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Abstract

In preparing this note, we have examined many textbooks of magnetism where the
mechanism of the superexchange interaction is discussed. We realize that it may be
difficult for readers (in particular graduate students and undergraduate students studying
on the magnetism) to understand the physics on the superexchange interactions from
these textbooks, partly because of the limited space of the textbooks and the requirement
of the amount of knowledge in quantum mechanics. The present note is based on the
lecture note of the Solid State Physics which one of the authors (MS) has prepared since
1986. The note has been revised many times. The Mathematica programs are used for
calculations of the eigenvalue problems and plotting the electronic density of the
wavefunctions. The use of the Mathematica will be helpful for students to understand the
mechanism of the superexchange interactions visually. As a supplementary, one can see
our lecture note on the spin Hamiltonian and the crystal field of transition metal ions.

In this note, we discuss the development of various interactions between magnetic
ions; such as direct exchange interaction and superexchange interaction. Direct exchange
involves an overlap of electron wavefunctions from the two sites and Coulomb
electrostatic interaction repulsion. The Pauli exclusion principle keeps the electrons with
parallel spin away from each other, thereby reducing the Coulomb repulsion. Originally
superexchange acquired its name because of the relatively large distances, occupied by
normally diamagnetic ions, radicals, or molecules. Small exchange coupling existed even
between 3d ions separated by one negative ion. Anderson (1959) considered a molecular
orbitals formed of the admixture of the localized 3d orbitals and p orbitals of the
intervening negative ion. The bonding orbital is mainly occupied by a negative ion, while
the antibonding orbital is partially occupied by 3d electrons, leading to the magnetism of
the system. Thus the wavefunction of localized d spins extends over the neighboring
negative ion. There is a probability of transferring from one 3d orbital of the magnetic ion
to the neighboring 3d orbitals, leading to the exchange interaction.

A considerably more satisfactory system of semi-empirical rules was developed over
a period of years mainly by Goodenough and Kanamori. These rules have the important
features of taking into account the occupation of the various d levels as dictated by ligand
field theory. They are related to the prescriptions of Anderson’s paper about the sign of
superexchange. The main features of the superexchange interactions are usually
explained in terms of the so-called Goodenough-Kanamori-Anderson rules. According to
these rules, a 180° superexchange (the magnetic ion-ligand-magnetic ion angle is 180°) of
two magnetic ions with partially filled d shells is strongly antiferromagnetic, whereas a
90° superexchange interaction is ferromagnetic and much weaker.
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((Note))
In this note we use the following notations for the 3d orbitals. de = toq = d(xy), d(yz), and
d(zx). dy = eq = d(x* — y?) and d(3z%-r?).

1. Introduction
The magnetism of the matters is an essentially quantum phenomenon. In 1928
Heisenberg'proposed a theory of ferromagnetism, based on the quantum mechanics. In
the ferromagnets such as Fe, Co, and Ni, atoms or ions forming the matters have
localized d electrons. He considered that there is a ferromagnetic exchange interaction
(J>0), in the form of
-23S,;-S;. (1.2)

When two wavefunctions are orthogonal, this interaction leads to a ferromagnetic spin
order where all the spins of ions are aligned along the same direction. In other words,
there are two kinds of interactions between two electrons; repulsive Coulomb interaction
and a exchange interaction. The exchange interaction occurs as a result of the Pauli
exclusion principle in the quantum mechanics. It is responsible for the Weiss molecular
field generated in ferromagnets. This form of the exchange interaction is called a
Heisenberg model for the magnetism of localized spins. (See Sec.2.2 for the detail.)

The importance of the exchange interaction received attention before Heisenberg
proposed his theory. It was proposed by Heitler and London? that the interaction is the
cause of covalent bonding of hydrogen molecules. In this case, there is an attractive
Coulomb interaction between the electron of one atom and the nucleus of the other atom
as well as a repulsive Coulomb interaction between two electrons. Thus the exchange
integral J is negative and the ground state is a spin singlet, when the overlap integral
between two wavefunctions are not equal to zero. (See Sec.2.1 for the detail.)

In 1949, Shull and Smart® had carried out a neutron diffraction and demonstrated that
MnO is an antiferromagnet. The nearest-neighbor Mn?* jons are connected through an
intervening O%. The interaction between Mn“* ions is antiferromagnetic, and is called a
superexchange interaction. Such interaction is rather different from the direct exchange
interaction proposed by Heisenberg.!



Originally superexchange acquired its name because of the relatively large distances,
occupied by normally diamagnetic ions, radicals, or molecules. Small exchange coupling
existed even between ions separated by one or several diamagnetic groups. The
mechanism of superexchange was first introduced by Kramers* (1934). He tried to
explain the exchange interaction in paramagnetic salts. He pointed out that the ions could
cause spin dependent perturbations in the wavefunctions of intervening ions, thereby
transmitting the exchange effect over large distances, but no specific mechanism were
discussed.

