed. In this model, the fragility index M is then deter-
mined solely by the entropy increase, which is associated with 
the occurence of new configurations that become accessible 
when bonds are broken under temperature increase. For bonds 
between atomic species [50], the construction can be general-
ized via a coarse-graining approach to bonds between local 
structures (such as tetrahedral species in silicates [53]) or even 
bonds between intermediate range order (IRO) structures that 
are found in borates [54]. A generic behavior of the index M 
variation is obtained (figure 5) which demonstrates a universal 
dependence of the glass-forming fragility on the topological 
connectivity of the network. For the special case where inter-
mediate range order is present, the coarse-graining procedure 
to a bond lattice indicates that the weakest links (i.e. those 
which connect IRO) are the most relevant in determining the 
liquid fragility.

Building on a similar idea, large scale molecular dynam-
ics simulations of network-forming liquids [55] show that 
aspects of topology and IRO control the relaxation of the liq-
uid. Here, the network topology is changed by varying the 
anion polarizability [56] of the interaction potential, which 
governs the intertetrahedral bond angle, and, ultimately it is 
shown that the fragility is correlated to structural arrange-
ments on different length scales. In particular, M is found 
to increase with the number of edge-sharing (ES) tetrahedral 
motifs in tetrahedral glass-forming liquids. For the special 
case of Ge-X (X  =  S,Se) systems, however, the link between 
edge-sharing tetrahedra and the fragility index does not fol-
low such a correlation [47, 57]. A direct measurement of M 
and the ES fraction from Raman spectroscopy indicates that 
the trend in the fragility index is essentially governed by the 
underlying topology, and, in particular, by aspects of rigidity 
(see below).

An alternative viewpoint is proposed by Luther-Davies and 
others [58, 59] who emphasize the role played by chemical 
order, and especially by deviation from stoichiometry, rather 

than topology or rigidity. A joint spectroscopic and fragility 
experiment is analyzed in terms of network dimensionality 
and stoichiometry change. It is suggested that fragility does 
not follow predictions from rigidity percolation (in As–Se) but 
instead correlates with structural dimensionality, whereas for 
the ternary As–Ge–Se a minimum in fragility is claimed to be 
associated with a maximum in structural heterogeneity con-
sisting of appropriate ratios of Se-chains and GeSe4/2 tetrahe-
dra. This claim is actually contradicted by the early work of 
Angell and collaborators, highlighting the connection between 
topology/rigidity and fragility index in the same chalcogenide 
liquid (Ge–As–Se [8]). The minimum in M has been obtained 
at the network mean coordination number ¯=< >=r r 2.4 
which is the location of a rigidity percolation threshold [60, 
61]. The correlation with chemical order is also debated by 
Boolchand and others who have emphasized the link between 
fragility minima and isostatic compositions [15, 41, 47], i.e. 
compositions that are close to the rigidity percolation thresh-
old. This link between topology and fragility is also evidenced 
by the investigation of ionic diffusion and fragility on a series 
of iron-bearing alkali–alkaline earth silicate glasses [62].

2.3.3.  Fragility: structure relationships.  Glass fragility is 
also found to display a relationship with atomic ordering 
on intermediate and extended ranges, a relationship that 
also connects to the notion of dynamic heterogeneities (see 
below). Specifically, the structure can be characterized in 
terms of topological and chemical ordering from neutron 
diffraction experiments in real (pair correlation function 
g(r)) and reciprocal space (static structure factor S(k)) [63]. 
It transpires that the ordering for GeO2, SiO2 and ZnCl2 at 
distances greater than the nearest neighbor lengthscale can 
be rationalized in terms of an interplay between the relative 
importance of two length scales [64]. One of these is asso-
ciated with an intermediate range that is directly accessed 
from the structure factor S(k); the other lengthscale is asso-
ciated with an extended range that is characterized from the 
decay of Bhatia–Thornton pair correlation functions in real 
space. With increasing glass fragility, i.e. when moving from 
GeO2 to ZnCl2, it has been found that the extended range 
ordering dominates [64].

Having such simple structural correlations at hand, it is not 
surprising that glassy relaxation has also been investigated by 
diffraction methods in order to follow low wavevector features 
with temperature, and, specifically, the first sharp diffraction 
peak (FSDP) of the structure factor S(k). It has been stated 
[10] that fragile liquids usually do not have any structural 
signature of long-range correlations so that the absence of an 
FSDP is indicative of a fragile glass-forming liquid. This cor-
relation has been verified on a certain number of systems such 
as the very fragile ZrO2 and Al2O3 [65] which do not exhibit 
an FSDP, in contrast with the less fragile ZnCl2 which shows a 
well-defined, but not sharp, FSDP [66], and with other exam-
ples of strong glass-forming liquids such as germania and 
silica which display a sharp FSDP [67, 68].

By analyzing the typical features of the simulated struc-
ture factors with changing thermodynamic conditions (den-
sity, composition), Bauchy and Micoulaut [69–71] have found 

Figure 5.  Fragility scaling [49] of various network-forming liquids 
as a function of connectivity (mean coordination number r̄ or mean 
local connectivity or mean intermediate range order connectivity).
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that anomalies (extrema) in properties associated with glassy 
dynamics (diffusivity D, activation energy EA which is propor-
tional to fragility if Tg does not vary too much) are correlated 
with anomalies in structural features, as revealed by the change 
in FSDP (peak position kFSDP and width ∆kFSDP, figure 6). The 
established correlation suggests that in strong glasses, typical 
length scales of distance /π=L k2 FSDP involved in the slower 
variation of viscosity with /T Tg  must lead to a growth of the 
FSDP because the latter reflects some repetitive characteris-
tic distance between structural units. Also, the broadening of 
the FSDP is indicative of a correlation length (Scherrer equa-
tion  [73]) defined by /π ∆k2 FSDP that tends to maximize for 
strong glass-forming liquids (figure 6, bottom).

2.3.4.  Other fragility relationships.  Network glass-forming 
fragilities display a certain number of other correlations with 
physical, chemical or rheological properties that have been 
reported in the literature.

An inspection of figure 2 also indicates that supercooled 
liquids with a lower fragility index M will lead to higher 
viscosities at a fixed /T Tg. It has been observed [74] that the 
glass-forming tendency is increased for liquids that are able 
to increase their melt viscosity at lower temperatures, i.e. for 
a given class of materials having a similar Tg, the glass-form-
ing tendency is increased for melts with lower fragilities: this 
argument is particularly relevant for binary alloys. Indeed, in 
eutectics where freezing-point depressions exist, glasses will 
form more easily because these depressions bring the liquid 
to lower temperatures and higher viscosities, while prevent-
ing from crystallization. Such observations are, furthermore, 
found to correlate rather well when the composition of the 
eutectic is compared to compositions at which one has a 

minimum of the critical cooling rate that is needed in order to 
avoid crystallization [75].

Correlations have been suggested between fragility and 
non-exponentiality ( ( / ) )τ− βtexp ) of the structural relaxation 
characterized by a Kohlrausch exponent β [76] at low temper
ature and long durations. Here, τ represents the relaxation 
time. These have been established [44] from a combination 
of experimental techniques (figure 7). When all subgroups of 
glass formers are represented (organic, polymers, networks) 
a clear relationship appears and indicates that the fragility 
index M decreases with the exponent β, i.e. as one moves 
towards the Debye-type one-step relaxation limit (β = 1), the 
fragility reaches its minimum value ( <M 20). A correlation 
of fragility to the non-ergodic level of the glass has been also 
found in the liquid phase as measured directly by dynamic 
light scattering [77]. Other authors have emphasized the cen-
tral role played by elastic properties such as compressibility 
[78]. Novikov and Sokolov [79] have shown that the fragil-
ity of a glass-forming liquid is directly linked to the ratio 
of the instantaneous bulk and shear moduli, or the Poisson 
ratio. Since the latter is related to the very local deforma-
tions of the cage structure made by neighboring atoms, these 
authors argue that the Poisson ratio should also control the 
non-ergodicity parameter which controls the fast dynamics 
of the liquid. However, this result has been challenged [80], 
and evidence has been provided that M should, in fact, scale 
with the ratio of the transverse and longitudinal sound veloc-
ity. Building on a similar relationship, Ruocco and colleagues 
[81] have emphasized that the fragility should be linked with 
the elastic properties of the corresponding glass, quantified 
from the non-ergodicity parameter fc accessed from inelastic 
x-ray scattering (inset of figure 7).

Figure 6.  Correlation between relaxation properties, calculated diffusivity D (blue) and activation energy EA for diffusivity (red axis of 
the upper panels), and structural properties in the glassy state (black curve, width kFSDP∆  of the FSDP) in systems with changing pressure 
(2SiO2–Na2O, [69, 70], left panels) or changing composition (As–Se, [71], right panels). Note, that for As–Se, an opposite behavior for 

kFSDP∆  with composition is found from a reverse Monte Carlo simulation [72].
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Some other authors have also proposed an empirical rela-
tion between the fragility and the strength of fast dynamics 
which can be quantified from Raman spectroscopy of corresp
onding glasses [83, 84]. According to this idea, the ratio of 
the relaxational to vibrational contributions around the Boson 
peak has been proposed to relate to the fragility of the liquid. 
This relationship has been also challenged and no such corre-
lation could be recovered [85] from a careful Raman analysis. 
It should be stressed that most of these correlations are pro-
posed from a literature survey of a variety of glasses, allowing 
large ranges in fragility to be covered (see y-axis in figure 7). 
However, when the focus is only on the network-forming inor-
ganic liquids which have typically <M   70, the correlation 
becomes less obvious because of the reduced fragility index 
range. It would certainly be instructive to quantitatively test 
such correlations for the wide subclass of network glasses.

It must finally be stressed that proposed relationships are 
often based on melt fragility indexes that can sometimes be 
flawed by inproper sample preparation, especially for strong 
liquids which have the highest viscosities (e.g. GeSe4). A 
careful study [86] of the effect of melt homogeneity on the 
measurement of M shows that inhomogeneous melts can lead 
to a spread in measurements, and, eventually, to improper 
established correlations. The variance of the measurement 
decreases as glasses homogenize (figure 8), whereas the mean 
value increases to saturation at values characteristic of homo-
geneous glasses [15, 41].

2.4.  Stress relaxation

Given their disordered atomic structure and their out-off 
equilibrium nature once <T Tg, glasses exhibit residual fro-
zen stresses. This is because atoms are randomly placed in 
the network, and this situation is energetically unfavorable, at 

least with respect to a regular crystalline lattice. These stresses 
can be partially released by moderate temperature annealing, 
a technique known by the ancient Phoenicians, that prevents 
stress-induced cracking, and the related relaxation can there-
fore represent an alternative and interesting way to probe the 
dynamics of a glass or a deeply supercooled liquid through its 
glass transition [89–91].

When a material is subjected to a constant strain, there is a 
gradual decay in the stress that can be analyzed as a function 
of time, and reveals the viscoelastic properties as a function 
of thermodynamic conditions [92]. Note, that for glasses with 
a low glass transition temperature (chalcogenides), aspects 
of viscoelasticity can also be probed at room temperature. 
In practice, relaxation is embedded in a relaxation function 

( )Φ t  that relates the relaxing stress/strain behavior to its initial 
value, provided that the strain is imposed in an instantaneous 
fashion at t  =  0.

A certain number of experiments have shown that such 
measured relaxation functions ( )Φ t  can be conveniently fitted 
with a stretched exponential that seems to decay to zero at 
→∞t  (figure 9) for most of the inorganic glasses, in contrast 

with cross linked polymers [93] or crystals [94] which decay 
to a finite stress/strain value. The detail of the analysis [95] 
also shows that during relaxation the viscoelastic deforma-
tion under stress can be decomposed into a sum of an elastic 
part, an inelastic (or viscous) part and a delayed elastic part; 
the latter being responsible for the non-linear primary creep 
stage observed during creep tests. In addition, such a delayed 
elasticity has been found to be directly correlated to the dis-
persion of relaxation times of the processes involved during 
relaxation.

Measurements using different methods have been made on, 
for example, Ge–Se [96–98], Te–As–Ge [99], and As–Ge–Se 
[100], which can be related to structural aspects, while also 

Figure 7.  Correlations between fragility M and some physical properties. Fragility of various glass formers (collected from [44, 46, 47]) 
as a function of the Kohlrausch stretching exponent β. Minimum fragility M of Ge22Se78 [15] is represented by a broken line. The inset 
shows a correlation between fragility and a parameter (α) characterizing the non-ergodicity factor fc(T) (collected from [7, 81, 82]) via 
f T T T1c g

1( ) ( ( / ))α= + − .
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revealing that a significant part of the stress is not released on 
experimental timescales (months) in certain compositions for 
given systems (e.g. GeSe4 in Ge–Se [97]). Such stress relaxa-
tion measurements have some importance in the field of ion 
exchange glasses (e.g. sodium borosilicates) because of the 
strengthening of the glass surface that is steadily improved 
[101, 102]. It has also been considered for soda-lime  
[92, 103, 104] or borosilicate glasses [105]. For the latter [105], 
a long-time study has permitted the first detectable signatures of 
glass relaxation far below Tg ( / �T T 0.3g ), and the measure of 
strain with time, in other words the relaxation of the glass, fol-
lows a stretched exponent with a Kohlrausch exponent β = 0.43 
that has been predicted from dimensional arguments [106].

In the case of chalcogenides, an interesting perspective 
is provided by the comparison with the generic behavior of 
organic polymers [93] since amorphous Se is considered as 
a glassy polymer made of long chains that are progressively 
cross-linked by the addition of alloying elements. Stress 

relaxation is also thought to have some impact on the resist
ance drift phenomena [107] which is crucial for the functional-
ity of heavier chalcogenides such as amorphous phase-change 
tellurides (Ge2Sb2Te5).

2.5. Thermal changes

Signatures for the onset of glassy behavior can be also detected 
from thermal changes.

Figure 8.  Effect of glass homogeneity on fragility measurements [86]. Left: effect of the reaction time tR on the fragility index M in 
Ge10Se90. Symbols indicate measurements on different batch parts, whereas the red circles indicate batch average. The inset shows the 
spread of the measurement (variance σM as a function of tR). Permission from John Wiley & Sons 2015. Right: compositional variation of 
the fragility index M of the As–Se system, and the effect of measurement type (mDSC [41, 87]; viscosity [88]) and sample homogeneity. 
Using the same measurement method, glasses with Raman verified homogeneity [57] lead to lower fragilities (red symbols, [41]). 
Permission from AIP Publishing LLC 2015.

Figure 9.  Relaxation function t( )Φ  in Ge–Se and Te–As–Ge glasses 
from stress relaxation measurements [97]. Lines represent fits using 
a stretched exponential texp[ ( / ) ]τ− β  function.

Figure 10.  A schematic plot of thermal properties (enthalpy H) at 
the glass transition [108]. When fast enough, cooling from the high 
temperature melt avoids crystallization, leading to the supercooled 
liquid and, ultimately, to a glass at a certain fictive temperature 
(crossover of the broken curves). Upon reheating (red curve), a 
hysteresis appears that is related to the relaxation of the glass. 
Corresponding heat capacity during cooling and subsequent heating 
without annealing, covering enthalpy relaxation in glass states, 
and subsequent enthalpy recovery (bottom) upon glass transition. 
Permission from AIP Publishing LLC 2015.
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2.5.1.  General behavior.  Figure 10 shows a typical behavior 
of the enthalpy from the high temperature liquid down to the 
glass. A rapid cooling from the melt avoids crystallization at 
the melting temperature and brings the liquid into the super-
cooled regime. As the equilibration cannot proceed further 
on computer or experimental timescale (see below) given the 
rapid increase of the relaxation time, the enthalpy curve (or the 
volume curve) deviates from the high temperature equilibrium 
line at the fictive temperature Tf which depends on the cooling 
rate. A faster cooling rate will lead to a higher fictive temper
ature, whereas a lower cooling rate will produce a lower fic-
tive temperature because equilibration can be achieved down 
to lower temperatures. As both enthalpy and volume display 
a different slope below or above the fictive temperature, their 
derivative with respect to temperature (heat capacity, thermal 
expansion, inset of figure 10) will lead to an abrupt change 
with a step-like change across the glass transition that depends 
on the cooling rate.

However, even in the obtained glassy state, the material 
will continue to relax to a lower energy state leading to lower 
volumes or lower enthalpies. As mentioned above, these relax-
ation processes happen on timescales that now exceed the lab-
oratory timescale by several orders of magnitude. As a result, 
the enthalpy/volume curve upon reheating (red curve) will be 
markedly different, and this effect can even be enhanced if 
the glass is maintained at some waiting temperature Tw for a 
certain time (days, weeks, years), allowing for an increased 
relaxation. This experimental situation corresponds to physi-
cal aging, and it can also be detected from the heat capacity 
or thermal expansion change. Calorimetry permits the track-
ing of such effects (relaxation and aging) and when the heat 
capacity is measured during an upscan (red and black curves 
in figure 10) a hysteresis loop appears, which also causes a 
heat capacity overshoot at the glass transition. This endotherm 
peak simply reveals that previously frozen degrees of freedom 
during the quench are now excited so that the overshoot is 
a direct manifestation of the relaxation taking place between 
the laboratory temperature, or the temperature Tw at which the 

glass is aged, and Tg. As a result, an enthalpic recovery (∆HR 
in figure 10 bottom) can be measured upon reheating. Note, 
that due to this kinetic nature, the glass transition temperature 
Tg cannot be uniquely defined by, for example, calorimetry, 
and its value differs slightly from the reference temperature 
satisfying ( )η =T 10g

12 Pa · s.
In addition, extrinsic factors due to the kinetic character 

of glass transition must be taken into account. For instance, 
the effect of the heating rate on glass transition temperature 
dependence is rather well documented in the literature, and 
obeys the phenomenological Kissinger equation [109]:
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which translates, via the assumption of an activated process 
with energy EA for the relaxation kinetics of the glass trans
ition, into a higher rate leading to a higher measured Tg. 
Under the assumption that the activation energy involved in 
equations  (12) and (13) is the same as the one involved in 
the relaxation of the viscous liquids, a measurement of Tg at 
different scan rates q leads to a determination of the fragility 
for strong glass formers via =M E RT/ lnA 10 g. Applications of 
such methods to network glasses can be found for a variety of 
glasses (e.g. Ge–As–Se [58] using equation (13), figure 11). 
Note, that the fragility determination from the Kissinger equa-
tion  might be subject to considerable uncertainty. Instead, 
methods incorporating the effect of the fictive temperature and 
cooling rate can give reliable values, quite comparable with 
the viscosity-based fragility measurements [111, 112].

In the literature, a vast body of data exists on such meas-
urements given that Tg is generally determined by calorim-
etry which measures the change in thermodynamic properties 
(heat capacity) at the glass transition.

Figure 11.  (a) DSC curves [58] showing the total heat flow Ḣtot of a ternary Ge6.25As32.5Se61.25 glass obtained for changing scan (heating) 
rates q+ from 30 K min−1 to 5 K min−1. (b) Plot of ln q+ as a function of 1000/Tg for different glasses in this ternary As–Ge–Se. A linear  
fit leads to values for EA, using equation (13). Reprinted with permission from [58].
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3.  Experimental methods

3.1.  Scanning calorimetry

The most frequently used technique for determining the glass 
transition temperature and studying enthalpy relaxation is 
differential scanning calorimetry (DSC). The technique mea-
sures a difference between an electrical power needed to heat 
a sample at a uniform scan (heating) rate. As the measured 
heat flow, once the reference signal has been removed, is pro-
portional to Cp of the system, one has access to the heat capac-
ity across the glass transition in order to investigate effects 
such as those represented in figure 10(b).

For DSC, one usually uses the definition for Tf for the 
enthalpy:

( ) ( ) ( )∫= −H T H T C T Tde
T

T

f pg 1 1
f

� (14)

where Cpg is the heat capacity of the glass, and ( )H Te f  is the equi-
librium value of H at the fictive temperature. One then has access 
to the heat capacity by differentiating the equation to obtain:
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where CN
p  is the normalized heat capacity, and it is often 

assumed that ∆Cp calculated at the fictive temperature is the 

same as at temperature T so that /T Td df  equals CN
p . In practice, 

these DSC signals are scan rate dependent given that the glass 
transition temperature depends on the heating rate (figure 11).

3.2.  AC calorimetry and modulated DSC

The first introduction of this technique (AC calorimetry) came 
from Birge and Nagel who added onto the DSC linear signal a 
small oscillation [113–115]. It represents an interesting exten-
sion since enthalpy relaxation can be measured in the linear 
region of small temperature changes, thus avoiding possible 
non-linear responses of the sample. However, most applica-
tions have focused on organic liquids such as glycerol [113], 
and we are not aware of any measurements for network glass-
forming liquids.

From a statistical mechanics viewpoint, one can consider 
the imaginary part of the heat capacity, ( )ω∗C ip , as a complex 
response function (similar to the dielectric permittivity ( )ω∗ε i , 
see below), and this part is usually associated with the absorp-
tion of energy from an applied external field. This frequency-
dependent heat capacity is complex, a property that is a direct 
consequence from the fluctuation-dissipation theorem which 
applies to a function that is proportional to the mean-square 
fluctuations in entropy, ⟨ ⟩=k C SB p

2 , which in turn have a 
spectral distribution. Birge [115] suggests that in AC calorim-
etry there is no net exchange of energy between the sample 
and its surroundings, but there is a change in the entropy of the 
surroundings that is proportional to Cp, and the second law of 
thermodynamics ensures that >Cp  0.

Kob and colleages [116] have given a statistical mechan-
ics description of AC calorimetry by deriving a relationship 

between the frequency-dependent specific heat and the auto-
correlation function of temperature fluctuations. Using molec-
ular dynamics simulations of silica, they have shown that 
both real and imaginary parts of Cp exhibit the usual shape 
of complex response functions, the out of phase (imaginary) 
component displaying a maximum corresponding to the typi-
cal α-relaxation peak at ω τ = 1max . The dependence of τ on 
temperature has been found to agree with the one determined 
from the long-time (α-relaxation) behavior of the incoherent 
scattering function. This indicates that AC calorimetry, and 
its extension to modulated differential scanning calorimetry 
(mDSC), can be used as a spectroscopic probe for structural 
relaxation in glasses [117, 118].

An improved technique, mDSC, appeared nearly two dec-
ades ago, and represents a promising extension of [113], with 
frequency ranges being reduced by several decades. It allows 
for investigations of thermal conditions with increased relaxa-
tion times, close to the glass transition. This technique is 
somewhat versatile since measurements are performed in the 
course of a usual DSC scan. It is thus likely to offer a new con-
venient way to probe molecular mobility in connection with 
relaxation. In practice, and as in AC calorimetry, one super-
poses a sinusoidal variation on the usual linear T ramp of the 
form ( ) ( ) ( )ω= +T t T t tsindsc . In direct space, this technique 
permits one to deconvolute [119, 120] the total heat flow (Ḣtot) 
into a reversing and a non-reversing component. The revers-
ing component (Ḣr) tracks the temperature modulation at the 
same frequency ω while the difference term (renamed as ‘non-
reversing’), = −H H H˙ ˙ ˙rnr tot  does not, and captures most of the 
kinetic events associated the slowing down of the relaxation 
close to the glass transition (figure 12). The decomposition 
into several heat flow components can be formally written as:

( ) ( )= + = +H H H C T T f t T˙ ˙ ˙ ˙ ,tot rev nr p� (16)

where Ḣrev and Ḣnr represent the reversing heat flow and the 
non-reversing heat flow, respectively. The function f (T, t) con-
tains most of the time and temperature-dependent processes. 

Figure 12.  mDSC scan of a As45Se55 glass showing the deconvolution 
of the total heat flow Ḣtot into a reversing and non-reversing part (Ḣnr). 
The area between the setup baseline and Ḣnr permits one to define a 
non-reversing enthalpy Hnr∆ . Adapted from [42].

Rep. Prog. Phys. 79 (2016) 066504



Review

14

When studying the glass transition, this function becomes 
important when one reaches the transition temperature, 
because the system needs more and more time to equilibrate 
upon temperature change, and this is, in fact, observed in the 
example displayed (figure 12). Frequency corrections can be 
realized to provide a nearly independent measure of Cp and its 
inflexion point serves to determine the glass transition temper
ature. When properly placed with respect to the measurement 
baseline, the area Ḣnr leads to the definition of a non-reversing 
heat enthalpy (∆Hnr, figure 12) that has some importance in 
the field of rigidity transitions (see below). The complex heat 
capacity ( )ω∗Cp  can be linked to the sinusoidal part of the heat 
flow response contained in both contributions of Ḣtot, either 
through the base frequency (Ḣrev) or through the secondary 
harmonics (Ḣnr).

In order to probe the dynamics ranging from a very short 
timescale of pico-to-nanoseconds typical of high temperature, 
to the low temperature domain of μs to seconds, different 
sets of experiments can be used, and these comprise neutron 
scattering, dielectric and calorimetric spectroscopy. These 
methods can be seen as complementary given that they do not 
probe the same timescale; the former essentially focusing on 
the high temperature regime when τ is very small.

In an mDSC measurement, a decomposition of the com-
plex ( )ω∗Cp  into real and imaginary parts leads to curves which 
have the characteristic forms of the complex susceptibility 
of a relaxation process (figure 13(a)), as also accessed from 
dielectric measurements. In particular, for a given temperature 
the imaginary part ″Cp  peaks at a frequency ω τ = 1max  which 
permits one to access the relaxation time, and this calorimetric 
method has been shown to lead to similar results regarding 

( )τ T  when compared to dielectric data [117, 118]. When such 
determined relaxation times /τ ω= 1 max are represented in an 
Arrhenius plot close to the glass transition, the T dependence 
of ( )τ T  permits determining the fragility (figure 13(b)).

3.2.1.  Dielectric relaxation.  Similarly to mDSC, dielectric 
relaxation permits, via the response of the system to an exter-
nal and oscillating electric field, the provision of informa-
tion about the relaxation behavior. The complex permittivity 

″ε ε ε ω= −′∗ i ( ) can be studied as a function of frequency, and 
the imaginary part ( )″ε ω  (the loss spectra) which also peaks at 
ω τ = 1max  can be conveniently fitted in the high temperature 
regime (Debye) as well as in the supercooled regime using 
empirical functions (Havriliak–Negami [121], Cole–Cole 
[122]) to access the relaxation time as a function of thermody-
namic conditions, and, particularly, temperature.

While this technique has largely been used for the study of 
organic glass formers [123–125] due to their increased dielectric 
strength, the study of network glasses has been mostly restricted 
to solid electrolytes containing modifier ions (Na, Li,...). In this 
case, a measurement of the complex conductivity ( )σ ω∗  permits 
one to determine, via the electrical modulus ( )ω∗M , the fre-
quency behavior of the permittivity [126]:

( )
( )

( )
ω

ω
σ ω
ω

= =∗
∗

∗
ε

εM

1

i 0
� (17)

Again, the frequency ωmax at which the out-of-phase comp
onent ( )″ ωε  is maximum leads to a determination of the  
relaxation behavior of the ions, and related characteristics of 
glassy relaxation (β, EA,...). Typical applications to silicate 
[127, 128], borates [129–131], thioborates [132], germanates 
[133], and phosphates [134] can be found in the literature.

3.2.2.  Scattering functions.  Given the same timescale (ns-
ps), inelastic neutron scattering experiments can provide 
direct access to relaxation functions that can be compared 
with statistical calculations using molecular simulations (see 
below). Measured double differential cross-sections are pro-
portional to so-called scattering functions ( )ωS k,  which, via 
Fourier transform, can be related to the intermediate scatter-
ing function ( )F tk, . The coherent and incoherent parts of the 
scattering function allow the determination of a coherent part 
of the intermediate scattering function ( )F tk,coh  providing 
information about collective particle motion:
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and an incoherent (self) part ( )F tk,inc  that focuses on single 
particle motion:

( ) ( ) ⟨ ⟩( ) ( )∑= =
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1
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Figure 13.  (a) An example of in-phase and out-of-phase components 
of complex Cp from mDSC scans as a function of modulation 
frequency for a GexSe100−x melt at x  =  10% [15]. (b) Log of 
relaxation time (τ) as a function of T Tg/  yielding fragility, m, and 
activation energy Ea from the slope of the Arrhenius plots at indicated 
compositions (x). Permission from AIP Publishing LLC 2015.
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The latter, which follows the Fourier components of density 
correlations, characterizes the slowing down of the relaxation 
that can be investigated in liquids for different temperatures 
down to a temperature close to the glass transition.

Such correlation functions (e.g. ( )F tk,s ) display some 
salient features for most of the glass formers (figure 14). At 
high temperature, ( )F tk,s  decays in a simple exponential way 
of Debye type that only takes into account the interactions 
between particles (microscopic regime), and ( )F tk,s  goes to 
zero rather rapidly, typically the ps timescale for, say, a silicate 
liquid at 1800 K (see figure 15). For smaller times, smaller 
than the typical microscopic times (ps), the time dependence 
is quadratic in time and arises directly from the equation of 
motion of the moving atoms. As the temperature is decreased, 
however, the decay of ( )F tk,s  cannot be described by a sim-
ple exponential function, and a plateau sets in at longer times. 
The time window associated with this plateau is called the 
‘β-relaxation’ and this window increases dramatically as the 
temperature continues to decrease, driven by the cage-like 
dynamics of the atoms which are trapped by slow-moving 
neighbors. This leads to a nearly constant value for density 
correlations in Fourier space, and is associated with a non-
ergodicity parameter fc characterized by the plateau value 

( )�F k t f,s c in the β-relaxation regime. However, for times 
which are much larger than this β-relaxation regime, atoms 
can escape from the traps, can relax, and jump to other atomic 
traps so that ( )F tk,s  can eventually decay to zero (figure 15), 
and its behavior is appropriately described by a stretched 
exponential of the form ( ) [ ( / ) ]τ− β�F t tk, exps  where τ is 
the (structural) relaxation time associated with the so-called 
‘α-relaxation’ regime, and β is the Kohlrausch parameter 
introduced previously. For a full review on the stretched expo-
nential and the nature of the parameter β, we refer the reader 
to [106]. It should be noted, however, that while the stretched 
exponential is a convenient fitting form of the long time limit 
of ( )F tk,s , this does not imply that the glassy dynamics are 
only non-exponential. In fact, the relaxation dynamics are 

also non-linear given that the structure keeps changing with 
time and temperature. Therefore, the application of the simple 
Kohlrausch form which only emphasizes the non-exponential 
aspect might not be accurate enough to explain the full relaxa-
tion dynamics.

As one finally approaches the glass transition, because of 
the dramatic increase of the relaxation time τ, this α-regime 
becomes barely observable, and the β-relaxation plateau 
extends to timescales which are of the order of the typical 
laboratory timescale or larger (green curve in figure 14).

There has been quite a large body of research on inelastic 
neutron scattering applied to the determination of the glassy 
dynamics in supercooled liquids. For networks, Kargl et  al 
[82] have used inelastic scattering in alkali silicate liquids 
to determine the viscous dynamics, the relaxation time ( )τ T  
and the non-ergodicity parameter fc. It has been found that 
in such liquids fast relaxation processes happen on a 10 ps 
timescale (accessed from a neutron time of flight experiment) 
and are associated with the decay of the Na–Na structural 
correlations, whereas slower processes are found on a 10 ns 
timescale, and involve the decay of network-forming species-
related coherent correlations (Si–O, O–O and Si–Si). Such an 
observation is actually quite systematic for binary modified 
glasses which contain an alkali modifier, and a certain number 
of examples of such investigations can be found in the litera-
ture (e.g. sodium aluminosilicates [135]).

3.2.3.  Nuclear magnetic resonance.  The investigation of 
nuclear magnetic resonance (NMR) spectra as a function of 
temperature and/or composition also permits access to prop-
erties of relaxation [136]. The typical time of spin-lattice 
relaxation (SLR) can be used to link the dynamics of certain 
structural fragments resolved by NMR with timescales related 
to the SLR time. This time is, indeed, associated with the 
mechanism that couples the equilibration of magnetization for 
a given linewidth (i.e. a local structure) with the effect of the 
(lattice) neighborhood.

In the liquid state, the evolution with temperature of the site 
associated linewidth and their characteristics (e.g. full width 

Figure 14.  Schematic representation of density correlation function 
(intermediate scattering or incoherent scattering function) Fs(k, t) 
in viscous liquids at different temperatures: high temperature liquid 
(red) with a simple exponential decay, deep supercooled (glass, 
green), and intermediate temperatures (black) displaying both the  
β-relaxation plateau, and the α-relaxation regime which can be 
fitted by a stretched exponential of the form texp[ ( / ) ]τ− β  .

Figure 15.  Density correlation functions of Fs(q, t) of sodium and 
lithium disilicate melts (1600 K, [82]) in the fast alkali relaxation 
regime at different wavevectors k (circles, k  =  0.4 Å

1−
; triangles, 

k  =  1.0 Å
1−
). The solid lines represent fits with a stretched 

exponential function.
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at half maximum) provide direct indication of how structural 
fragments impact the evolution with time and temperature 
[137–141]. Linewidths are expected to narrow upon temper
ature increase, and since such linewidths can be associated 
with specific structural features or species, one can have 
access to aspects of relaxation, and how the local structure 
affects the dynamics. For instance, for the case of silicate spe-
cies [138], it has been found that the typical NMR timescale 
involved in Na cation exchange between Si tetrahedral species 
was identical to the one determined from viscosity measure-
ments. This indicates that the local Si–O bond-breaking repre-
sents the main contribution to viscous flow in silicate liquids. 
A similar conclusion has been drawn for borosilicates [142], 
and represents the central result related to this topic, i.e. the 
investigation of glass relaxation from NMR studies.

In the glassy state, applications to chalcogenides (Ge–Se) 
have shown that such SLR timescales are significantly smaller 
for Se–Se–Se chain environments (10−9 s) as compared to 
Ge–Se–Ge fragments (10−6 s, [143, 144]), and consistent with 
the fact that these chains are mechanically flexible, and lead to 
an enhanced ease to relaxation that is also driven by composi-
tion (figure 16). However, an opposite behavior is found for a 
similar system (As–Se, [145]); such contradictory trends being 
eventually driven by the magnitude of the applied magnetic 
field, and how the corresponding frequency compares to the 
characteristic timescale for dipolar coupling fluctuations [144].

3.2.4.  Photoelectron correlation spectroscopy.  There is also 
the possibility to use photon correlation spectroscopy (PCS) 
to probe the dynamics of the glassy relaxation [146] in order 
to extend the measurement of correlation functions to the μs s 
time domain, i.e. close to the glass transition. Another more 
recent powerful experimental technique using x-ray induced 
photoelectrons has also emerged thanks to instrumental devel-
opments [147], and to an increased flux and coherence of 

x-ray beams. For a full review on the technique, see [148]. 
At present, the development and the first applications of the 
technique have mostly focused on metallic glasses [149–151]. 
It has been found that for such systems the dynamics evolve 
from a diffusive atomic motion in the supercooled liquid, to 
stress-dominated dynamics in the glass, characterized by a 
complex hierarchy of aging regimes.

In the case of network glasses, only select yet promising 
studies have been reported on liquid selenium [152], silicates 
both in glasses [153, 154] and deep supercooled liquids [155], 
and phosphates [156, 157]. In the silicates, it has been found 
that even at 300 K both lithium and sodium silicate glasses are 
able to relax [153] and rearrange their structure on a length 
scale of a few Angstroms, thus contradicting the general 
view of almost arrested dynamics. The measured relaxation 
time has been found to be surprisingly fast, even hundreds of 
degrees below Tg, a result that contrasts with the common idea 
of ultra-slow dynamics, but which is consistent with the meas-
ured relaxation behavior [105] of a borosilicate glass far from 
the glass transition temperature ( / �T T 0.3g ). The findings also 
seem to suggest the existence of distinct atomic scale-related 
relaxation dynamics in glasses, not taken into account by any 
previous study.

In the binary phosphates Na2O-P2O5, Sidebottom and col-
leagues [156] have analyzed the relaxation of the glass-forming 
liquids, and have shown that the substantial increase in fragil-
ity is accompanied by a progressive depolymerization of the 
network structure, suggesting that the viscoelastic relaxation in 
network-forming liquids is controlled only by the topology of 
the covalent structure. Similar to the case of silicates [135], a 
decoupling of ionic motions from those of the network species 
seems to occur as the glass transition is approached.

4.  Simple models for enthalpic relaxation

4.1. Tool–Narayanaswamy–Moynihan equation

Probably the simplest way to quantify enthalpic relaxation 
due to physical aging and structural relaxation is provided 
by Tool’s concept of fictive temperature [158] which permits 
definition of the enthalpy of a glass as a function of Tf:

( ) ( ) ( ) ( )∫ ∫= + +H T T H T T C T T C T T, , d d
T

T

T
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f
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where Cpm and Cpg are specific isobaric heat capacities of 
the metastable supercooled melt and the glass, respectively, 
and T0 is an arbitrary sufficiently high reference temperature 
at which the system is in a metastable thermodynamic equi-
librium. Narayanaswamy generalized Tool’s model [159] by 
incorporating a distribution of relaxation times, and obtained 
the following expression for the fictive temperature that can 
be calculated for any thermal history:
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where MH is the Kohlrausch–Williams–Watts (KWW) relax-
ation function introduced previously:

Figure 16.  Full width at half maximum of a 77Se NMR resonance 
associated with Se–Se–Se chains as a function of temperature 
in GexSe1−x glass-forming liquids [137]. Systems have been 
separated into subclasses satisfying the mean coordination number 
r x2 2 2.4¯ ⩾= +  or r 2.34¯ ⩽ . Here, r 2.4¯ =  represents the rigidity 
percolation threshold [61].
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( ) [ ]= − βM y yexpH� (22)

and, as for the case of the long-time behavior fitting of the 
intermediate scattering function, the Kohlrausch exponent β 
(0 β< < 1) characterizes non-exponentiality. The function 
MH is supposed to be inversely proportional to the width of 
a distribution of relaxation times of independent relaxation 
processes, y being a dimensionless reduced relaxation time:
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The contribution to the relaxation time ( )τ T T, f  is controlled 
by a non-linearity parameter x (0  <  x  <  1) according to the 
Tool-Narayanaswamy-Moynihan (TNM) equation:
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where τ0 is a constant, ∆ ∗h  is an apparent activation energy, 
and R is the universal gas constant. Having set these equations, 
the time evolution of the normalized molar heat capacity can 
be obtained and directly compared to the standard output of a 
DSC measurement.

The combination of these equations  (20)–(24) with 
Boltzmann superposition (i.e. the Tool–Narayanaswamy–
Moynihan (TNM) phenomenology) is the most frequently 
used non-linear phenomenology for the study of enthalpy 
relaxation.

4.1.1.  Applications.  There are many applications of the TNM 
phenomenology to network glasses using either DSC signals 
for enthalpic relaxation, or dilatometric measurements for 
volume relaxation (see figure 17).

Enthalpic structural relaxation in AsxSe100−x glasses from 
DSC has been described within this TNM model [162], and con-
nections can be made with structural changes. A combination of 
mercury dilatometry and DSC [163] on certain network glasses 
(Ge2Se98 and As2Se98) using, again, the TNM model shows that 
enthalpic and volumetric relaxation are nearly identical and 

lead to the same ∆ ∗h  value, which is also the case for elemen-
tal selenium. In this series of selenide network glasses, there 
has been a lot of attention [164–167] on the relaxation of pure 
Se whose network is made of long Se chains [168]. The TNM 
parameters (pre-exponential factor τ0 and the apparent activa-
tion energy ∆ ∗h ) have been found to be very close to the activa-
tion energy of viscous flow. Other typical applications of the 
TNM model to the analyis of enthalpy/volume relaxation can 
be found for B2O3 [169], Ge–Sb–Se–Te [170], Ge15Te85 [171], 
As2S3 [172] or Ge38S62 [173] or Te–Se [174].

4.1.2.  Limitations.  One obvious drawback is that the TNM 
parameters (β, ∆ ∗h , x) do not seem to be fully independent 
as emphasized by Hodge [175]. The TNM parameters of 30 
organic and inorganic glass formers have been collected, and 
a strong correlation between the parameters emerges (figure 
18). It is suggested [176] that these correlations are somehow 
expected because the fitting parameters are not orthogonal in 
parameter search space, and because the TNM parameters 
themselves have large uncertainties that are also correlated. 
In addition, there is obviously a lack of a physical model 
that could provide an interpretation for the parameter and 
the parameter correlations, the explicit account of a KWW 
behavior (equation (22)) also being introduced by hand in the 
theory. Also, relatively subtle distortions of the experimental 
data can lead to evaluated TNM parameters that are highly 
inconsistent.

One way to circumvent these problems is to provide other 
indirect fitting methods allowing one, for instance, to evalu-
ate the apparent activation energy of enthalpic relaxation ∆ ∗h  
from the heating rate dependence, using the Kissinger formula 
(12) in combination with a determination of the fictive temper
ature using the equal enthalpic area method across the glass 
transition [169, 177]. Additional indirect fitting techniques 
[110] use the shift of the relaxation peak with the temperature 
during so-called intrinsic cycles of the glass transition dur-
ing which the cooling-to-heating ratio is kept constant. For 
more details on alternative fitting techniques, see [178–180]. 

Figure 17.  Plot of normalized heat capacity Cp for As2Se3 with temperature for cooling rates of  −0.31, 2.5, and 20 K min−1 and heating at 
a common rate of  +10 K/min. Left: direct TNM modeling [160]. Right: TNM modeling using heterogeneous dynamics with a distribution 
of relaxation times [161]. Symbols are the experimental DSC data taken from [160]. Permission from AIP Publishing LLC 2015.
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Application to certain glassy selenides (e.g. Ge2Sb2Se5) 
shows that a full account of the enthalpic relaxation cannot be 
achieved from the TNM equation. While the results exhibit a 
significant dependence on experimental conditions, part of the 
TNM parameters do need to be confirmed by such alternative 
methods [181].

Other important limitations concern the case of the poor 
reproduction of huge overshoot peaks that manifested after 
extremely long annealing periods, a failure that may result 
from the simple exponential behavior for τ (equation (24)). 
This problem can be solved by assuming heterogeneous 
dynamics of dynamically correlated domains which relax in 
an exponential fashion and almost independently from each 
other [161]. In this case, the enthalpic overshoot for a DSC up-
scan is substantially improved (figure 17, right) with respect 
to the basic modeling [160] using equations (20)–(24). Also, 
the TNM framework does not account for multiple glass trans
ition temperatures that are found in heterogeneous glasses or 
in glasses having a reduced glass-forming tendency, i.e. with 
∆ = −T T Tx g quite narrow, Tx here the crystallization temper
ature which leads to a strong endotherm peak in DSC signals. 
More references and examples on the TNM model limitations 
can be found in [182–186].

A comparative method introduced by Svoboda and Malèk 
[187] builds on the parameter control of the TNM approach 
through the cycling of all possible theoretically calculated data-
sets with different relaxation curve profiles. This opens up the 
possibility of applying the TNM equations even to extremely 
distorted differential scanning calorimetry data [188].

4.2.  Adam and Gibbs theory

Such modeling procedures are actually consistent with other 
simple thermodynamic approaches as emphasized in some 

examples (e.g. selenium [189]). For moderate departure from 
equilibrium, it has, indeed, been shown that volume and 
enthalpy relax in the same way when analyzed from the TNM 
approach or from the Adam-Gibbs model which relates the 
relaxation time to the configuration entropy of the liquid.

As emphasized above, this Adam-Gibbs (AG) model [27] 
has a rather large importance in the field of glass transition 
because it relates the relaxation time towards equilibrium, a 
crucial quantity in the context of glassy relaxation, with the 
thermodynamic properties and the accessible states for the 
liquid. In the initial approach, it is assumed that relaxation 
involves the cooperative rearrangement of a certain number z 
of particles. This involves a transition state activation energy 
between at least two stable configurations so that the configu-
rational entropy Sc must satisfy ⩾S k ln 2c B . The configura-
tional entropy can be exactly calculated under the additional 
assumption that (i) the size of these cooperative arranging 
regions is independent, and (ii) that these represent equivalent 
subsystems of the liquid, and are linked with the relaxation 
time. One then obtains equation (4). Such a deep and interest-
ing connection between transport coefficient and entropy has 
been verified directly, i.e. by representing dynamic properties, 
e.g. diffusivity, as a function of A/TSc in a semi-log plot from 
computer simulations of water [190, 191] silica [192] or OTP 
[193] (figure 19, left). It can also be obtained from a simulta-
neous measurement of both the viscosity/diffusivity and the 
heat capacity in silicates [194–198] and water [199], given 
that one has:
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where TK represents the Kauzmann temperature at which 
the entropy vanishes (figure 19). In simulations, Sc has been 
determined mostly from a general thermodynamic framework 
taking into account the vibrational contributions [200] from 
quenched inherent structures (see below). In the experimental 
determination for the validity of the AG relation, Sc is deter-
mined from calorimetric measurements of (i) the crystal heat 
capacity from low temperature up to the melting temperature 
Tm, (ii) the enthalpy of melting of the crystal at the melting 
point, and (iii) the heat capacity of the supercooled liquid from 
Tm to low temperature. It is found that equation (4) is satis-
fied in several families of silicate melts (figure 19 right). Note, 
that such studies have also been realized in fragile organic 
glass formers [201]. The Adam-Gibbs expression (4) linking 
τ with the configurational entropy gives a good account of the 
non-linearity observed in enthalpy relaxation of amorphous 
polymeric, inorganic, and simple molecular materials near 
and below Tg [175]. Equation  (4) can also be modified if a 
hyperbolic form is assumed for the heat capacity [202] which 
seems to be fulfilled in selected glass-forming systems. In 
this case, Sc behaves as C/(1  −  T2  −  T ) [203, 204], and leads 
directly to a VFT behavior (equation (2)) that has = =T T T2 0 K  
[23, 25, 26]. This simple Adam-Gibbs picture [27], although 
powerful, contains a certain number of obvious limitations 
that have been discussed in, for example, [205] (see also the 
above discussion on �T T0 K). For instance, the rearrangement 

Figure 18.  Plot of TNM parameters showing the x versus β 
correlation indicating the possible correlation between fitting 
parameters for various glass-forming systems: polymers, 
polystyrenes, inorganics, fluoropolymer (ZBLA), PMMA. Adapted 
from [175].
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of cooperative regions is not restricted to supercooled liquids 
given that such phenomena also take place in crystals with 
diffusion of correlated vacancies or interstitials. Similarly, the 
emergence of divergent length scales, as revealed by the grow-
ing heterogeneous dynamics setting when one approaches Tg, 
is in contradiction with the assumption of independent and 
equivalent regions.

4.3.  Harmonic models

An alternative path for the description of glassy relaxation 
is given by the wide class of kinetic constraint models for 
which the thermodynamics is trivial, but not the dynamics. 
Complicated dynamics emerge from local time-dependent 
rules, and are able to reproduce some of the standard phe-
nomenology of the glass transition. Among these models, 
the simplest one can be based on the linear elasticity of the 
glass and the corresponding interaction can be considered as 
harmonic.

4.3.1.  Kirkwood–Keating approach.  The justification of the 
applicability to covalent amorphous networks can be made on 
the basis of the Kirkwood–Keating interaction potential that 
has been introduced to fit elastic and vibrational properties 
[206–208]. It represents a semi-empirical description of bond-
stretching and bond-bending forces given by
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where α and β are bond-stretching and bond-bending force 
constants, respectively, and d is the strain-free equilibrium 
bond length. Such models have been widely used for the real-
istic modeling of structural (figure 20) and electronic prop-
erties of tetrahedral amorphous networks [209, 211, 212], 
and these simple interaction potentials have also been used 
to investigate the glass transition phenomenology [213–216]. 
A certain number of salient features can be recovered within 
Metropolis dynamics (see next section). The interaction 
potential can be assimilated with a simple harmonic model 

written as: ( / ) ω= ∑V m x2 i i
2 2 where ω represents a typical 

vibrational mode related to bond interactions, and inelastic 
neutron scattering studies of glasses [217–219] give informa-
tion about the order of magnitude of the typical stretching and 
bending vibrational frequencies (energies), typically of about 
20–40 meV.

4.3.2.  Metropolis dynamics.  From these simplified cases 
[213, 214], the non-trivial dynamics of such potentials (as 
in equation  (26)) can be obtained as follows. Once equa-
tion  (26) is reduced to the simple harmonic form, changes 
in atomic positions from xi to /= +′x x r Ni i i  for all i are 
accepted with probability 1 if the energy decreases, i.e. if 

({ }) ({ })δ = −′V V x V xi i  is negative. Otherwise, the change 
is accepted with a Metropolis rule ( )βδ− Vexp . Here, {ri} 
is a random variable having a Gaussian distribution of zero 
mean and finite variance equal to ∆2. A Gaussian integration 
[213] leads to the probability distribution ( )δP V  for an energy 
change δV:
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Figure 19.  Verification of the Adam-Gibbs relation. Diffusivity or viscosity of liquids plotted as a function of 1/TSc in simulated densified 
water [191] (left) or experimentally measured silicates [194] (right). Permission from Elsevier 2015.

Figure 20.  Radial distribution function of amorphous silicon [209] 
modeled using equation (26), and compared to experiments [210].
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Because the probability distribution ( )δP V  only depends on the 
interaction V, the Markovian dynamics can be analyzed from 
an equation for energy change. According to the Metropolis 
dynamics, the equation of evolution for the energy is equal to:

( ) ( ) ( )∫ ∫τ β
∂
∂
= + −

−∞

∞V

t
P x x x xP x x xd exp d0

0

0
� (28)

where τ0 is a typical time that is inversely proportional to an 
atomic attempt frequency (10−12 s). For the simplest cases, i.e. 
when the bonds (oscillators) have the same frequency ω (see 
[215] for mode-dependent solutions), equation  (28) reduces 
[213] to:
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where /β = T1 , and:
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and erfc is the complementary error function. Equation (29) 
has an obvious solution, equipartition (V  =  T/2), corresp
onding to the equilibrium state for the liquid. Results of this 
model (equation (29), figure 21) show that the glass transition 
can be reproduced and, at low temperature, the system falls 
out of equilibrium which manifests by a departure from the 
equilibrium state V  =  T/2. A decrease of the cooling rate q 
brings the system to a lower glass energy ( → ) ( )= ∗V q T V q, 0  
[213]. Upon reheating, the hysteresis curve signals the onset 
of relaxation, and this leads to a strong exotherm peak in the 
first derivative (Cp, inset of figure 21). Linear extrapolations 
(figure 21) permit one to determine a fictive temperature as a 
function of cooling rate q. The cross-over between the low-
temperature expansion of equation  (29) and the equilibrium 
line V  =  T/2 leads to:
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Similarly, the corresponding heat capacity Cp has the observed 
behavior from DSC (figure 17) for both the cooling and the 
heating curves, and the inflection point of the heating curve 
serves to define a ‘calorimetric’ Tg (filled box in the inset of 
figure 21) as in the experiments.

In such class of models, departure from the equilibrium value 
results from a low acceptation rate for moves → ′x xi i accord-
ing to the Metropolis algorithm. In fact, at low temperature 
most of the changes leading to an increase of the energy will be 
rejected, and the system has an acceptation rate for moves that 
decays to zero. Interestingly, the relaxational dynamics associ-
ated with this low acceptation rate can be exactly calculated by 
linearizing equation (29) around the equilibrium solution, and 
this leads to an Arrhenius-like behavior at low temperature for 
the relaxation time of the form:
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A central result of this approach is that the activation energy 
for relaxation is directly linked [213, 216] with the typical 
vibrational frequency of the bonds, which is a local property 
of the glass, a result that has been recently extended to elasti-
cally interacting spring networks [220].

4.4.  Survey of other approaches

There are many other approaches which attempt to relate the 
glassy relaxation to some other physical quantities or para
meters. Kovacs and colleagues introduce a retardation time 
for exponential decay able to appropriately treat the stretched 
exponential decay of the α-relaxation regime [221] using a 
finite series of exponentials and, under certain assumptions, 
the approach can be connected to the TNM phenomenology. 
However, while the formalism is able to reproduce thermal 
histories of the glass transition, i.e. cooling and heating scans 
of enthalpy, its application has been essentially limited to 
polymers.

In a similar spirit, Ngai et al [222] have developed a cou-
pling model that identifies the relaxation rate as the relevant 
variable, and connects the relaxation time of the stretched 
exponential function with the Kohlrausch parameter β.  
This leads to a time-dependent decay function that exhibits 
non-linearity and a slow-down of the dynamics as the temper
ature is decreased [223]. A certain number of inorganic ionic-
conducting glasses have been analyzed from this approach 
[127, 224]. However the rate equation of decay function that 
leads to glassy dynamics has been found to be inconsistent 
with the Boltzmann superposition principle [225].

Figure 21.  Energy V(T) of a harmonic oscillator system [216] 
(solution of equation (29)) under cooling (black, upper curve), and 
annealing (red lower curve) for a rate =±q 1 K · s−1. The inset 
shows the evolution of the heat capacity. Black squares indicate the 
inflexion point of the Cp curve.
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Similarly to the coupling model, a certain number of 
approaches use the stretched exponential to incorporate some 
non-linear effects which are able to reproduce the glass trans
ition phenomenology. For instance, in [226], non-linearity is 
introduced by defining a dependence of the relaxation time 
on the fictive temperature, and such effects act on the endo-
thermic peak obtained in enthalpy at the glass transition and 
its subsequent evolution under aging. In the case of vitreous 
selenium, a multiordering parameter model [227] uses a con-
tinuous distribution of relaxation times defined by a single 
Kohlrausch parameter β, able to reproduce experimental 
DSC data, and to predict the fictive temperature evolution 
under arbitrary temperature-time histories. The reproduction 
of DSC data appears to be central to the validation of such 
simple models, and Yue and colleagues [228] have recently 
proposed a unified routine to characterize the glass relaxa-
tion behavior and determine enthalpic fictive temperature 
of a glass with an arbitrary thermal history. As a result, the 
enthalpic fictive temperature of a glass can be determined at 
any calorimetric scan rate in excellent agreement with mod-
eled values.

5.  Role of network topology and rigidity

In network glasses, the effect of structure and network topol-
ogy or rigidity appears to be central to the understanding of 
the effect of composition on Tg and relaxation.

5.1.  Network connectivity and glass transition temperature

There are various empirical or theory-based relationships 
showing that the glass transition temperature strongly depends 
on the glass structure, and that there is much to learn from the 
evolution with connectivity of Tg.

Besides thermodynamic or vibrational factors such as the 
well-known ‘two-third rule’ stating that Tg scales as / T2 3 m 

[22] or the Debye temperature of the phonon spectrum, there 
are structural factors and, in particular, aspects of network 
connectivity. Tanaka [229] has given an empirical relationship 
between Tg and the average valence Z of the involved atoms: 

+�T Zln 1.6 2.3g . Varshneya and colleagues [230, 231] have 
also shown that a modified Gibbs–Di Marzio equation [232], 
intially proposed for cross-linked polymers, could predict Tg 
in multicomponent chalcogenide glass systems as a function 
of the average network coordination number r̄, based only on 
the degree of atomic cross-linking in a polymeric selenium-
based glass (e.g. Ge–Se). The parameter B used has been 
shown to be dependent on the coordination number rB of the 
cross-links (Ge,Si) [233]:
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Using stochastic agglomeration of basic local structures rep-
resentative of the glass [234, 235], an analytical Tg predic-
tion for binary and ternary glasses has been established that 
seems to be satisfied for a variety of binary and ternary net-
work glasses (figure 22 left). For the former, the glass trans
ition variation of a weakly modified glass −A Bx x1  behaves as:
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where rB and rA are the coordination numbers of the atoms or 
species B and A, respectively, acting as local building blocks 
of the glass structure, e.g. one has rB  =  3 and rA  =  4 in a sili-
cate glass made of Q3 and Q4 tetrahedral units [235], or rB  =  4 
and rA  =  2 in binary Ge–Se (figure 22). For a ternary system, 
a parameter-free relationship between Tg and the network 

Figure 22.  Left: glass transition temperature in binary chalcogenide glasses. Data from Ge–Se [236], Ge–S [237], Si–Se [238], Ge–Te 
[239] and Si-Te [240]. The solid line corresponds to equation (35) with (rA  =  2, rB  =  4). The dashed curve correponds to the fitted 
Gibbs–Di Marzio equation (equations (33) and (34)), with B 2 ln 2 0.731= =− . Right: prediction of the glass transition temperature from 
the Naumis model [241] for different binary and ternary chalcogenide glasses. Here, the label r⟨ ⟩ on the x-axis stands for the network mean 
coordination number. Experimental data are taken from [8, 237, 239]. Permission from the American Physical Society.
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mean coordination number can be also derived on the same 
basis [242]:

α γ γ α αγ αγ α γ
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and an excellent agreement has been found with experimental 
data [243, 244]. Using a slightly different approach based 
on the general link between the mean-square displacement, 
⟨ ( )⟩r t2 , and the vibrational density of states
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∫

ω
ω

ω=
∞

r t
k T

m

g
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Naumis [241] has derived from the Lindemann criterion of 
solidification [245], using ⟨ ( )⟩r t2 , a relationship predicting 
the variation of the glass transition temperature (figure 22, 
right). These analytical models are helpful in understand-
ing the effect of composition on Tg, and emphasize the cen-
tral role played by network connectivity, and such ideas and 
relationships actually help in decoding further anomalies  
(Tg extrema) which do appear in particular systems such as 
Ge–Se [236], borates [246] or germanates [247]. Given that 
the glass-transition temperature is an intrinsic measure of net-
work connectivity, Tg maxima in Ge–Se and As–Se glasses 
have been interpreted [248] as the manifestation of nanoscale 
phase separation that is driven by broken chemical order [249] 
in stoichiometric GeSe2 and As2Se3, and this leads to a reduc-
tion of the network connectivity for the Se-rich majority phase 
at compositions where a Tg maximum is measured.

5.2.  Rigidity theory of network glasses

In addition to the effects of network structure on Tg, there 
is an attractive way to analyze and predict relaxation and 
glass transition-related properties using rigidity theory. This 
theory provides an atomic scale approach to understand-
ing the physico-chemical behavior of network glasses using 
the network topology and connectivity as basic ingredients, 
and builds on concepts and ideas of mechanical constraints 
that have been introduced in the pioneering contributions of 
Lagrange and Maxwell [250, 251]. Phillips [60, 252, 253] has 
extended the approach to disordered atomic networks, and has 
recognized that the glass-forming tendency of covalent alloys 
is optimized for particular compositions. Specifically, it has 
been emphasized that stable glasses have an optimal connec-
tivity, or mean coordination number ¯ ¯=r rc, which exactly sat-
isfies the Maxwell stability criterion of mechanically isostatic 
structures, or the condition, =n nc d, where nc is the count of 
atomic constraints per atom and nd the network dimensional-
ity (usually 3).

In covalent glasses the dominant interactions are usually 
near-neighbor bond-stretching (BS) and next-near-neighbor 
bond-bending (BB) forces (see equation (26)). The number of 

constraints per atom can be exactly computed in a mean-field 
way, and is given by:
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where nr is the concentration of species being r-fold coordi-
nated. The contribution of the two terms in the numerator is 
obvious because each bond is shared by two neighbors, and 
one has r/2 bond-stretching (BS) constraints for a r-fold atom. 
For BB (angular) constraints, one notices that a two-fold 
atom involves only one angle, and each additional bond needs 
the definition of two more angles, leading to the estimate of 
(2r  −  3). For one-fold terminal atoms, a special count [254] is 
achieved as no BB constraints are involved, and in certain sit-
uations some constraints can be ineffective [255]. By defining 
the network mean coordination number r̄ of the network by:
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one can reduce (39) to the simple equation:

¯ ¯= + −n
r

r
2

2 3c� (41)

Applying the Maxwell stability criterion, isostatic glasses 
(nc  =  3) are expected to be found at the mean coordination 
number [60] of ¯ =r 2.40 in 3D, corresponding usually to a non-
stoichiometric composition where the glass-forming tendency 
has been found to be optimized experimentally [256, 257].

The physical origin of this stability criterion has been 
revealed from the vibrational analysis of bond-depleted 
random networks [61] constrained by bond-bending and 
bond-stretching interactions (see equation  (26)). It has been 
demonstrated that the number of zero frequency (floppy) 
modes f (i.e. the eigenmodes of the dynamical matrix) van-
ishes for ¯ =r 2.38 when rigidity percolates in the network. The 
Maxwell condition =n nc d, therefore, defines a mechanical 
stiffness transition, an elastic phase transition, above which 
redundant constraints produce internally stressed networks, 
identified with a stressed-rigid phase [258, 259]. For <n nc d, 
however, floppy modes can proliferate, and these lead to a flex-
ible phase where local deformations with a low cost in energy 
(typically 5 meV [217]) are possible, their density being given 
by: f  =  3  −  nc. There have been various experimental probes 
of this peculiar transition from Raman scattering [260], stress 
relaxation [261] and viscosity measurements (figure 23, [8]), 
vibrational density of states [217], Brillouin scattering [262, 
263], Lamb–Mössbauer factors [256], resistivity [264], and 
Kohlrausch exponents [8, 134, 261]. For a full account of 
experimental probes and early verification of rigidity theory, 
readers should refer to books devoted to the subject [265–267].

5.3.  Rigidity Hamiltonians

With the prediction of such thresholds and their observa-
tion in various properties associated with relaxation in 
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chalcogenides, oxides and other disordered glassy networks, 
the connectivity-related flexible to stressed-rigid elastic 
phase transition has become an interesting means to under-
stand and analyze, in depth, compositional trends of glassy 
dynamics and relaxation. However, although it provides a 
framework to understand many features of a system, thermo-
dynamics is absent in the initial approach. One of the main 
drawbacks of rigidity theory is that the enumeration of bond-
ing constraints in equation (39) is performed on a fully con-
nected network, in principle at T  =  0 K when neither bonds 
nor constraints are broken by thermal activation (see, how-
ever, [268]), and structural relaxation is obviously absent. 
The use of the initial theory [61, 250, 251, 258] may be valid 
as long as one is considering strong covalent bonds or when 
the viscosity η is very large at <T Tg, given that η is propor-
tional to the bonding fraction, but equation (39) is obviously 
not valid in a high temperature liquid, and one may wonder 
to what extent it remains useful for the glassy relaxation at 
�T Tg. However, NMR-related relaxational phenomena in 

Ge–Se indicate that the low temperature rigidity concept can 
be extended from the glass to the liquid in binary chalco-
genide melts with confidence [137]. Furthermore, in equa-
tion (39) a mean-field treatment is implicitly assumed given 
that an average constraint count is performed over all the 
atoms in the network. This supposes homogeneity of the sys-
tem, even at the microscopic scale, and neglects the possibil-
ity of atomic-scale phase separation or large fluctuations in 
constraints or coordination numbers as the phase transition 
is approached.

An important step forward has been made by Naumis and 
colleagues [269–271]. Prior to the production of a rigidity-
related Hamiltonian that could serve as a starting point for 
the statistical mechanics derivation of various thermodynamic 
quantities [269, 270], one had to realize that the fraction of 
cyclic variables in phase space are identified with the fraction 
of floppy modes f  =  3  −  nc because when one of these vari-
ables is changed, the system will display a change in energy 
that is negligible. This means that in the simplest model [271] 
for network atomic vibrations in the harmonic approximation, 
the Hamiltonian can be given by:
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where Qj (position) and Pj (momentum) are the jth normal 
mode coordinates in phase space, and ωj is the corresponding 
eigenfrequency of each normal mode. Since it is assumed that 
floppy modes have a zero frequency, they will not contribute 
to the energy so that the sum over coordinates only runs up to 
3N(1  −  f ).

From this simple Hamiltonian, a certain number of basic 
features of thermodynamics in connection with rigidity can be 
derived. First, from the partition function derived from equa-
tion (42), both the free energy F  of the system and the specific 
heat are found [271] to depend on the fraction of floppy modes:
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Figure 23.  Early verification of the role of rigidity [8] on the relaxation properties in a network-forming liquid (here As–Ge–Se). Left: 
comparison of pseudo-binary As–Ge–Se liquid viscosities near Tg, compared to the strong (GeO2) and fragile (K-Ca-NO3) extremes. The 
inset zooms into the glass transition region, and shows a strong behavior for a network mean coordination number of r 2.4¯ =  close to 
T T 1g/ = . Right: behavior with mean coordination number r̄: activation energy determined either from viscosity or enthalpy data (a), heat 
capacity jump Cp∆  at the glass transition (b), and excess expansion coefficient α∆  (c). Permission from the American Physical Society.
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The latter expression indicates that the specific heat in such 
model systems corresponds to the Dulong–Petit value that is 
decreased by a floppy mode contribution, and the finite value of 
the floppy mode frequency [217] can also be taken into account 
[271]. Building on these ideas, an energy landscape treatment 
of rigidity leads to the conclusion that floppy modes can pro-
vide a channel in the energy landscape. Indeed, given that vari-
ables associated with f are cyclic variables of the Hamiltonian, 
the energy of the system does not depend upon a change in a 
floppy mode coordinate, and for a given inherent structure (i.e. 
a local minimum characterized by ωj), the number of channels 
is given by f which increases the available phase space allowed 
to be visited. Consequently, the number of accessible states 

( )Ω E V N, ,  can be calculated in the microcanonical ensemble, 
and using the Boltzmann relation ( )= ΩS k E V Nln , ,B , one 
finds that the configurational entropy provided by the channels 
in the landscape is simply given by:

=S f Nk Vln ,c B� (45)

i.e. the floppy mode density is contributing to the configura-
tional entropy and the dynamics of the glass-forming system. 
From a short-range square potential, the basin-free energy of 
a potential energy landscape has been investigated using MD 
simulations [272], and it can be separated into a vibrational 
and a floppy mode component, allowing for an estimate of the 
contribution of flexibility to the dynamics, and for this part
icular class of potentials it has been found that Sc scales as f 3.

5.4. Temperature-dependent constraints

Building on this connection between floppy modes and the 
configurational entropy Sc (equation (45)), Gupta and Mauro 

have extended topological constraint counting to account 
explicitly for thermal effects [35] in an analytical model via a 
two-state thermodynamic function q(T ). This function quanti-
fies the number of rigid constraints as a function of temper
ature and subsequently modifies equation (39) to become:
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where ( )q Tr
BS  and qr

BB(T) are step functions associated with BS 
and BB interactions of an r-coordinated atom (figure 24, left) 
so that nc now explicitly depends on temperature. This func-
tion has two obvious limits because all relevant constraints 
can be either intact at low temperature ( ( ) =q T 1i

j ) like in the 
initial theory [60, 61] or entirely broken ( ( ) )∞ =q 0i

j  at high 
temperature. At a finite temperature, however, only a fraction 
of these constraints can become rigid once their associated 
energy is less than k TB . Different forms can be proposed for 

( ) ( )=q T q Ti
j  based either on an energy landscape approach 

[273]:

( ) [ ( / )]= − −∆ νq T T1 exp ,tobs� (47)

ν being the attempt frequency and tobs the observation time, or 
involving a simple activation energy ∆ for broken constraints 
[52]:
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and the general behavior of q(T ) can be computed for any 
thermodynamic condition from MD simulations [274] (see 
below). A certain number of thermal and relaxation properties 
of network glass-forming liquids can now be determined, and 
a simple step-like function (thick black line in figure 24, left) 

Figure 24.  Left: temperature behavior of the Mauro–Gupta function [35] (solid curves, equation (47)) for bond-bending bridging oxygen 
(BO) in densified sodium silicates, compared to a direct calculation [274] from MD simulations (see below). The data can also be fitted 
with a random bond function [52] (equation (48)). Simple calculations of topological constraint theory usually involve a step-like function 
(thick black curve) with an onset temperature, e.g. here, at T 2900α�  K. Right: prediction of the glass transition temperature Tg of binary 
alkali phosphate glasses (1  −  x)R20  −  (1  −  x)P2O5 (R  =  Li, Na, Cs) from temperature-dependent constraints [277]. Permission from AIP 
Publishing LLC 2015.
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with an onset temperature αT  for various constraints allows one 
to obtain analytical expressions for glass transition temper
ature [35, 275–278], heat capacity [279], and glass hardness 
[278, 280]. Fragility can be determined from a continuous 
form of equation (48). Two central ingredients are necessary. 
First, it is assumed that the Adam-Gibbs model for viscosity 
(equation (4)), ( / )η η= ∞ A TSexp c , holds in the temperature 
range under consideration, and that the corresponding barrier 
height A is a slowly varying function with composition. This 
means that only the configurational entropy Sc will contain 
the temperature and composition dependence. Secondly, it is 
assumed that the expression (45) relating the configurational 
entropy to topological degrees of freedom (floppy mode den-
sity) is valid. Strong support for this approach is provided by 
the MYEGA viscosity modeling curve (equation (7)) which 
uses these two basic assumptions and has been tested with 
success over more than a hundred different glass-forming liq-
uids [33]. By further stating that Tg is a reference temperature 
at which ( ( ) )η =T x x, 10g

12 Pa · s for any composition, equa-
tions (4) and (45) can be used to write:
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and ( )T xg  can be determined with composition x from a refer-
ence compound having a composition xR and a glass transition 

( )T xg R , knowing the number of topological degrees of freedom 
(i.e. 3-nc) for compositions x and xR from equation (46), and 
the behavior of the step functions q(T).

Using the expression for ( ( ) )S T x x,c g  in equation (49), and 
the definition of fragility (equation (1)), one can, furthermore, 
extract an expression for the fragility index M as a function 
of composition:
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Typical applications for the prediction of the glass transition 
temperature concern simple chalcogenides [35], borates 
[275], borosilicates [279] phosphates [278], or borophos-
phate glasses [276] (figure 24, right). Equation (50) usually 
leads to a good reproduction of fragility data with composi-
tion, but requires a certain number of onset temperatures αT  
(see figure 24, left) that can be estimated from basic assump-
tions, or which act as parameters for the theory. In addition, 
such onset temperatures αT  can be related to the corresp
onding activation energy [35] (equation (47)) to break a con-
straint via:

[ ]/( )∆ = − −α
ν−k T 1 2 t

B
1 obs� (51)

The agreement of such predictive laws for fragility is usually 
excellent (figure 25(a)), and calculations have been stressed to 
be robust against parameter sensitivity [275–279].

What is learned from such fragility predictions? First, 
since the constraint count that evaluates the fragility index is 
performed on models that reproduce the change in local struc-
ture under composition change, the temperature-dependent 
constraint approach provides a top-down validation of such 
structural models. Furthermore, as noticed from figure 25(b), 
one has the opportunity to probe what aspects of interactions 
contribute the most to the evolution of fragility with composi-
tion. In the represented example of borosilicates [279] (fig-
ure 25(b)), M is found to be mostly driven by the bond angle 
interactions involved in silicon (βSi) and boron (βB) that con-
strain the bond-bending motion of the glass-forming liquid 
(figure 25(b)), whereas the BS interactions contribute only at 
a large silicon to boron ratio.

With the same formalism, the heat capacity change ∆Cp at 
the glass transition can be calculated and compared to meas-
urements accessed from DSC. Using the temperature depend
ence of constraints, it is assumed at a first stage that the major 

Figure 25.  Modeling the composition dependence of the liquid 
fragility index (m) for borosilicate glasses [279]. (a) Prediction of the 
fragility index (solid line) as a function of composition, compared to 
experimental data measured from DSC experiments. (b) Effect of the 
constraint contribution on the computed fragility with composition: 
Boron Bβ  and silicon Siβ  BB constraints, BS constraints (α) and non-
bridging oxygen-related constraints (μ). m0 is the reference fragility 
appearing in equation (50). Reprinted with permission from [279].
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contribution to heat capacity at the glass transition arises from 
configurational contributions Cp,conf that can be related to Sc, 
so that one has: ∆ = − �C C C Cp pl pg p,conf. The heat capacity 
change can then be written as a function of the configurational 
enthalpy and Sc:
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and using the Adam-Gibbs expression (4) and the derived 
expression for fragility (50), one can, furthermore, write the 
jump of the heat capacity at the glass transition with composi-
tion xi:
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Equation (53) can be recast in a more compact form given 
that ( )S Tc g  is inversely proportional to Tg, and by assuming 
that /∂ ∂H Scconf  is, by definition, equal to the configurational 
temperature at constant pressure [281] which is close to Tg. 
This, ultimately, leads to a decomposition-dependent predic-
tion of the heat capacity jump at Tg:
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Once again, and similarly to relationships on Tg (equation 
(49)) or the fragility index (equation (50)), the heat capacity 
jump is evaluated with respect to some reference composition 
because the parameter [ ( )]A xi R, appearing in equation  (54), 
connects the configurational entropy ( )S Tc g  with Tg for a refer-
ence composition xR. Applications have been performed on 
the same glassy systems [279], and successfully compared 
to experimental measurements (figure 26). Again, such pre-
dictions have the merit to accurately reproduce experimental 
data, and to provide some insight into the validity of structural 
models that can be checked independently from a variety of 
other experimental (e.g. spectroscopic) probes.

5.5.  MD-based dependent constraints

A more general and alternative approach to a topological con-
straint count can be proposed in order to establish the number 
of constraints nc(x, T, P) for any thermodynamic condition, 
including under pressure. This is achieved by using molecular 
dynamics (MD) which also permits establishing correlations 
with thermodynamic and dynamic properties independently 
characterized from such atomic scale simulations. In all 
approaches—classical or first principles (FPMD) using e.g. a 
Car-Parrinello scheme [282]—Newton’s equation of motion 
is solved for a system of N atoms or ions, representing a given 
material. Forces are either evaluated from a model interaction 
potential which has been fitted to recover the properties of 
some materials, or directly calculated from the electronic den-
sity in case of a quantum mechanical treatment using density 
functional theory (DFT). Recent applications have permitted 
the very accurate description of the structural and dynamic 
properties of most archetypal network-forming systems  
(Ge–Se [282–284], SiO2 [67], GeO2 [68, 285], B2O3 [286, 
287], As–Se [69, 71, 288, 289], As–Ge–Se [290], Si–Se  
[291, 292] etc), in the glassy or liquid state, and in ambient or 
densified conditions. A similar achievement has been realized 
on modified glasses such as alkali silicates [293–297], soda-
lime silicates [298, 299], borosilicates [300, 301] or alumino-
silicates [302].

The way topological constraints can be extracted from 
atomic scale trajectories relies essentially on the recorded 
radial and angular motion of atoms that connects directly 
to the enumeration of BS and BB constraining interactions, 
which are the relevant ones for the identification of flexible to 
rigid transitions. Instead of treating the forces mathematically 
and querying motion, which is the standard procedure of MD 
simulations for obtaining trajectories, as in classical mechan-
ics, an alternative scheme is followed. Here, the atomic motion 
associated with angles or bonds can be related to the absence 
of a restoring force (figure 27), and this strategy is somewhat 
different from the ‘culture of force’ discussed by Wilcek [303] 
given that one does not necessarily need to formulate the 
physical origin of the forces to extract the constraints.

In the case of atomic scale systems, since one attempts to 
enumerate BS and BB constraints, one is actually not seeking 

Figure 26.  Composition dependence of the change in the isobaric 
heat capacity Cp∆  during the glass transition in a sodium borate 
glass [279]. Comparison between experimental data (filled squares) 
and the model calculations of Cp∆  from equation (54). Reprinted 
with permission from [279].

Figure 27.  Method of constraint counting from MD-generated 
configurations. Large (small) radial (a) or angular (b) excursions 
around a mean value are characterized by large (small) standard 
deviations on bonds or angles representing broken (intact) 
constraints.
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motion arising from large radial and angular excursions, 
but the opposite behavior and also atoms displaying a small 
motion (vibration) that maintains corresponding bonds and 
angles fixed around their mean value. These can ultimately 
be identified with a BS or BB interaction constraining the net-
work structure at the molecular level. Having generated the 
atomic scale configurations at different thermodynamic con-
ditions from MD, a structural analysis is applied in relation 
to the constraint counting of rigidity theory such as the one 
sketched in equation (39).

5.6.  Bond stretching

To obtain the number of BS interactions, one focuses on 
neighbor distribution functions (NDFs) around a given atom 
i (see figure 28). A set of NDFs can be defined by fixing the 
neighbor number n (first, second, etc) during the bond life-
time, the sum of all NDFs yielding the usual i-centred pair 
correlation function gi(r) where integration up to the first 
minimum gives the coordination numbers ri, and hence the 
corresponding number of bond-stretching constraints ri/2  
[71, 289, 304–306]. Figure 28 shows an application to amor-
phous As2Se3 [71]. In As2Se3, three NDFs (colored curves) 
contribute to the first peak of the As-centred pair correlation 
function ( )g rAs , very well separated from the second shell of 
neighbors, and indicative of the presence of three neighbors 
around an As atom. It is to be noted that a fourth NDF is pres-
ent at the minimum of ( )g rAs , indicating that a small fraction of 
four-fold As atoms should be present in the glass [289], typi-
cally less than 10%. The separation between the first and sec-
ond shell of neighbors can also be characterized by plotting the 
NDF peak positions as a function of the neighbor number (inset 
of figure  28). For example, As2Se3, and also for tetrahedral 
glasses [305] one can see that there is a clear gap in distance 
between the distributions belonging to the first and the second 
neighbor shell. Furthermore, these NDFs which belong to the 

first shell display a much lower radial excursion (error bars, see 
inset of figure 28) as compared to the NDFs of the next (sec-
ond shell) neighbor distributions. From this simple example 
(As2Se3), one determines =r 3As  and =r 2Se  leading to 1.5 
and 1 BS constraints, a result that is expected from a constraint 
count based solely on the 8-N  rule [61, 252], N  being the 
number of s and p electrons. However, for certain systems for 
which this rule does not apply (telluride network glasses, see 
below) or in densified systems with non-monotonic evolutions 
of coordination numbers under pressure [274], such MD-based 
constraint counting algorithms provide a neat estimate [304] of 
BS constraints without relying on crude assumptions.

5.7.  Bond bending

5.7.1.  Average behavior.  The bond-bending (BB) constraint 
counting from MD simulations is based on partial bond angle 
distributions (PBADs) ( )θP ij  (or ( )θP  in the following) and 
defined as follows [304, 305]: for each type of a central atom 
0, the N first neighbors i are selected, leading to N(N  −  1)/2 
possible angles i0j (i  =  1..N  −  1, j  =  2..N ), i.e. 102, 103, 203, 
etc. The standard deviation σθ of each distribution P(θij) gives 
a quantitative estimate of the angular excursion around a mean 
angular value (figure 27(b)), and provides a measure of the 
bond-bending strength. Small values for σθ correspond to an 
intact bond-bending constraint which maintains a rigid angle 
at a fixed value, whereas large σθ correspond to a bond-bend-
ing weakness giving rise to an ineffective constraint.

Figure 29 shows the PBADs for glassy GeSe2 and GeO2 
[305]. Broad angular distributions are found in most of the sit-
uations, but a certain number of sharper distributions (colored) 
can also be found, and these are identified with intact angular 
constraints because these arise from a small motion around an 
average bond angle. For the special case of tetrahedral glasses, 
only six angles have nearly identical and sharp distributions, 
and these are the six angles defining the tetrahedra with a 
mean value that is centred close to the angle of θ̄ = °109 . 
From such N(N  −  1)/2 different PBADs, a second moment 
(or standard deviation) can be computed for an arbitrary set of 
triplets (i0j) with (i, j  =  1..N ). Figure 30 shows corresponding 
results for the standard deviations σθ in stoichiometric oxide 
glasses [305]. Such glasses have their standard deviations 
nearly equal for the six relevant (Ge, Si) distributions, which 
are associated with bending motions around the tetrahedral 
angle of 109°. A slightly different situation occurs in glasses 
subject to stress, i.e. densified silicates [274] or stoichiometric 
chalcogenides [71, 282] which exhibit an increased angular 
bending motion of tetrahedra, as discussed below.

5.7.2.  Individual constraints.  An additional way of analyz-
ing angular constraints is to follow a given angle individually 
during the course of the MD simulation (figure 31). For each 
individual atom k, the angular motion over the time trajectory 
then leads to a single bond angle distribution ( )θPk  character-
ized by a mean θ̄k (the first moment of the distribution), and a 
second moment (or standard deviation σθk). The latter repre-
sents, once again, a measure of the strength of the underlying 
BB interaction. If σθk is large (one usually has σ >θ 15k –20° 

Figure 28.  Decomposition of partial pair correlation functions gi (r) 
into neighbor distributions in amorphous As2Se3 [289]. The inset 
shows the positions (first moments) of the neighbor distributions 
and their standard deviations (second moments, represented as 
error bars), indicating that As and Se have 1.5 and 1 BS constraints, 
respectively.
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[306]), it suggests that the BB restoring force which main-
tains the angle fixed around its mean value θ̄k is ineffective. As 
a result, the corresponding BB topological constraint will be 
broken, and will not contribute to network rigidity. Ensemble 
averages then lead to a distribution ( )σf  of standard devia-
tions which can be analyzed and followed under different 
thermodynamic conditions.

This alternative scheme following constraints individually 
permits one to separate effects which may arise from dis
order from those which originate from the radial or angular 
motion and which enter into the constraint counting analysis. 
In fact, when averaged simultaneously over time and space, 
σθ can simply be larger because of an increased angle and 
bond-length variability induced by an increased bond disorder 
which will broaden corresponding bond angle/bond length 
distributions. By following angles and distances with time, 
this drawback can be avoided. Figure 32 shows the distribu-
tion ( )σf  of angular standard deviations for a bridging oxy-
gen in a sodium silicate liquid with increasing temperatures 

[306], and the assignement of the peaks can be made from 
the inspection of the two limiting temperatures. At elevated 
temperatures (4000 K), all constraints are, indeed, broken by 
thermal activation so that ( )σf  displays a broad distribution 
centred at a large standard deviation (25°). On the opposite 
side, at low temperature (300 K) σθ values display a sharp 
distribution (σ< °10 ), indicating that corresponding BB con-
straints are active. Interestingly, there is a temperature interval 
at �T 2000 K at which one can have a mixture of both types 
of constraints—effective and ineffective—and the corresp
onding fraction of intact BB constraints can be computed 
(inset of figure 32). It exhibits a broad step-like behavior with 
all the features of the Mauro–Gupta q(T ) function [35] intro-
duced previously (see also figure 24).

Such methods, based on angular standard deviations, have 
also proven to be efficient in order to enumerate the fraction 
of tetrahedra in amorphous telluride networks [308, 309]. 

Figure 29.  From top to bottom: oxygen, selenium and germanium 
partial bond angle distributions (PBAD) in GeO2 and GeSe2 for an 
arbitrary N  =  6 [305] leading to 15 possible PBADs. The colored 
curves correspond to PBADs with the lowest standard deviation(s) σθ.  
The sharp peaks at 40θ °�  correspond to the hard-core repulsion. 
The constrained angle around oxygen in germania (panel (c)) 
is found to be centred at 135°, close to the value obtained from 
experiments [307]. All other angles display broad variations and 
correspond to angles defined by next-nearest neighbor shells. 
Permission from the American Physical Society.

Figure 30.  Oxygen and Si/Ge standard deviations computed from 
15 PBADs in vitreous germania and silica [305]. The labels on the 
x-axis refer to all possible triplets i0j between a central atom 0 and 
two neighbors i and j. For all systems, the PBADs relative to the 
Group IV (Si, Ge) atom have a low standard deviation σθ, of the 
order of 10–20° when the first four neighbors are considered. One 
finds, for example, 7Geσ °�  for the PBAD 102 of GeO2, which is 
substantially smaller as compared to those computed from other 
distributions (105, 106, etc) which have 40σ °θ� . Permission from 
the American Physical Society.

Figure 31.  Time evolution (in MD steps) of two typical angles in a 
liquid sodium silicate [306] defined by either the first two oxygen 
neighbors around a silicon atom (O1–Si–O2, 102) or by neighbor 1 
and neighbor 5 (O1–Si–O5, 105). Large variations are obtained for 
angles with an ineffective constraint.
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To calculate the population of GeTe4/2 or SiTe4/2 tetrahedra 
in binary Ge–Te, Si-Te or ternary Ge–Si–Te glasses, one 
detects atoms having six low standard deviations σθ around 
a Ge/Si atom. Once such atoms are identified, it is found that 
the corresponding average angle is equal to ⟨ ¯⟩θ °� 109 , and a 
corresponding bond angle distribution for the whole system 
peaks at 109°.

Having set the basis of molecular dynamics-based topo-
logical constraint counting, we now review certain results 
obtained within this framework, and how these connect to 
aspects of glassy relaxation.

6.  Rigidity and dynamics with composition

Applications have been performed on a variety of systems 
[304–306]. We focus, here, on Ge–Se and silicate network 
glasses and liquids which are probably the most well docu-
mented alloys in the field of rigidity transitions.

6.1. Topological constraints

The enumeration of constraints on realistic models of Ge–Se 
glasses [282] and liquids [284] shows that six Ge standard 
deviations have a low value (σ °� 10Ge ), i.e. four times smaller 
than all the other angles. One thus recovers the result found 
for the stoichiometric oxides (SiO2, GeO2, see figure  30). 
A more detailed inspection reveals that there is a clear dif-
ference between compositions (10, 20, and 25% Ge) having 

six standard deviations σGe nearly equal, and compositions 
belonging to the stressed rigid phase (33%, 40%) which have 
an increased value of σGe for selected angles. For such sys-
tems, as well as for the isochemical compounds (GexS100−x 
[47], SixSe100−x [238]), the flexible phase has been found to 
be defined for 0⩽ ⩽x 20% and the stressed rigid phase for 

⩾x 25%, the limit of the glass-forming region being some-
what larger than 33%.

As the Ge content is increased, the intra-tetrahedral angular 
motion grows for selected angles, as detected, for example, in 
GeSe2 by the important growth of standard deviations involv-
ing the fourth neighbor of the Ge atom. When the six stand-
ard deviations σGe defining the tetrahedra are represented as a 
function of the Ge content (figure 33, left), it is found that the 
angular motion involving the fourth neighbor (PBADs 104, 
204, 304) exhibits a substantial increase once the system is in 
the stressed rigid phase, while the others (102, 103, 203) are 
left with a similar angular excursion close to the one found for 
the oxides (SiO2, GeO2) where it was concluded [305] that tet-
rahedra were rigid. This underscores the fact that the quantity 
σGe is an indicator of stressed rigidity [284]. Moreover, the 
presence of stress will lead to asymetric intra-tetrahedral 
bending involving an increased motion for selected triplets of 
atoms, and this indicates that some BB constraints have sof-
tened to accomodate stress. A similar situation is encountered 
in densified silicates [310] or in hydrated calcium silicate net-
works [311, 312] for which angular motion associated with 
the tetrahedra SiO4/2 undergoes a substantial change with 
pressure or composition.

The origin of this softening can be sketched from a sim-
ple bar network when stretching motion is considered instead 
(figure 33, left), and this connects to the well-known relation-
ship between stressed rigidity and bond mismatch in highly 
connected covalent networks [313]. In such systems, atoms 
having a given coordination number cannot fulfill all their 
bonds at the same length because of an important network 
connectivity that prevents a full relaxation towards identical 
lengths. In the simplified bar structures sketched in figure 33, 
all bars can have the same length in flexible (0–20% at Ge) 
and isostatic networks (20–25% at. Ge), but once the structure 
becomes stressed rigid, at least one bar (e.g. the red bar in fig-
ure 33) must have a different length. A similar argument holds 
for angles. In the stressed rigid Ge–Se, because of the high 
network connectivity, GeSe4/2 tetrahedra must accommodate 
the redundant cross-links which force softer interactions [217] 
(i.e. angles) to adapt and to break a corresponding constraint. 
This leads to increased angular excursions for atomic Se–Ge–
Se triplets (figure 33) involving the farthest (fourth) neighbor 
of a central Ge atom.

When such systems are analyzed from individual con-
straints (figure 33 [282], right), it is also seen that some 
Ge-centred angles have softened once the glass has become 
stressed rigid. For the flexible GeSe9 (10%) and the iso-
static GeSe4 (20%, nc  =  3 in a mean field count) composi-
tions, a single distribution ( )σf  for all six angles (102,...304) 
is found, located at a low value (σ� 8–9°) which indicates a 
weak angular intra-tetrahedral motion. However, at higher Ge  
content corresponding angles involving the fourth neighbor 

Figure 32.  Behavior of the bridging oxygen (BO)-centred standard 
deviation distributions f ( )σ  in a sodium silicate liquid [306]. Note, 
the bimodal distribution occuring at T 2000�  K. The broken line 
defines a boundary between broken and intact constraint population, 
estimated to be about 15σ = °θ  at low temperature. Gaussian 
fits (red curves) are shown for selected temperatures. The inset 
shows the fraction q(T ) of intact oxygen constraints as a function 
of temperature. The solid curve is a fit using the Mauro–Gupta 
function [35] of equation (47).
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(104, 204, 304) partially soften and produce a bimodal dis-
tribution (red curve), indicative of the fact that some angular 
constraints (σ °� 22 ) are now broken. An enumeration shows 
that the fraction of broken constraints is about 17.2% and 
21.4% for GeSe2 and Ge2Se3, respectively [282]. This implies 
a reduction of the number of Ge BB constraints so that nc 
reduces from 3.67 (the mean-field estimate [61]) to 3.5, and 
from 4.00 to 3.74 for GeSe2 and Ge2Se3, respectively.

6.2.  Behavior in the liquid phase

How do constraints in chalcogenide melts behave at high 
temperature, and how does the evolution of such constraints 

link with relaxation? Using MD simulations, the number of 
topological constraints has been investigated as a function 
of temperature in a certain number of glass-forming sys-
tems such as GeSe2 [314], Ge–Te [309], Ge–Si–Te [308] or  
SiO2–2SiO2 [274, 306, 310]. Figure 34 shows the analysis for 
300 K and 1050 K for GeSe2, using either an average count 
(left) or indiviual constraints giving the distribution ( )σf  
(right) [314]. Changes in constraints are weak and indicate 
that a counting at low temperature holds to some extent in 
a high temperature liquid, and close to the glass transition 
temperature. The corresponding calculated fraction of bro-
ken constraints [314] has been found to be of the same order 
which highlights the fact that thermal effects on topological 

Figure 33.  Left: Standard deviations Geσ  as a function of Ge composition in the Ge–Se system [305], split into a contribution involving 
the fourth neighbor (red line, average of 104, 204 and 304) and the other contributions (black line). The shaded area corresponds to the 
Boolchand (isostatic) intermediate phase [43] (see below). A simple bar structure represents the nature of the different elastic phases (see 
text for details). Right: Distribution of Ge angular standard deviations using individual constraints [282]. The total distributions have been 
split, depending on the neighbor rank: angles involving the first three neighbors (102, 103, 203, black symbols), and the fourth neighbor 
(104, 204, 304, red symbols). The solid curves are Gaussian fits which serve to estimate the population of broken constraints at high x 
content. Permission from the American Physical Society.

Figure 34.  Effect of temperature on standard deviations in liquid (1050 K, red) and amorphous (300 K, blue) GeSe2. Left: Standard 
deviation Geσ  extracted from the partial bond angle distributions (PBAD). Right: Distribution of Ge angular standard deviations using 
individual constraints. The total distributions are split, depending on the neighbor rank: angles involving the first three neighbors  
(102, 103, 203), and the fourth neighbor (104, 204, 304, shifted).
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constraints are weak in these chalcogenides. This conclu-
sion is consistent with recent results from neutron spin-echo 
spectroscopy showing that the rigidity concept (and the under-
lying constraint count) can be extended from the glass to the 
liquid [315]. Parameters giving the temperature dependence 
of the relaxation patterns of binary chalcogenide melts have, 
indeed, been shown to be linearly dependent with the mean 
coordination number r̄, which represents a measure of a low 
temperature network for which the rigidity analysis assumes 
that all constraints are intact [60, 61]. This also seems in line 
with results in Ge–Se using liquid-state NMR [137] (see also 
figure 16), which emphasize that relaxational phenomena in 
the liquid are linked with the constraint count performed at 
low temperature.

This situation actually contrasts with the findings obtained 
for oxides (Figure 32) which exhibit a much more pron-
counced evolution of nc with temperature (figure 24, left) or 
under a combined change in temperature and pressure (GeO2, 
[316]). Furthermore, for such oxides, it has been found [317] 
that the distribution of constraints is not randomly distributed 
(figure 35, left), and corresponding liquids display a hetero-
geneous distribution with zones of thermally activated broken 
constraints that can be increased with temperature at constant 
pressure. In addition, the spatial extent of these flexible regions 
shows a percolative behavior at a characteristic temperature 
Tonset (figure 35, right) which is deeply connected to flexible 
to rigid transitions, and influences the fragility of the glass- 
forming liquid [317]. Here, the temperature at which con-
straints become homogeneously distributed across the liquid 
structure is found to depend both on pressure and temperature, 
with a minimum found at Tonset for a certain pressure interval.

6.3.  Isostatic relaxation

Isostatic glasses are found to relax very differently from other 
glass-forming liquids, and the behavior of transport proper-
ties appears to be different too, as recently demonstrated for 
a densified silicate glass [310] using molecular simulations. 
It relies essentially on the computation of viscosity using 

the Green–Kubo (GK) formalism [318] which is based on 
the calculation of the stress tensor auto-correlation function, 
given by:

⟨ ( ) ( )⟩∫η = αβ αβ
∞

k TV
P t P

1
0

B 0
� (55)

using off-diagonal components ( ) ( )αβ α β = x y z, , ,  of the 
molecular stress tensor ( )αβP t  defined by:
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where the brackets in equation (55) refer to an average over 
the whole system. In equation (56), mi is the mass of atom i, 
and αFij is the component α of the force between the ions i and 

j, βrij and βvi  being the β component of the distance between 
two atoms i and j, and the velocity of atom i, respectively.

When such calculated viscosities are investigated [296] at 
fixed pressure/density as a function of inverse temperature in 
an Arrhenius plot, a linear behavior is obtained which allows 
one to extract an activation energy EA. A similar procedure 
can be realized for diffusivity [319]. Both activation energies 
and diffusivities are found to display a minimum with pres
sure [69, 70] (figure 6). When the number of constraints is 
independently calculated [274, 310], it has been detected that 
the minimum in EA coincides with nc  =  3 (figure 36(a)) sug-
gesting that isostatic networks will lead to a singular relaxa-
tion behavior with weaker energy barriers, as also detected 
experimentally in, for example, Ge–As–Se [8] (figure 23) for 
which the condition nc  =  3 coincides with the mean coordina-
tion number of ¯ =r 2.4 defining the condition of isostaticity. 
Given that one has /=M E k Tln 2A 10 B g, the combination of a 
minimum in EA and a smooth or constant behavior of Tg with 
thermodynamic conditions (pressure, composition) might 
lead to a minimum in fragility. Such observations have been 
made for certain chalcogenide melts [15, 41, 87] for which 
minima in EA and M coincide and, under certain assumptions 
regarding structure, the link with the isostatic nature of the 
network could be established [43, 47, 238].

Figure 35.  Left: Contour plot of the bridging oxygen standard deviation (13 20σ° < < °) in a (P  =  0, 2000 K) sodium silicate liquid [317]. 
Yellow zones indicate regions of broken constraints. Right: size of the broken constraint clusters (in simulation cell length unit) as a 
function of temperature for different isobars. The inset shows the evolution of the onset temperature Tonset (in kK) as a function of pressure.

Rep. Prog. Phys. 79 (2016) 066504



Review

32

These conclusions actually parallel those made from a sim-
plified Kirkwood–Keating model of the glass transition [216] 
showing that isostatic glass-forming liquids have an activation 
energy for relaxation time which is minimum. In addition, a 
calculated relaxation time τ in the region of the glass trans
ition for the same densified silicate (2000 K, [310]) has been 
found to evolve similarly. Indeed, a deep minimum is found in 
the relaxation time (τ� 2–3 ps) in the region where the sys-
tem is nearly isostatic (3.0  <  nc  <  3.2, figure 36(b)).

6.4.  Reversibility windows

6.4.1.  MD signature.  Isostatic glasses, furthermore, display 
reversibility windows, i.e. a tendency to display a minimum 
of thermal changes at the glass transition which is obviously 
linked with the particular relaxation behavior (figure 36). 
When MD numerical cycles are performed across the glass 
transition from a high temperature liquid, one finds a hyster-
esis between the cooling and heating curve (figure 37(a)) in a 
similar fashion to the salient experimental phenomenology of 
the glass transition (figure 10). This behavior simply reflects 
the non-equilibrium nature of glasses that are able to slowly 
relax at <T Tg, and decrease volume or enthalpy as the glass 
is heated back to the liquid phase. However, it has been found 
[310] that for selected thermodynamic conditions (pressure) 
and fixed cooling/heating rate the hysteresis curves become 
minuscule, and the cooling/heating curves nearly overlap. 
When the area AH (AV) of the enthalpy (volume) hysteresis 
is investigated as a function of pressure or density (inset  
figure 37(a)), a deep minimum is found which reveals a so-
called reversibility window (RW) [310, 321].

These thermal anomalies are actually linked with the iso-
static nature of the glass-forming liquid, as detected from an 
MD-based constraint count (figures 37(b) and (c)). A calcul
ation of the total number of constraints shows a plateau-like 
behavior at a value nc  =  3 between 3 GPa and 12 GPa, which 
can be put in parallel with the evolution of the hysteresis areas 
(figure 37(a)). The detail shows that angular (BB) adaptation 

drives the mechanical evolution of the liquid under pressure 
because BS constraints increase due to the conversion [67] 
of silica-like tetrahedral order which prevails at ambient con-
ditions, into octahedral order which dominates at elevated 
pressure, and which is typical of the short-range order of the 
crystalline stishovite polymorph [322]. However, at a pressure 
of about 3 GPa, the system attains an obvious threshold, and 
further compression leads to a decrease of the number of BB 
constraints which indicates that some of the angular interac-
tions have softened. Upon further compression, this evolution 
holds up to a pressure of about 12 GPa, beyond which an 
important growth takes place. The results indicate an obvi-
ous correlation between the RW threshold pressures and those 
obtained from the constraint count, while identifying the iso-
static nature of RW.

6.4.2.  Experimental signature from calorimetry.  There is actu-
ally strong experimental support for these findings connecting 
RW with the isostatic nature of the network structure, and vast 
literature has been accumulated on this topic during the last 
fifteen years. One of the most direct signatures of reversibil-
ity windows which has a nearly one-to-one correspondance 
with the result from MD (inset of figure 37(a)) comes from 
mDSC measurements (equation (16), figure 12) [236] which 
exhibit a minimum (figure 38) or even a vanishing (in selected 
cases, see figure  38(a)) of the non-reversing enthalpy ∆Hnr 
[324]. The sharp boundaries allow one to define a compo-
sitional window displaying these enthalpic anomalies (e.g. 
23.5%  < x  <  26.5% in TeO2-V2O5, figure 38(a), [323]), and 
these can also be evidenced to a lesser extent from the total 
heat flow and the heat capacity jump at the glass transition 
(figure 23, [8, 230]).

The use of such calorimetric methods to detect the nearly 
reversible character of the glass transition has not been with-
out controversy, in part, because of the intrinsic measure-
ment of ∆Hnr depends on the imposed frequency, and relates 
to the imaginary part of the heat capacity ( )″ ωCp  [116, 117]. 
Frequency corrections [325] have to be taken into account 

Figure 36.  (a) Calculated activation energies EA for diffusion (red) and viscosity (black) as a function of the number of constraints nc 
[310], derived from an Arrhenius plot of oxygen diffusivity and Green–Kubo calculated viscosity in a densified sodium silicate.  
(b) Calculated relaxation time τ as a function of nc determined from a separate evaluation of the viscosity and the instantaneous shear  
modulus [320].
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in order to avoid the spurious effects arising from the fre-
quency-dependence of the specific heat [113]. Even with this 
frequency correction on the non-reversing heat flow lead-
ing to a neat measurement of ∆Hnr, results have been chal-
lenged by several authors who have argued that conclusions 
drawn from the observed anomalies (figure 38) might well 
be the result of a measurement artefact [58, 59, 326–328]. 
However, ∆Hnr appears to be not only sensitive to impurities 
and inhomogeneities [57], but also to the relaxation state of 
the glass [57, 329] so that the accurate detection, measure-
ment and reproduction of ∆Hnr represent a true experimental 
challenge. Furthermore, it has been demonstrated that conclu-
sions against the detection of an RW were based on samples 

of unproven homogeneity [86, 329], as exemplified by the 
dependence of the fragility on the reaction time (figure 8).

A large number of network glasses (chalcogenides, oxides) 
display RWs, and these are summarized in figure  39. These 
represent systems which cover various bonding types, rang-
ing from ionic (silicates [53]), iono-covalent, covalent (Ge–Se, 
[43]), or semi-metallic (Ge–Te–In–Ag [339]). In a certain 
number of these systems, e.g. for the simple binary network 
glasses such as GexS1−x or SixSe1−x, the experimental bounda-
ries of the RW are found to all be very close [43, 47, 238], 
i.e. located between 20%  < x  <  25%, and aspects of topology 
fully control the evolution of rigidity with composition, given 
that there is a weak effect in the case of isovalent Ge/Si or S/Se 

Figure 37.  (a) Volume-temperature dependence during a cooling (blue) and heating (black) cycle for selected pressures in a liquid silicate 
[310] across the glass transition. The volumes have been rescaled with respect to their evolution in the glassy state Vglass. Curves at 0 
GPa and 5 GPa have been shifted by multiples of 0.1. The cycle leads to a hysteresis which is due to structural relaxation, but is also 
controlled by rigidity. The inset shows the hysteresis area of the enthalpic (AH) and volumetric (AV, red curve, right axis extracted from 
the main panel) hysteresis as a function of the applied pressure P, defining a reversibility window (gray zone). (b) Calculated total number 
of constraints per atom. The horizontal red line represents the isostatic line nc  =  3, and separates flexible from stressed rigid networks. 
(c) Calculated number of oxygen stretching and bending constraints nc

BS (black) and nc
BB (red) as a function of pressure. The gray zone 

(reversibility window) in panel (b) and (c) refers to the one defined in the inset of panel (a).

Figure 38.  Measured non-reversing enthalpy Hnr∆  as a function of modifier content in telluro-vanadate (TeO2-V2O5, [323]) and borate 
glasses (B2O3-M2O, M  =  Li, Na [54]). Note, the square-well behavior of Hnr∆  with composition, and the nearly constant value of Hnr∆  
over select intervals in composition.
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substitution. This compositional interval defining the RW con-
nects to the mean-field estimate of the isostatic criterion (equa-
tion (41)) satisfying nc  =  3 because coordination numbers of 
Ge/Si and S/Se can be determined from the 8-N  (octet) rule 
to yield an estimate of the constraints nc  =  2  +  5x using equa-
tion  (39). In fact, for these IV–VI glasses, the lower bound-
ary of the RW (xc  =  20%) coincides with the Phillips-Thorpe  
[60, 61] mean-field rigidity transition nc  =  3 and ¯ =r 2.4.

For most of the systems however, uncertainties persist 
regarding the constraint count (equation (39)) derived from 
the local structures and geometries. Coordination numbers 
and related active/inactive constraints must be derived from 
specific structural models, and this becomes immediately 
apparent when Group V selenides/sulphides are considered 
(figure 39) because different RW locations are found for 
isovalent compounds, e.g. differences emerge between As- 
and P-bearing chalcogenides, and between sulphides and 
selenides (e.g. PxS1−x and PxSe1−x, [336]). Local structural 
features have been put forward to explain the trends due to 

chemistry [41, 330–332], as well as the special effect of sul-
fur segregation in sulphide-rich glasses, and these have also 
served the characterization of related ternaries [243, 335–336]. 
The validity of these structural models is still debated in the 
literature, although rather well established in some cases from 
spectroscopic studies [331, 332]. The above statements seem 
to remain valid when the tellurides are considered. Because of 
the increased electronic delocalization of the Te atoms, Group 
IV and V atoms do not necessarily follow the 8-N  rule and lead 
to mixed local geometries that are now composition depend-
ent [342, 343], e.g. sp3 tetrahedral and defect-octahedral for 
Ge atoms, so that a proper constraint count must rely on accu-
rate simulations, in conjunction [305, 306] with MD-based 
constraint counting algorithms such as those derived above. 
RWs have also been measured in modified oxides for which 
the connectivity change is realized by the addition of modifi-
ers which depolymerize the network structure (figure 1). As a 
result, the same phenomenology is found, and RWs have been 
detected between the two possible end limits of networks or 
elastic phases, i.e. strongly depolymerized and flexible (e.g. 
pyrosilicates SiO2–2Na2O) or highly connected and stressed 
rigid (e.g. silica-rich silicates).

6.4.3.  Alternative signatures of RWs.  The presence of a pecu-
liar relaxation phenomena that induce RWs for select composi-
tions leads to various other anomalous behaviors—maxima or 
minima in physical properties—in the glassy state. These pro-
vide other alternative and complementary evidence of the RW 
signature from calorimetric (mDSC) measurements. Figure 40 
displays a survey of some of these properties for three fami-
lies of modified glasses with widely different chemical bond-
ing, although they display similar features in terms of rigidity: 
covalent GexSe1−x [43, 344], ionic (1-x)AgPO3-xAgI [134, 
345] and iono-covalent (1  −  x)GeO2–xNa2O glasses [341]. 
When the atomic sizes are comparable (e.g. =d 1.22Ge  Å,  
and =d 1.17Se  Å for the covalent radius in Ge–Se), it has 
been suggested that glasses will display an increased tendency 
towards space-filling because of the isostatic nature of the 
networks (i.e. absence of stress [344]), which manifests by a 
minimum in the molar volume (figures 40(a) and (c)), a salient 
feature that has been reported for various systems [15, 41–43, 
308, 323, 341, 346]. The stress-free nature of such RWs has 
been detected from pressure experiments [344] showing the 
vanishing of a threshold pressure (figure 40(a)) prior to a pres
sure-induced Raman peak shift. This peak shift usually serves 
to quantify and to measure residual stresses in crystals. Ionic 
conductors (figure 40(b)) display an onset of ionic conduc-
tion only in compositions belonging to the flexible phase, i.e. 
when the network can be more easily deformed at a local level 
because of the presence of floppy modes [134] which promote 
mobility. This leads to an exponential increase in the conduc-
tivity. However, it is to be noted that in RWs an intermediate 
conductive regime sets in, which also shows an anomalous 
behavior for a typical jump distance associated with dynamics 
[347]. Other quite different probes have also revealed the sig-
nature of RWs such as DC permittivity (figure 40(b)) [134] or 
the frequency [341] associated with the imaginary part of the 
complex dielectric function (IR-TO, figure 40(c)).

Figure 39.  Location of experimental reversibility windows (RW) 
driven by composition for different chalcogenide and modified oxide 
glass systems [310]: Si–Se [238], Ge–Se [43], Ge–S [47], As–Se 
[41], As–S [330], P–Se [331], P–S [332], Ge–Se-I [333], Ge–S–I 
[334], Ge–As–Se [243], Ge–As–S [335], Ge–P–Se [244], Ge–P–S 
[336], Ge–Sb–Se [337], Si–Ge–Te [309, 338], Ge–Te–In–Ag 
[339], SiO2-M2O (M  =  Na,K) [53], GeO2-M2O (M  =  Li,K,Cs) 
[340], GeO2–Na2O [341], AgPO3-AgI [134], TeO2-V2O5 [323] and 
B2O3-M2O (M  =  Li, Na) [54]. In the same families of modified 
oxides (e.g. borates, see figure 38(b)), there is an effect due to the 
cation size. Using the 8-N  (octet) rule, the location of RWs can be 
represented in select systems (Group IV chalcogenides) as a function 
of the number of constraints nc using the mean-field estimate of nc 
(equation (39)). Permission from the American Physical Society.
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6.4.4.  Insight from models: evidence for an elastic inter-
mediate phase.  A certain number of scenarios have been 
proposed to describe the observed behaviors depicted in fig-
ures 38 and 40, and some emphasize the role of fluctuations 
[348–351] in the emergence of a double threshold/transition 
that define an intermediate phase (IP) between the flexible and 
the stressed rigid phase. Alternatively, mean-field aspects of 
jamming have been considered, and, here, fluctuations in, for 
example, coordinations are thought to be limited, but atoms 
are coupled spatially via elasticity and can organize locally 
into distinct configurations that may promote an IP.

Given the link between isostaticity [310] and reversibility 
at the glass transition (figures 37 and 39), and following the 

path based on coordination fluctuations, several authors have 
attempted to modify the modeling of the initial mean-field 
theory [60, 61] that leads to a solitary phase transition when 
nc  =  3 (or ¯ =r 2.4 if all BS and BB constraints are considered 
as intact). These contributions usually assume that amorphous 
networks will adapt during the cooling through the glass 
transition, similarly to the angular adaptation revealed from 
MD [282, 310], in order to avoid stress from additional cross-
linking elements.

Using a graph-theoretical approach, Thorpe and colleagues 
[348, 352] have developed an algorithm (a pebble game, [353]) 
that takes into account the non-local characteristics of rigidity, 
and allows one to calculate the number of floppy modes, to 
locate over-constrained zones of an amorphous network, and 
ultimately identify stressed rigid clusters for simple bar-joint 
networks. In the case of simulated self-organized or adaptive 
networks, the addition of bonds in a network with increasing 
average connectivity will be accepted only if this leads to iso-
statically rigid clusters, so that the emergence of stressed rigid 
clusters is delayed. However, with a steady increase in the 
connectivity, the network will undergo percolation of rigid-
ity (a rigidity transition at r̄c1) which leads to an unstressed 
(isostatic) structure (figure 41). The addition of new bonds 
will contribute to the occurrence of stressed rigid clusters that 
finally percolate at a second transition (r̄c2), identified with a 
stress transition, and both transitions define a window in con-
nectivity ¯ ¯ ¯∆ = −r r rc c2 1, and an IP.

Figure 40.  Different quantities showing an anomalous behavior in 
reversibility windows [70]. (a) Raman threshold pressure [344] and 
molar volume [43] (right axis) in GexSe100−x as a function of Ge 
composition. (b) Ionic conduction and zero-frequency permittivity 
(right axis) in (100-x)AgPO3-xAgI as a function of AgI composition 
[134]. (c) IR-TO vibrational frequency and molar volume (right 
axis) in (100-x)GeO2-xNa2O as a function of Na2O composition 
[341]. The gray areas correspond to the reversibility windows 
determined from calorimetry (mDSC), such as in figure 38. 
Permission from Wiley and Sons 2015.

Figure 41.  Evidence of a stress-free intermediate phase from the 
pebble game analysis (adapted from [348, 352]). Fraction of sites 
on isostatically rigid and stressed rigid percolating cluster in a self-
organized network as a function of the network mean coordination 
number r̄. The intermediate phase which is rigid, but unstressed, 
exists in these classes of model between r2.375 2.392⩽ ¯ ⩽ , and 
coalesces in random networks. This generic behavior is also 
observed from a spring network [354] (top) showing regions which 
are flexible (blue), isostatic (marginally constrained, green) and 
stressed rigid (red). Permission from the American Physical Society.
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Other approaches have built on the same idea, using either 
a spin cavity method [349] or cluster expansions [350, 355]. 
These theories lead to a solitary floppy to rigid transition in 
the absence of self-organization, and to an intermediate phase 
corresponding to a window in composition/connectivity in 
which the network is able to adapt in order to lower the stress 
due to constraints. However, some of these models do not take 
into account the fact that rigid regions cost energy and, thus, 
correspond to an infinite temperature. Also, the pebble game 
[348] and the cavity method [349] apply in T  =  0 networks 
which have infinite energy barriers for bond change/removal. 
Thermal effects have been included [268, 351] and an equili-
brated self-organized IP has been recovered for two-dimen-
sional lattice-based models. An important outcome from these 
models is that an increased sensitivity for single bond addi-
tion or removal exists close to the IP, and this suggests that 
the system is maintained in a critical state on the rigid-floppy 
boundary throughout the IP.

Instead, using the phenomenology of the elasticity of soft 
spheres and jamming transitions, Wyart [354] and colleagues 
have shown that the RW could occur in a certain number of 
physical situations by considering a lattice spring model for 
rigidity transitions with weak noncovalent (van der Waals) 
interactions [220, 356, 357]. It reveals that the temperature 
considerably affects the way an amorphous network becomes 
rigid under a coordination number increase, and the existence 
of an isostatic reversibility window not only depends on T, but 
also on the relative strength of the weak forces. In a strong 
force regime, an RW can be found which is revealed by a finite 
width in the probability to have a rigid cluster spanning the 
system, driven by fluctuations in coordination, similarly to 
the results of the pebble game ([353], figure  41). However, 
when weak interactions are present, the RW disappears below 
a certain temperature suggesting that the transitions become 
mean-field at low temperature and coalesce. Furthermore, 
weak interactions lead to an energy cost for coordination 
number fluctuations, which decay at finite temperature. These 
results are partially supported by MD simulations [310] tak-
ing into account long-range interactions (Coulomb, van der 
Waals) allowing one to probe the weak-force regime. Here, 
coordination fluctuations are found to be small given the weak 
abundance of five-fold Si atoms (10–20%) [296], and fluc-
tuations are essentially found in angular constraints which 
show a non-random distribution (figure 35, [317]). However, 
the vibrational analysis [354] suggests that the IP vibrational 
modes are similar to the anomalous modes observed in the 
packing of particles near jamming, thus providing an interest-
ing connection with the jamming transition [4] that might also 
be embedded in the anomalous variation of the molar volume 
(figures 40(a) and (c)).

This mean-field scenario for the IP is also the one fol-
lowed [358] in a rigidity percolation model on a Bethe lattice  
[359–361] that is based on a binary random bond network 
with a possibility of having two types of degrees of freedom. 
Under certain conditions, two discontinuous transitions are 
found, and the associated IP displays an enhanced isosta-
ticity at the flexible boundary. As a result, the entire IP has 
a low density of redundant bonds and has, therefore, a low 

self-stress. The double transition solution is found to depend 
on the coordination and the degrees-of-freedom contrast, and 
might be directly comparable to experiments although impor-
tant coordination contrasts do not necessarily correspond to 
situations encountered in, for example, chalcogenides [43].

Although some other models [328, 362] with a weaker 
theoretical basis have argued that the existence of the IP 
remains elusive, albeit contradicted by the variety of exper
imental signatures, there is a strong theoretical and numerical 
indication that RW or IP glasses display particular relaxation 
kinetics manifesting in ∆Hnr that leads to anomalous proper-
ties in different physical properties (figure 40). These find-
ings actually have a much more universal ground because 
links between the RW and protein folding [363], high temper
ature superconductors [364] or computational phase trans
itions [365] have been stressed. Such strong analogies simply 
underscore the fact that a complex network with external con-
straints/conditions has the ability to lower its energy by adapt-
ing internal thermodynamic variables.

7.  Numerical methods

As already mentioned in the previous sections, MD simulation 
is the method of choice to investigate aspects of glassy relax-
ation in relation to structure, this relationship being central to 
the case of network-forming liquids. Rather than presenting 
the basis of computer simulations (see [366–368]), we discuss 
which tools have been developed for an increased understand-
ing of glassy relaxation.

In an MD simulation, the trajectories (i.e. the positions ( )tri  
of N particles with i  =  1...N ) serve as a starting point for fur-
ther investigations regarding, for example, relaxation. Here, 

( )tri  are obtained by solving Newton’s equations of motion 
for a given system using, for example, the well-known Verlet 
algorithm:
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and ( )tFi  is the force acting on atom i, and is derived from 
an interaction potential that has been fitted in order to repro-
duce some of the properties of the system of interest. ∆t is 
the time step for the integration of the equations of motion 
(typically 1 fs in classical MD [368]), and usually several 
orders of magnitude lower than the typical atomic vibra-
tional frequency. There are intrinsic limitations with the 
MD method which concern timescales and size. For the lat-
ter aspect, with the available computer power, one is able to 
investigate systems of up to 107 atoms, whereas the times-
cale will be limited to the μs domain. This means that the 
glass transition can only be partially addressed using these 
methods, and is limited to the liquid-to-supercooled domain, 
i.e. to temperatures having, as close as possible, a relaxation 
time of  τ µ� 1 s.
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From these trajectories { ( )tri }, different properties of the 
supercooled liquid can be directly calculated, at least in prin-
ciple, while also connecting with aspects of structure or con-
straints (figure 27). This is an important reason for their use, 
and this has motivated a lot of research in recent years.

7.1.  Dynamic observables

7.1.1.  Diffusion and viscosity.  A useful means for the invest
igation of the dynamics of the glass-forming liquid is given 
by the investigation of the mean-square displacement of an 
atom of type α:
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where the brackets indicate ensemble averages. The behavior 
of ⟨ ( )⟩r t2  with time and temperature displays some generic 
behaviors. At high temperature and short times, the motion of 
the atoms is usually governed by a ballistic regime for which 
⟨ ( )⟩r t2  scales as t2. At long times the dependence of ⟨ ( )⟩r t2  
becomes linear (figure 42, left) and signals the onset of dif-
fusion, with a diffusion constant that follows Einstein’s rela-
tion ⟨ ( )⟩/→ =∞ r t t Dlim 6t

2 . In a multicomponent liquid, one 
can thus have access to the diffusion constants D for different 
species, and these are represented in figure 42 (right) for, as 
an example, sodium silicates in an Arrhenius plot. The present 
figure is quite instructive because it also signals that a change 
in the force field [371, 372] used for the MD simulations 
can lead to behaviors that can be quite different, and diffu-
sion constants can differ by at least one order of magnitude, 
and may, therefore, disagree in some cases with experimental 
measurements.

With decreasing temperature and the slowing down of the 
dynamics, the mean-square displacement reveals some addi-
tional features (figure 42 left) because ⟨ ( )⟩r t2  still extends to 
the diffusive regime for the longest simulation times, but in 
addition shows a plateau-like behavior. This feature appearing 

at intermediate times is due a cage effect created by neighbor-
ing atoms which trap the tagged atom during a certain time 
interval (e.g. 0.1 ps–100 ps for 2750 K silica, see figure 42, 
left), the typical distance associated with this phenomenon 
being of the order of a fraction of Å (⟨ ( )⟩�r t 0.12 –1 Å2), 
i.e. somewhat smaller than a typical bond distance. For suf-
ficiently long times, however, the atom is able to escape from 
that cage, and diffusion sets in.

Once the diffusion constant is determined, it has been 
found that most of these simulated network-forming liquids 
display an Arrhenius dependence (figure 42, right) for the dif-
fusivity [71, 285, 296, 369, 370, 373] leading to an estimate 
of an activation energy EA (e.g. figure 6 or 36) that is found to 
be close to experimental findings (e.g. =E 4.66A  eV in silica 
[369], compared to the experimental 4.70 eV [374, 375]). For 
selected systems, simulation data exhibit a significant curva-
ture in diffusivity at higher temperatures [285, 369] that has 
been interpreted as reminiscent of the more fragile behavior of 
the liquids [369] once T increases.

At high temperature, the evolution of diffusivity parallels 
that found for calculated viscosities η using the Green–Kubo 
formalism and equations (55)–(56) which is also found to be 
Arrhenius-like, and corresponding activation energies EA are 
similar (see figure 36). This simply reveals that the Stokes–
Einstein relationship holds:

η
π

=D
T

R6
,� (60)

where R is the particle radius (≃Å) moving in a fluid. 
Alternatively, the phenomenological Eyring equation can be 
used:

η
λ

=
k T

D
.B

� (61)

Here, λ represents a typical jump distance in the liquid, of the 
order of a bond distance. It has been shown [376, 377] that the 
Eyring equation works well with viscous liquids such as sili-
cates with a high silica content provided that λ is taken as the 

Figure 42.  Left: time dependence of the silicon mean-squared displacement for different temperatures in liquid silica [369]. Permission 
from the American Physical Society. Right: computed diffusion constants DNa, DSi and DO in a sodium silicate liquid as a function of 
inverse temperature (blue curves and symbols), compared to experimental data for DNa (see [296] for references) and to the simulated 
values of DNa, DSi and DO using an alternative potential (red curves and symbols, Horbach et al [370]. Permission from Elsevier 2015.
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oxygen–oxygen mean distance, a result that was also checked 
numerically for two other silicate liquids [296].

7.1.2.  Van Hove correlation function.  An additional signa-
ture of the dynamics is given by the van Hove correlation 
function which probes in real space, rather than the average 
value (equation (59)), the distribution of distances over which 

the particle has moved during a time t. This is conveniently 
quantified by the self part of the van Hove correlation function 
defined as:

( ) ( ( ) ( ) )∑ δ= − | − |α

α =

α

G r t
N

r tr r,
1

0s
k

N

k k
1

� (62)

where ( )δ r  is the Dirac function. This function ( )αG r t,s  is the 
probability density of finding an atom α at time t knowing 
that this atom was at the origin (r  =  0) at time t  =  0. By prob-
ing the probability that an atom has moved by this distance r, 
one is, therefore, able to gather additional information about 
dynamics. Figure 43 shows such a function ( ( )π Gr r t4 ,s

2 Se ) for 
liquid As2Se3 [71] at fixed temperature for different times. 
Note that because of the isotropic nature of the system, the 
angular integration can be performed leading to the term 4πr2. 
It is seen that for very short times (12 fs), 4 ( )π Gr r t,s

2 Se  nearly 
reduces to the Dirac function as it should do [378], given the 
definition of ( )G r t,s  (equation (62)). For increased times how-
ever, the Se atoms now experience larger distances for a given 
time, and for t  =  12 ps, atoms move over distances typical 
of second nearest neighbor distances (4–5 Å). The second 
important characteristic that appears from figure  43 is that 
the distribution is not Gaussian for long times as would be 
expected for an ordinary liquid for which relaxation phenom-
ena are neglible [378]. In this simple case, the mean-square 
displacement is, by definition, the second moment of the van 
Hove function which behaves as:

( )
( ) /

⎡
⎣

⎤
⎦

π
=

−
G r t

Dt
,

exp

4
s

r

Dt4

3 2

2

� (63)

Here, the function appears to be much wider with tails in the 
long time limit that have been revealed by a series of simula-
tions of network-forming liquids (silica [379], As2Se3 [71], 
densified silicates [319]). For short times, however, the van 
Hove function is made of a single Gaussian distribution that 
is shifted to the right with increasing time, and the location 
of the maximum evolves as t2, which arises from the ballistic 
behavior of ⟨ ( )⟩r t2  (figure 42, left). This characteristic does 
not apply at intermediate times, but it recovered at very long 
times, for which ( )G r t,s  is again given by a Gaussian. A con-
venient way to characterize the departure from such distribu-
tions is given by the non-Gaussian parameter [380]:

⟨ ( )⟩
⟨ ( )⟩

α = −
r t

r t

3

5
12

4

2 2� (64)

which becomes non-zero at intermediate times (figure 44) 
when ⟨ ( )⟩r t2  exhibits a plateau-like behavior (figure 42, left), 
and which is directly related to the cage effect when neighbor-
ing atoms act as a trap for a moving particle. Current invest
igations have focused on glass-forming liquids such as water 
[381], silica [193, 382, 383] or alumino-silicates [384], and 
have established the correlation between the onset of the  
β-relaxation plateau (figure 14) and departure (α ≠2  0) from a 
Gaussian distribution in the r-dependence of ( )G r t,s . In addi-
tion, the large r tail seen in the van Hove correlation function 

Figure 43.  Calculated self part of the van Hove correlation function 
4 r r t,s

2 Se( )π G  at 800 K for three selected compositions in As–Se 
liquids [71]: flexible As20Se80 (black), intermediate As35Se65 (red) 
and As40Se60 (blue). The function is represented for selected times: 
12 fs, 0.12 ps, 1.2 ps, 12 ps. Permission from AIP Publishing LLC 
2015.

Figure 44.  Non-Gaussian parameter 2α  for oxygen and silicon 
atoms at various temperatures in liquid silica [382]. The insets show 
the temperature dependence of the maximum of 2α  which follows 
an Arrhenius law. Permission from the American Physical Society 
2015.
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[385, 386] can also be rather well described [387] by an expo-
nential decay of the form ( ) ( / ( ))λ−�G r t r t, exps  which sig-
nals that viscous liquids will differ quite markedly from a high 
temperature liquid exhibiting a standard Fickian diffusion and 
a van Hove function of the form of equation (63). One of the 
main conclusions of such studies is that the dynamics of the 
atoms at long times and low temperature, i.e. those which con-
tribute to the tail of ( )G r t,s  have non-trivial dynamics that can 
be further characterized using dynamic heterogeneities (see 
below), and seem to contain some universal features that are 
common to network glasses, colloids, grains or simple sphere 
systems [387].

7.1.3.  Intermediate scattering function.  As described above, 
scattering experiments using, for example, neutron diffraction 
(figure 15) are performed in reciprocal space and can, there-
fore be compared to the calculated analog of the intermedi-
ate scattering function (equation (18)) which directly uses the 
positions ( )tri  obtained from the MD trajectory.

Such functions actually display the same phenomenology 
as the experimental ones, i.e. they exhibit a single Debye-like 
decay at high temperature, and lead to a β-relaxation plateau 
at lower T which extends beyond the available computer 
timescale at low temperature (figure 45, left). For intermedi-
ate temperatures, however, the structural (α) relaxation can 
be investigated and its characteristic (τ, Kohlrausch exponent 
β, see figure  14) determined as a function of the wavevec-
tor, temperature, etc and correlated with other calculated 
structural properties, e.g. τ being a decreasing function of the 
wavevector (figure 45, right).

Figure 45 shows such an example in liquid silica [388] and 
liquid GeSe2 for different temperatures and wavevectors. It 
is seen that Fs(k, t) behaves very similarly to the schematic 
figure represented (figure 14). As the temperature effects are 
considered, it is seen that Fs(k, t) rapidly decays to zero at high 
temperature, and also reproduces the anticipated Debye single 
exponential. At low temperature, the usual two-step relaxation 
process is found that permits one to detect an α-relaxation 

for the longest times. A rescaling of the x-axis using an α-
relaxation time ( )τ T  defined by ( ( ))τ = −F k T e,s

1 usually per-
mits one to detect the two temperature regimes that appear as 
a function of temperature. At high temperatures, such curves 
Fs(k, t) fall, at long times, rather well onto a master curve 
that is accurately reproduced by a simple exponential. At low 
temperature, all curves also nearly overlap, but are reproduced 
this time by a stretched exponential [388].

The exponential appearing in the definition of the inter-
mediate scattering function (equation (18)) can actually be 
expanded in ⟨ ( )⟩r t2  and connects back to the β-relaxation and 
effects due to non-Gaussian dynamics. In fact, equation (18) 
rewrites [389]:
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⎛
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� (65)
where ( )α t2  is the non-Gaussian parameter given in equa-
tion (64) that can be accessed from measurements/calculations 
of Fs(k, t) at different wavevectors (figure 45, right). A certain 
number of limiting cases are interesting and useful for further 
analysis. For instance, in the time interval where ( ) −�F k t e,s

1, 
the quantity ⟨ ( )⟩/k r t 62 2  is small, and the intermediate scat-
tering function reduces to a single exponential that is equal 
to [ ⟨ ( )⟩/ ]−k r texp 62 2  and can be directly obtained from the 
Fourier transform of the ‘Fickian’ van Hove function (equa-
tion (63)), a condition that is also met when [ ( )]/F k t kln ,s

2 is 
independent of k.

Given the timescale involved, investigations of the glassy 
relaxation using the intermediate scattering functions have 
been essentially made on model glasses (soft, hard) sphere 
glasses or model network glasses [390, 391], and for selected 
cases on oxides: borosilicates [300] silicates at ambient  
[392, 393] or under pressure [310], borates [394], calcium 
alumino-silicates [395] because classical MD simulations can 
be performed with confidence. In this case, the dynamics are 
explored on timescales (ns–μs) which are of the order of the 

Figure 45.  Left: Time dependence of the oxygen-related intermediate scattering function Fs(q, t) at different temperatures investigated 
[388]. The wavevector q is 1.7 Å

1−
, the location of the first peak in the structure factor. Permission of the American Physical Society. Right: 

same function Fs(q, t) at fixed temperature (1050 K) in liquid GeSe2 for different wavevectors q. Note that the timescale of GeSe2  
is significantly reduced because of a different modeling scheme (ab initio MD).
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timescale probed in neutron diffraction experiments [82]. This 
situation contrasts with the one encountered in chalcogenides 
for which ab initio simulations are necessary [396] to account 
for structural defects and for charge transfer defining the cova-
lent bonds (see, however, figure 45, right), which considerably 
reduces the timescale (≃100 ps). The dependence of Fs(k, t) 
with wavevector shows that probing the relaxation on larger 
length scales (i.e. smaller k) leads to reduced dynamics, i.e. 
Fs(k, t) decays more slowly, and eventually does not fall to 
zero for the largest computation time.

7.2.  Dynamic heterogeneities

An inspection of the local displacements during simula-
tions (figure 46) highlight the fact that the relaxation at the 
atomic scale is not homogeneous, and evidence has been 
found numerically that the dynamics are made of vibrations 
around well-defined positions followed by jumps once atoms 
have been able to escape from cages. In this respect, the  
existence of non-Gaussian dynamics [387] that connect to the 
β-relaxation plateau of the function Fs(k, t) represent a strong 
indication that one has a distribution of relaxing events that 
vary with space and time, and emphasize the central role of 
dynamic fluctuations in the viscous slowing down.

7.2.1.  Space and time fluctuations.  Detailed features about 
this slowing down have emerged in the more recent years, 
and studies provide strong evidence for the existence of these 
dynamic fluctuations in time and space, now also known as 
‘dynamic heterogeneity’ [398]. Simply speaking, one attempts 
both from experimental and theoretical measurements and sig-
natures [385, 399–401] to quantify the fact that regions in the 
glass-forming liquid can have different relaxation rates to equil-
ibration, and that these rates will evolve in a non-trivial way 
with time and temperature. This is thought to lead to a rather 

obvious origin for the non-exponentiality of the α-relaxation 
given that the KWW stretched exponential can be developed in 
a series of exponentials with different typical relaxation times, 
and might indicate that the relaxation is locally exponential, 
but with a spatial distribution that is complex and non-linear. 
There is, however, experimental and theoretical evidence [398] 
showing that even the local dynamics can be non-exponential 
as well, which increases the complexity.

On this issue, an insightful picture is again provided by 
MD simulations which show that while the mean-square  
displacement of a given species displays a smooth behavior 
with time (figure 42, left), and will, ultimately, provide some 
information about diffusion, there is evidence for species-
dependent individual jumps that result, on average, in the 
spatial distribution of the van Hove function. These salient 
features depicted in figure 47 are found for a variety of simple 
supercooled liquids [402, 403], and not only reveal that such 
events are intermittent with waiting times between succes-
sive jumps statistically distributed, but also that they strongly  
differ from one particle to another.

7.2.2.  Four-point correlation functions.  An inspection of the 
single events depicted in figure 47 that lead to distributions in 
jump distances encoded in the function ( )G r t,s  (figure 43) indi-
cates that such spatio-temporal fluctuations cannot be described 
from ensemble-averaged measurements or calculations given 
that correlations between space and time fluctuations need to 
be considered. This also tells us such inhomogeneous dynam-
ics, driven by mobile particles, need a generalization of mobil-
ity correlation functions, and current development has led to 
the definition of four-point correlation functions [404, 405] 
that focus on the statistical analysis of space and time devia-
tions from the average behavior (for technical details see, for 
example, [402, 406]). There are also alternative approaches 
[401, 407, 408], some of which focus on the quantity:

( ) ( ( ) ( ) )∑∑= | − |
= =

Q t w tr r0
i

N

j

N

i j
1 1

� (66)

Figure 46.  Atomic snapshot of liquid (1050 K) GeSe2 [397] 
showing the particle displacements over 88 ps. Different color 
codes, from dark blue (1 Å) to yellow-red (12 Å) indicate that the 
displacement of the particles is not homogeneously distributed.

Figure 47.  Time-resolved squared displacement of select individual 
Ge atoms in liquid (1050 K, [397]) and glassy (300 K, inset) GeSe2. 
It is seen that individual trajectories are made of long periods of 
vibrations and cage-like motions with a reduced spatial extent, but 
jumps can be noticed.
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which is a measure of the degree to which a configuration 
at time t still overlaps the initial arrangement, the degree of 
overlapping being established from a window function ( )w r  
(where ( ) =w r 1 if ⩽| | ar  and zero, otherwise with a a typical 
length scale).

In the simplest approach, one can define a mobility field 
fi(t) of the form:

∑ δ= −f t f tr r r,
i

i i( ) ( ) ( )� (67)

and its fluctuating part is written as ( ) ( ) ⟨ ( )⟩δ = −f t f t f tr r r, , , . 
This allows the definition of correlations over the fluctuations 
in both real and reciprocal space:

( ) ⟨ ( ) ( )⟩δ δ=g t f t f tr 0 r, , , ,4� (68)

( ) ⟨ ( ) ( )⟩δ δ −=S t f t f tk k k, , ,4� (69)

( )g tr,4  depends only on the time t and the distance r, and 
is termed ‘four-point’ because it measures correlations of 
motion arising at two points, 0 and r, between 0 and t, and 
also connects to the variance of the mobility field. A dynamic 
susceptibility can be introduced from equation (68):

( ) ( )∫χ ρ=t rg trd ,4
3

4� (70)

The function ( )χ t4  represents the volume on which structural 
relaxation processes are correlated, and has been computed 
for a certain number of soft-sphere glass-forming liquids 
[409, 410] and silica [411]. Note, that an alternative definition 
of ( )χ t4  can be used from the overlapping function used in 
equation (66) [401]:

( ) [⟨ ( )⟩ ⟨ ( )⟩ ]χ = −t
V

Nk T
Q t Q t .4

B

2 2� (71)

The behavior of ( )χ t4  with time appears to have some generic 
behavior because for each temperature ( )χ t4  displays a maxi-
mum at a peak position that corresponds to the relaxation 
time [411] of the system. As the temperature is decreased, the 
intensity of ( )χ t4  increases (figure 48) which signals the grow-
ing typical length scale involved in dynamic heterogeneities 
(space and time fluctuations), whereas the shift of the peak 
position to longer times reveals the increase of the relaxation 
time [411].

Given that the growth of the intensity of ( )χ t4 max  indicates 
dynamics becoming increasingly spatially heterogeneous, 
with decreasing temperature a corresponding dynamic length-
scale ξ4 can be accessed from the low wavevector region of 
S4(k, t) (equation (69)) which shows an increase in intensity 
in the limit →k 0 [401, 409, 413, 414] but, in the absence of 
large systems [415, 416], this limit is hardy attainable so that 
ξ4 might be accessed from the numerical/experimental data 
using a low-k functional form inspired from the analysis of 
static and dynamic density fluctuations in the Ornstein–
Zernike theory of liquid-gas transition [417]:
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In supercooled silica, an analysis using the framework  
of four-point correlation functions in different ensembles  
[409, 411] shows that ξ4 is an increasing function of the relaxa-
tion time. Furthermore, there is a strong indication [418] that 
these multi-point dynamic susceptibilities can be accessed 
experimentally since temperature and density variations of 
averaged correlations of a mobility field f(t) contribute to ( )χ t4 :
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where the susceptibilities χT and χρ arise from the fluctuations 
induced by energy and density, respectively. At fixed density 

and low temperature ( )χ t4
NVE  is much smaller, and ( )χ t4  is 

dominated by the contribution due to χT (figure 49) that can be 
measured from the temperature variation of system-averaged 
correlations ⟨ ( )⟩f t . Other MD simulations on liquid silica 
have revealed [403] that the structural relaxation dynamics 
are spatially heterogeneous, but cannot be understood as a 
statistical bond-breaking process which is thought to be the 
dominant process for viscous flow [398]. In addition, the high 
particle mobility seems to propagate continuously through the 
melt. Furthermore, it has been demonstrated that, on interme-
diate timescales, a small fraction of oxygen and silicon atoms 
deviate from a Gaussian behavior and are more mobile than 
expected from (equation (63)). These highly mobile particles 
form transient clusters larger than those resulting from ran-
dom statistics, indicating also that the dynamics are spatially 
heterogeneous [382]. From a Monte Carlo study of silica 
[419] the emergence of heterogeneous dynamics is also sug-
gested, and thought to be connected to a decoupling between 

Figure 48.  Time dependence and temperature of t4( )χ  in a densified 
liquid 2 SiO2–Na2O (2000 K, red symbols), and in a Lennard-Jones 
(LJ) liquid (adapted from [401]). Temperatures have been rescaled 
in order to correspond to LJ argon [412]. As the temperature 
decreases, the position tmax of the peak in t4( )χ  monotonically 
increases, and shifts to longer times. This reveals an Arrhenius-like 
behavior (inset).
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translational diffusion and structural relaxation (see below), 
and to a growing four-point dynamic susceptibility. However, 
dynamic heterogeneity appears to be less pronounced than 
in more fragile glass-forming models, albeit not of a qualita-
tively different nature [382].

7.2.3.  Stokes–Einstein breakdown.  The presence of intermit-
tent dynamics with atoms having a different motion depending 
on time and space (figure 47), leads to the occurence of a non-
Gaussian diffusion that can be detected when Fs(k, t) and the 
first term of the expansion of (equation (65)), [⟨ ( )⟩]/r t Dtexp 62  
are directly compared. While both will nearly overlap at high 
temperature, there is a progressive deviation setting in as the 
system approaches Tg, and this indicates that the relaxation 
time (or the viscosity) derived from Fs(k, t) decouples from 
diffusivity (given by ⟨ ( )⟩r t2 ) and has a different behavior with 
temperature: a feature also known as the Stokes–Einstein 
breakdown, i.e. the product /η D T.  ceases to be constant (equa-
tions (60) and/or (61)) and ceases to fulfill the dispersion rela-
tion /τ = q D1 2 . This decoupling of transport coefficients is 
usually tracked from the Stokes–Einstein ratio /η≡R D TSE  or 
the Debye–Stokes–Einstein ratio /η τ≡R TDSE , and a separate 
calculation or measurement of both τ and D has acknowl-
edged the decoupling at low temperature in several systems, 
from organic [420–422], hydrogen-bonded [423] to metallic 
liquids [424–426].

In structural glass-forming liquids (e.g. GeTe [427]), it has 
been found that a very high atomic mobility ( −�D 10 6 cm2 · s−1)  
remains important down to �T Tg, indicating the breakdown 
of the Stokes–Einstein relationship (figure 50) that connects 
with dynamic heterogeneities, as also suggested from crystal-
lization measurements on a similar system (Ge–Sb–Te [428]). 
For this particular GeTe system, the high atomic mobil-
ity results from zones of fast and slow moving atoms, with 
the former containing a large fraction of homopolar (GeGe) 
defects [429].

In order to quantify the decoupling and temperature evol
ution of both RSE and RDSE, a fractional Stokes–Einstein rela-
tionship has been introduced [420–422], i.e. D now scales as 

τ ζ−  where ζ relates to the characteristic spatio-temporal length 
scales involved in the heterogeneous dynamics, and a typical 
value has been found to be about 0.82  −  0.85 for different 
glass formers [420, 430, 431]. Here, ζ has been proposed to 
derive from temperature-dependent scaling exponents of both 
diffusivity and relaxation time, respectively [432]. However, 
the validity of this fractional Stokes–Einstein relationship has 
been questioned from a separate investigation of a series of 
silicate liquids [433] which emphasizes the two fundamen-
tally different mechanisms governing viscous flow and con-
ductivity/diffusivity. Separate fits of resistivity and viscosity 
curves indeed lead to different temperature dependences that 
can be appropriately modeled by the AM (equation (6), [32]) 
and MYEGA (equation (7), [33]) functional forms, respec-
tively, and which lead to a decoupling of diffusivity and vis-
cosity at low temperature without invoking the need for a 
fractional Stokes–Einstein relation. Also, there is no general 
agreement on the temperature region over which decoupling 
of transport coefficients is supposed to onset. While building 
on the fractional Stokes–Einstein relationship, a systematic 
study of glass-forming liquids including B2O3, SiO2, GeO2 and 
soda-lime silicate glasses [430] indicates that the breakdown of 
the Stokes–Einstein relationship should occur at much higher 
temperatures, i.e. at viscosities of about 102 Pa · s, a value that 
is 8-10 decades lower that the one found for Tg.

7.3.  Energy landscapes

As already mentioned in different examples above [191–193], 
numerical simulations also allow one to study in detail the link 
between thermodynamics and glassy relaxation by using the 
framework of energy landscapes. This school of thought traces 
back to the seminal contribution of Goldstein [434] who iden-
tified what aspects of glassy dynamics connect to the relevant 
features of the topography of landscapes: saddles, minima, 
peaks, basins with an important emphasis on the description 
of potential energy barriers which contribute to the slowing 
down of the dynamics, and contribute, overall to a statistical 

Figure 49.  Time dependence of t4( )χ  in van Beest, Kramer, and 
van Santen (BKS) silica [411]. At low temperature (large relaxation 
time), one has T cT v4

NVE 2 2 /χ χ�  (see equation (73)). Permission from 
AIP Publishing LLC 2015.

Figure 50.  Decoupling between Green–Kubo (GK  +  scaling) and 
Stokes–Einstein (SER) calculated viscosities using the calculated 
diffusivities in liquid GeTe [427]. Permission from J Wiley and 
Sons 2015.
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definition of activated dynamics that is encoded in the previ-
ously introduced activation energy EA for viscosity or diffu-
sion. This has led to the definition of the energy landscape 
picture in which a high temperature liquid is able to sample the 
entire phase space and, correspondingly, the energy landscape, 
because the thermal energies will be of the same order as the 
heights of the potential energy barriers. As the temperature is 
lowered, the potential energy landscape will affect the dynam-
ics and thermal energy fluctuations will still allow the liquid to 
make transitions over energy barriers from one local minimum 
to another, i.e. activated dynamics. There is a clear separation 
of the timescales for vibration within one minimum and for 
transitions from one minimum to another. Once quenched to a 
glass, the system will be stuck in some local minimum, given 
that the barrier heights are now much larger than the amplitude 
of thermal fluctuations, the rearrangement of atomic positions 
essentially takes place in small regions of the landscape.

7.3.1.  Inherent structures.  MD simulations appear to be very 
helpful in order to conveniently characterize the multidimen-
sional potential energy hypersurface created by a large num-
ber of interacting atoms or molecules. The notion of ‘inherent 
structure’(IS) has been introduced [30, 435–437], and this notion 
permits one to uniquely separate the complex landscape topog-
raphy into individual ‘basins’, each containing a local potential 
energy minimum or IS (figure 51). The search of ISs is usually 
performed by starting at an original point in configuration space 
(atomic positions), and performing a steepest descent mini-
mization of the potential energy function by changing atomic 
coordinates locally until a local minimum (the IS) is found. 
Such a procedure can be repeated and used to characterize the 
entire configuration space by separating landscape into regions 
called basins; all points in a basin having the same IS. There are 
various ways to numerically detect such IS and to classify their 
characteristics, depth or curvature. Additionally, shared basin 
boundaries are defined by saddles or transition states which 
allow movement from one basin to another one and a variety of 
techniques have been developed in recent years, such as activa-
tion-relaxation [438, 439], steepest descents [28], basin-hopping 
global optimization [440] or other graph-connected approaches 
[441–443], some of them applying only to clusters.

7.3.2.  Light formalism.  In the case of glassy relaxation, the 
starting point is a system of N particles interacting via a poten-
tial ( )V r . Following the Stillinger–Weber formalism (see, for 
example, [29, 444]), one usually decomposes the position-
related contribution Q(T, V) of the partition function:
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into contributions arising from the local minima with an inher-
ent structure energy eIS:
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where ( ) ( )∆ ≡ −V V er rN N
IS is the value of the energy in the 

local minimum (IS), and the sum excludes basins which have 
some crystalline order. By averaging over all distinct basins 
with the same energy eIS, and counting the number of basins 
of energy eIS:

( ) ∑ δΩ =e
i

e eIS iIS IS� (77)

one can write a partition function that is averaged over all dis-
tinct basins with the same energy eIS:
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which leads to a basin-related partition function and free 
energy:
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Nbasin IS B
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which leads to the definition of the configurational entropy 
( )S econf IS :

( ) ( )≡ ΩS e k elnconf IS B IS� (81)

Figure 51.  Potential energy landscape of a glass-forming liquid. Local energy minima (inherent structures, IS [435]) contribute to the 
global shape of the landscape which also contains a deep minimum corresponding to the crystalline polymorph, and a local minimum 
with the lowest energy corresponding to an ‘ideal’ glass. In the glass transition region, the landscape dominates the dynamics. The red dot 
signals a local minimum corresponding to an IS.
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so that the free energy can be reduced to the free energy of the 
typical basins and the number of such basins with a given IS 
energy explored at a temperature T.

In practice, and as mentioned before, IS configurations 
at temperature T are explored and enumerated by, for exam-
ple, a steepest descent minimization [200, 445]. In addition, 
the full calculation of the configurational entropy and free 
energy needs an explicit account of the vibrational (curva-
ture) contributions to each minimum, and a contribution from 
anharmonic effects that are determined by difference [444] 
from the calculated total free energy F(T, V ) of the system 
(derived from equation (75)) which is evaluated by thermody-
namic integration [29].

7.3.3.  Main results.  A certain number of studies have focused 
on the link between the energy landscape characteristics, the 
inherent structures and the glassy relaxation of a supercooled 
liquid. Ultimately, connections with the dynamics can be 
made and these reveal, for example, that the diffusivity obeys 
[191] an Adam-Gibbs-like relationship (figure 19, left).

In supercooled silica, potential energy landscapes have 
been investigated [193, 446–448], and have revealed that 
the distribution of IS energies significantly deviates from a 
Gaussian distribution [193], a result that seem to be connected 
with the progressive formation of a defect-free tetrahedral 
network which acts as a ground state for the system [448]. 
As a result, the configurational entropy Sconf does not appear 
to extrapolate to zero at finite temperature [193, 449], and 
this suggests the absence of a finite Kauzmann temperature 
(figure 52) at select conditions. Another key result is that for 
small systems the typical timescale involved in the pseudo-
periodic motion between two adjacent inherent structures 
can be very long [450] and, for certain systems, about eight 
times the average relaxation time [451]. However, this type 
of local dynamics does not contribute to the structural relaxa-
tion of the supercooled liquid, but at low temperature there 
are techniques [438] which activate the dynamics in order to 
escape from such large basins connecting two ISs with a low 
energy barrier. Using such an IS analysis, the viscosity can be 

decomposed [452] into a structural contribution that is associ-
ated with energy minima, and a vibrational contribution, the 
former leading to strain-activated relaxation, while the latter 
is purely Newtonian, and this also has implications for the 
fragility behavior [453].

Given that chalcogenides are usually studied from ab initio  
simulations that lead to system sizes that are considerably 
smaller (see, however, [397]), potential energy landscape 
approaches have not been considered and applied to these 
materials so far. Furthermore, such relatively small systems 
would be relevant for understanding supercooled liquids only 
at high temperature given that correlated motions of particles 
grow as the temperature is lowered in the landscape-influenced 
regime [454]. Studies on transitions in small systems have 
indeed shown that a system with a small number of atoms can 
be trapped in metabasins with a wide variety of energies and 
lifetimes at temperatures in the landscape-influenced region 
[455, 456], and because hops between such metabasins are 
correlated, only a limited number of particles will introduce a 
bias in the dynamics.

8.  Aging

Although relaxation times of glasses exceed common obser-
vation timescales, physical properties still continue to evolve 
with time at temperatures below Tg. An increase in the observa-
tion time will, therefore, permit one to detect the equilibration 
of the system at lower temperatures. Much below Tg however, 
such equilibrium relaxation times become so huge that they are 
clearly out of reach, e.g. one has an increase to relaxation times 
of the order of 1014 s, given that ( / )/ ( ) [ / ]τ τ =T T E T1 expg A  , 
and assuming an Arrhenius activation energy of about 1 eV, 
and a glass transition temperature  �T K500g , both values 
being typical of network glasses. In aging experiments, one 
therefore focuses on temperature intervals which are close to 
Tg, i.e. / �T T 0.8g . For such temperatures, physical aging can 
be followed over months and years, as detailed below.

The experimental protocol for an aging experiment is well 
established. An equilibrated supercooled liquid is abruptly 
quenched to a temperature ⩽T Tw g at a waiting time t  =  tw  =  0 
which corresponds to the beginning of the experiments. 
Physical properties are then recorded as a function of time but, 
because of the non-equilibrium nature of the system, such prop-
erties will also depend in a non-trivial fashion on the waiting 
(aging) time tw before the measurements are performed. In fact, 
while left unperturbed, the glass will continue to relax and will 
attempt to reach thermal equilibrium, and the way it relaxes 
depends on the temperature Tw at which the aging experiment 
is performed. As a result, the measurement will not only depend 
on the time tw, but also on Tw.

8.1. Time correlators

Mean-field glass models [457, 458] originally designed for spin 
glasses [459] have been introduced in the context of aging, and 
have emphasized the central role played by broken ergodicity. 
In such approaches, thermal equilibrium cannot be reached, 

Figure 52.  Temperature dependence of Sconf of supercooled silica 
at different densities (adapted from [193]). Dashed lines represent 
possible extrapolations, and may indicate the possibility of an 
entropy crisis only for selected densities.
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and aging results from the downhill motion of an energy land-
scape that becomes increasingly flat. One major result of such 
approaches is that the time-translational invariance typical 
of ergodic systems is broken so that time correlators for any 
observable must be defined in the aging regime, and these now 
depend explicitly on both times t and tw, as do the response 
functions of the system. Mathematically, such complex time 
evolutions can be cast into two-time-dependent functions, 
namely (i) a two-time correlation function defined by:

( ) ⟨ ( ) ( )⟩ ⟨ ( )⟩⟨ ( )⟩= −C t t A t A t A t A t, ,w w w� (82)

with ⩽t tw, and where A(t) is a typical observable (e.g. the 
intermediate scattering function Fs(k, t)), and (ii) the response 
function G(t, tw) given by:

( ) ⟨ ( )⟩
( )

⎛
⎝
⎜

⎞
⎠
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δ
=

=

G t t
A t

h t
, w

w h 0
� (83)

where h(tw) is a conjugate field to the observable A, and 
the brackets indicate averages over the thermal history. For 
instance, if A(t) is the average 1D position of the particles 

( ) / ⟨ ( )⟩= ∑A t N x t1 i i , then the response function is computed 
from the perturbated Hamiltonian = − ∑H H h xi i0 . In sys-
tems in equilibrium, both two-time functions are related via 
the fluctuation-dissipation theorem [460] which quantifies the 
relation between the fluctuations in a equilibrated liquid and 
the response to applied perturbations. This leads to:

( )     ( )
= −

∂
∂

TG t t
C t t

t
,

,
w

w� (84)

or, using the integrated response:
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t

t

w

� (85)

One important property of equation (84) and of the two func-
tions G(t, tw) and C(t, tw) is their time translation invariance at 
equilibrium, i.e. all depend only on t  −  tw. Once the system 
becomes out of equilibrium at <T Tg, a major consequence 
is that the fluctuation-dissipation theorem does not hold, this 
behavior being fulfilled in glasses displaying aging behavior 
for which the response functions and the FDT become wait-
ing time-dependent (i.e. on tw), and stop being invariant under 
t  −  tw. Here, it is convenient to rewrite the FDT of equation (84) 
using an effective temperature Teff that also leads to the intro-
duction of a fluctuation-dissipation ratio (FDR) X(t, tw):

( )=T T X t t, weff� (86)

and, by definition, one has at equilibrium X(t, tw)  =  1 and 
=T Teff . From a fundamental viewpoint, the introduction of 

an effective temperature has a profound implication for the 
meaning and the measurement of temperature in a system 
undergoing aging. In fact, since the temperature is related to 
the timescale (equilibration) and to particle velocities (equi-
partition), its measurement in a glassy state for which both 
relaxation times and velocities are time and spatiallly-depen-
dent (heterogeneous dynamics), poses a true challenge [461] 
with the difficulty being to define an appropriate thermom-
eter. For certain simple models, additional degrees of freedom 

representing the thermometer can be coupled in a simple fash-
ion to an observable of interest, and this allows one to relate 
the measured temperature to the correlation function and the 
integrated response [462]. While this definition of Teff has 
been found to be rather appropriate in a certain number of 
systems or models [463, 464] investigated within the energy 
landscape formalism [465], its robustness has also been ques-
tioned [466, 467]. We refer the reader to reviews that specifi-
cally focus on this topic [468, 469].

8.2.  Insight from trap models

A simple way to understand the physics of aging is directly 
derived from the Goldstein picture of energy landscapes, and 
uses trap models [456, 471–473] in which particles can move 
from one local minimum of the complex landscape to another. 
Here, these local minima are seen as metastable configura-
tions with high energy barriers so that such minima can act as 
traps and hold the glassy system during a certain finite time.

The central question of this approach is to ask what could 
be the distribution of such trapping times, and a simple answer 
can be given assuming that there exists a ‘percolation’ energy 
level E0 below which the minima are disconnected. For 
E  >  E0, it is possible to hop between any two states given that 
the energy barrier is equal to ∆ = −E E E0 , and the system 
can relax to lower energies.

An interesting outcome is the existence of a cross-over 
between two aging regimes illustrated by, for example, a 
magnetization function m(t) of a spin system [472] that is 
exponential:

( )   ( / )=
γ

−
−

−
m t m e ,x

t t
0 1 w

x1� (87)

and is a power-law ( ) ( / )= γ−m t t tw  for �t tw and �t tw, 
respectively. Here, x characterizes the distribution of free ener-
gies in the glassy phase [471], and γ is related to the probabil-
ity of relaxation when leaving a trap. In the short time domain, 
these models reproduce the stretched exponential decay typi-
cal of α-relaxation, and are also found to depend on t/tw only. 
On a more general ground, such non-equilibrium statistical 
mechanics models capture some of the salient features of the 
dynamics of aging. Here, the phase space is seen as a large 
collection of metastable states which induce a broad distribu-
tion of lifetimes. When the average lifetime of these metasta-
ble states diverges, all the physical observables are dominated 
by the properties of the deepest state.

A certain number of models with different distributions 
of trap depths (Boltzmann [474], Gaussian [471]) lead to the 
usual features of glassy relaxation, i.e. a power-law for simple 
dynamic variables [475], a super-Arrhenius behavior for the 
relaxation with a diverging temperature [456] or a stretched 
exponential decay.

8.3.  Molecular dynamics simulations

Computer simulations can directly probe the enunciated 
breakdown of the fluctuation-dissipation ratio (equation 
(84)), and a separate computation of the integrated response 
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and the correlation function leads to a straight line with 
slope  −1/T (equation (85), figure 53) in an equilibrated liquid  
[463, 470, 476], and /− T1 eff in a system subject to aging, the 
latter situation occuring for small values of the correlation 
functions. A break in the slope permits the detection of aging 
regimes, and provides an approximate limit of equilibration. 
Such simulations also allow one to verify the behavior pre-
dicted from trap models [477] or to connect this to dynamic 
heteregeneities, and for a selected number of strong and fragile 
glass-forming systems (including silica) the calculated 4-point 
density susceptibility ( )χ t t, w4  and the dynamic correlation 
length ( )ξ t t, w4  have the same behaviors, qualitatively, as a func-
tion of tw and t  −  tw [478]. Additionally, the tails of the displace-
ment distributions show a qualitatively different evolution with 
tw in the case of more fragile liquids, and this evolution appears 
to be associated with the particles which have diffused the most.

The local aging dynamics can also be characterized, and 
this eventually connects back to dynamic heterogeneities for 
model structural glasses [479]. In silica, aging seems to result 
from single particle trajectories and jump events corresp
onding to the escape of an atom from the cage formed by its 
neighbors [480]. It has been found that the only tw-dependent 
microscopic quantity is the number of jumping particles per 
unit time [481], and this quantity has been found to decrease 
with age. The second key finding is that for such strong glass-
forming systems, but also in more fragile ones [482, 483], 
neither the distribution of jump lengths that relates to the self 
part of the van Hove correlation functions (equation (62)) nor 
the distribution of times spent in the cage are tw dependent. 
Except silica, we are not aware of any other MD study on 
aging in network-forming glasses.

8.4.  Applications

8.4.1.  Oxides.  Aging effects in oxides, and particularly  
silicates, were first reported in the seminal work of Joule 
[484, 485] on silicate glass thermometers, and then studied 
in detail by Nemilov [486, 487]. Nemilov and Johari [488] 
investigated changes in various physico-chemical properties 
for aging times ranging from hours to decades. From these 

studies, it has been stated that the completeness of aging of 
glass at any age is determined by its aging rate after about one 
year [487], and nearly forty glasses have been classified with 
respect to this criterion. For the special case of silicates, one 
should keep in mind that glass transition temperatures in such 
systems are quite high so that aging experiments performed 
at ambient conditions only show small variations given the 
important difference with Tg. However, this seems to be con-
tradicted by the observed changes in, for example, density 
over time [488] which have been found to have characteristic 
relaxation times much shorter than those of an α-relaxation 
process. On this basis, it has been proposed that the structural 
changes occur on timescales typical of a β-relaxation which 
is typical of cage-like dynamics (figure 14). Densification is 
then seen as the result of angular changes between SiO4/2 tet-
rahedra which induce local strained regions in the glass, and 
a subsequent dissipation of this strain energy, the former pro-
cess being much slower and determining the kinetics of aging. 
The link with structural features driving the effect of aging 
have also been detected on phosphate [489] or silica-based 
glasses [490] from spectroscopic studies.

The use of x-ray photon correlation spectroscopy appears 
to be an interesting probe for the investigation of structural 
relaxation processes, and by using different thermal histo-
ries (cooling rates), one can observe a complex hierarchy of 
dynamic processes that are characterized by distinct aging 
regimes. These features are seen in metallic glasses [149, 150]  
and also in silicates [153], and one can find strong analogies 
with the aging dynamics of softer glassy materials [491], 
while also pointing to stress relaxation as a universal mech
anism driving the relaxation dynamics of out-of-equilibrium 
systems. This has also been acknowledged for a borosilicate 
glass which shows stress relaxation under aging at / �T T 0.3g  
[105], but contradicts the qualitative mechanism sketched 
from density changes with aging [488].

8.4.2.  Chalcogenides.  Because of their relatively low glass 
transition temperature, allowing for aging experiments at 
ambient temperature, there is quite an important body of lit-
erature on the effect of aging on various thermal, mechani-
cal, and dielectric properties in polymers [492–496] that has 
inspired work on chalcogenide network glass-forming liq-
uids such as As–Se or Ge–Se [497, 498], mostly accessed 
experimentally, and from techniques such as DSC or mDSC. 
Readers interested in this topic and its promising applications 
should refer to an excellent review article [498] which also 
contains more specific aspects of aging such as thermally- or 
irradiation-induced effects.

There is a crucial dependence of the temperature at which 
aging is performed, Tw, on the maximum enthalpy ∆ ∞H  that 
can be released upon heating an infinite aged sample, and 
Saiter [493] has proposed that it scales as:

( )( ( ) )∆ = ∆ −∞H C T T q Tp g g w� (88)

where Tg is the glass transition determined by the scan with 
a fixed heating rate, and ∆Cp is the jump in specific heat at 
Tg. From equation  (88), it becomes clear that the measure-
ment of aging will strongly depend on Tw, and eventually 

Figure 53.  Response versus correlation calculated in the aging 
regime of a silica glass [470]. At short times, the plots converge to 
the straight line of slope 1, whereas at large times (small values of 
C t t,( )′ ) a slope X 0.51�  is found, yielding an effective temperature 
of ≃4900 K. Permission from the American Physical Society.
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cancel in case of rejunevation when �T Tw g. Given this rela-
tionship (equation (88)), long-time physical aging has been 
investigated in these chalcogenide networks [499–501]. Also, 
since the enthalpic loss is directly related to −T Tg w, aging is 
enhanced for compositions which have a lower Tg (i.e. usually 
chalcogen-rich [43]) so that the enthalpic relaxation can be 
measured within a short period, and seems to follow a sigmoi-
dal time dependence [12].

There are aspects of structure that have been character-
ized in connection with this topic, in particular from Raman 
spectroscopy [499, 502], NMR [503], and all indicate the 
weak changes in short-range order under aging, also char-
acterized from x-ray absorbtion [503], a conclusion that is 
consistent with a large dynamic correlation length [401]. 
When two types of glasses are compared (20 years aged and 
rejuvenated), Raman spectroscopy of As–Se [499] seems 
to indicate small changes changes in bond statistics (as for 
NMR), and for Se-rich glasses, it has been concluded that 
Se ring-like structure collapse leads to a reorganization of 
chain fragments between AsSe3/2 units. Overall, these dif-
ferent probes signal that As–Se–Se–As motifs convert into 
As–Se–As and As–Se–Se–Se–As fragments during aging. 
This chain-switching mechanism is actually supported from 
ab initio simulations of elemental Se [504] which shows 
fast (≃100 fs) changes in chain structure involving defect 
coordinations ( =r 1Se  or 3) that give support to proposed 
valence-alternation pairs for light- induced structural 
changes [505, 506].

8.4.3.  aging in isostatic glasses.  Isostatic network glasses 
are found to display a significantly reduced tendency towards 
aging and this has been detected for a certain number of sys-
tems. Experiments on Ge–P–Se network glasses across the 
isostatic phase [244] show that the deep and wide reversibility 
window in these chalcogenides sharpens and gets deeper as 
glass compositions outside the window age at 300 K over dif-
ferent periods (figure 54(a)).

It is to be noted that the experimental protocol does not 
follow the one usually designed for aging studies in, for exam-
ple, spin glasses for which the system is maintained at a fixed 

/T Tg [472]. Here, given that Tg is a function of glass com-
position, the effective aging temperature /T Tw g itself will also 
vary with composition. Floppy glasses which are below the 
IP window age significantly over a 3 month waiting period 
(figure 54(b)), while stressed-rigid glasses (above the win-
dow) age somewhat slower, over ≃5 months, an observation 
that directly results from the slower aging kinetics connected 
with higher glass transition temperatures. In such IP glasses, 
there is weak evidence of aging, even after a 5 month wait-
ing period. Similar results have been found for As–Se glasses 
[507] with a weak evolution of the non-reversing enthalpy for 
reversible glasses, and contradictory results on this topic [327] 
have been further analyzed [329] and could be interpreted as a 
result of nanoscale phase separation resulting from light expo-
sure. Furthermore, it has been pointed out that a proper aging 
procedure (i.e. at fixed /T Tw g for all compositions) may not 
lead to the anomalous behavior observed in figure 54(b), and 
measurements on Ge–Se glasses using DSC could not repro-
duce the generic behavior proposed for isostatic glasses [508].

Finally, it must be emphasized that sophisticated exper
imental procedures, multiple cycles of cooling, heating and 
waiting times, modulation of the applied external fields, can 
lead to spectacular effects of aging in glassy materials, such as 
rejuvenation and memory [498].

9.  Conclusions and perspectives

At this stage, rather than summarizing the different top-
ics covered in this article, we would like to emphasize that 
specific features typical of relaxation in supercooled liquids 
which could benefit from the low temperature description of 
the corresponding glassy materials. This is particularly rel-
evant in the case of network glasses. There have been recent 
efforts to bridge the gap between theoretical approaches and 

Figure 54.  Aging effect on the non-reversing heat enthalpy Hnr∆  in chalcogenide networks as a function of aging. (a) Ge–P–Se glasses 
(adapted from [244]). (b) As–Se glasses (adapted from [507]) For window compositions (As30Se70), the evolution with waiting time is 
substantially reduced.
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experimental methods used or derived from the liquid side and 
the glassy side of the glass transition [509]. Progress has been 
slow, but more and more methods are being applied to this 
purpose, and this might be particularly crucial as one consid-
ers network glass-forming liquids.

Here, we have reviewed the ongoing effort and studies that 
have been reported in the literature in order to characterize 
and understand the physics of the glass transition and related 
aging phenomena once a system is maintained at <T Tg. We 
have focused on the special case of network-forming glasses, 
i.e. on materials which are dominated by their low temper
ature underlying structure. These glasses are often thought to 
systematically have low fragilities and to belong to the cat-
egory of strong glass formers, albeit this is contradicted by 
various experimental measurements [15, 41]. Most of the 
recent simulation work on inorganic supercooled liquids, 
and especially the one focusing on dynamic heterogeneities  
[403, 411] is restricted to liquid silica which has a fragil-
ity index of =M 20. Investigation of other typical network 
formers (B2O3, GeSe2,...) are welcome. While similar features 
with fragile liquids have been emphasized [382], there is prob-
ably much to learn from an investigation of network glasses 
because an appropriate alloying allows one to tune physical 
properties (e.g. structure) in a continuous fashion, that can, in 
turn, be connected or correlated to dynamic properties such 
as fragility. Studies of the compositional dependences and the 
detection of anomalies in dynamic or relaxation properties are, 
therefore, believed to represent an interesting and additional 
means to learn more on the glass transition phenomenon.

In this respect, recent efforts [35] attempting to derive 
approaches that use rigidity theory in a substantially revised 
version, represent attractive pathways for an improved quanti-
tative description of glassy dynamics. Here, it is assumed that 
relaxation is controlled by aspects of structure, topology and/
or rigidity, or, more generally, by features of the low temper
ature glass. This fact has been acknowledged by various 
authors (e.g. [81]), although methods and models are often 
based on equilibrium statistical mechanics that bear obvious 
limitations once they are applied to the glassy state. A prom-
ising way to combine both approaches, from the glass to the 
liquid state is provided by molecular dynamics-based con-
straint counting [305] which permits one to calculate various 
properties from ensemble averages, and to connect to rigidity 
theory via an explicit account of the topological constraints. 
From a more applied viewpoint, given the general use of such 
simulations in the description of glassy materials, this recent 
extension now offers the possibility to rationalize the design 
of new families of other materials using as input the rigidity 
state of the underlying atomic network, as recently demon-
strated [311], and the corresponding glassy dynamics can be 
investigated.

This link between network rigidity and the thermody-
namics and relaxation of supercooled liquids seems to have 
an even more general ground as recently emphasized [220], 
and these ideas can actually also be extended to other glass-
forming liquids including fragile ones [81]. Indeed, glass 
elasticity and the presence of soft elastic modes have been 
found to drive many aspects of glassy relaxation as mentioned 

throughout this review, and also to relate to thermodynamic 
changes across the glass transition. In fact, an abundance of 
such soft modes permits exploration of the phase space with-
out large changes in energy [271], and this ultimately leads to 
small changes in the specific heat. This, of course, connects 
back to the notion of floppy modes [61] that are present in 
weakly connected (flexible) network glasses.

Finally, it would be interesting to consider, in a combined 
fashion, aspects from the statistical mechanics of non-equi-
librium systems [469], molecular simulations and rigidity 
theory to investigate the aging of chalcogenide glasses. This 
would allow the description of these phenomena beyond the 
qualitative level (figure 54). Given the number of important 
applications of chalcogenides in optoelectronics [2, 498], the 
understanding and, eventually, the control of aging phenom-
ena could improve the stability of devices using chalcogides as 
base material, as recently stressed in a study on optical phase 
change recording [510]. Still, a certain number of challenges 
remain that are inherent to some of the methods employed: 
small system sizes due to ab initio simulations in order to treat 
correctly the covalent or semi-metallic bonding, and the short 
timescale of the MD simulations. Despite these limitations, 
such methods exhibit a certain number of promising results 
on this topic for the archetypal SiO2 [470], and might well 
be applied in a similar fashion to its parent chalcogenide sys-
tem with a wealth of possible applications, directly derived 
from the very basic features of non-equilibrium statistical 
mechanics.
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