In 1950, Anderson® refined the Kramers’ approach. The idea can be illustrated by two
Mn** and one O% ions arranged collinearly. The simplest model requires the
consideration of four electrons. The ground state consists of one electron on each Mn?* in
the states d; and d,, and two electrons on the O% ion in identical p orbitals. The p orbitals
have a dumbbell shape that coincides with the axis joining the two Mn?* ions. Because of
the overlap of their wavefunctions, one of p electrons from the O ion hops over to one
of the Mn?* ions. The remaining unpaired p electron on O ion then enters into a direct
exchange with one d electron of the other Mn®" ion. The superexchange interaction
between Mn?* spins is then antiferromagnetic.

After further refinement, it was realized that this type of theory became involved in
increasing uncertainties and complexities. In this theory the exchange effect appears in a
third order of the perturbation theory. One encountered some difficulty. This perturbation
theory is poorly convergent. The early terms which do not lead to magnetic effects are
rather large.

In order to overcome such a difficulty, Anderson® (1959) proposed a new theory of
the superexchange interaction from a different view point. He considered molecular
orbitals formed of the admixture of the localized 3d orbitals and p orbitals of the
intervening negative ion. There are two orbitals thus obtained; the bonding orbital and the
antibonding orbital. The bonding orbital is mainly occupied by a negative ion, while the
antibonding orbital is partially occupied by 3d electrons, leading to the magnetism of the
system. Thus the wavefunction of localized d spins extends over the neighboring negative
ion. There is a probability of transferring from one 3d orbital of the magnetic ion to the
neighboring 3d orbitals. The repulsive Coulomb interaction tends to prevent such a
transition. In other words, when one d electron of the magnetic ions jumps into the
unoccupied site of the neighboring magnetic ions, there is an energy increase by U, where
U is the repulsive Coulomb interaction. In this picture, the first-order of the perturbation
is a usual ferromagnetic exchange interaction, while the second-order of the perturbation

is an antiferromagnetic exchange interaction and is expressed by
2

4558, (12)

where t is the transition matrix of the transition of the electron in one atom to the
neighboring atom and U is the Coulomb interaction between two electrons with different
spin directions in the same atom. This is a new approach of the superexchange interaction
by Anderson.® This Hamiltonian is called as a Hubbard Hamiltonian. In the limit of
U <<t, electron can move around in the crystal, forming conduction electrons in the
metal. In contrast, in the limit of U >>t, electrons are localized in the lattice point,
forming the insulator. The superexchange interaction results from a perturbation energy



from the insulator as a limiting case. It is concluded from the above discussion that the
exchange interaction can be expressed by the general form
-2J.,,8,-S,, (1.3)

for both the direct exchange interaction and the superexchange interaction. Nevertheless,
we encounter a difficulty in evaluating the magnitude and sign of Ji, from the first
principle of the quantum mechanics. (See Sec. 3 — 6 for the detail.)

A considerably more satisfactory system of semi-empirical rules was developed over
a period of years by Goodenough’ and Kanamori.® These rules have the important
features of taking into account the occupation of the various d levels as dictated by ligand
field theory. They are related to the prescriptions of Anderson’s paper® about the sign of
superexchange. The exchange interaction in magnetic insulators is predominantly caused
by the so-called superexchange — which is due to the overlap of the localized orbitals of
the magnetic electrons with those of intermediate ligands. The main features of the
superexchange interactions are usually explained in terms of the so-called Goodenough-
Kanamori-Anderson rules.2®!® According to these rules, a 180° superexchange (the
magnetic ion-ligand-magnetic ion angle is 180°) of two magnetic ions with partially filled
d shells is strongly antiferromagnetic, whereas a 90° superexchange interaction is
ferromagnetic and much weaker. (See Sec. 7 and 8).

2, Direct exchange interaction
2.1 Heitler-London model

We consider a hydrogen molecule (two-electron system). The two proton atoms are
located at r, and r,. This was first considered by Heitler and London? in 1927. In the limit
of infinite separation we assume that we have two neutral hydrogen atoms, where there is
one electron around each proton. The Hamiltonian is given by

h? h?
Heom am
2 2 2 2 2 2 ! (21)

e e e e e e
- - - - + +
|r1 _ra| |r2 _rb| |r2 _ra| |r1 _rb| |r1 —r2| |ra _rb|
where m is a mass of electron. When the distance between two hydrogens are sufficiently

long, they are regarded as isolated hydrogen atoms. The Schrddinger equation of each
hydrogen atom is given by

o™ ) = B ()
8] _ra|
N . | 2.2)
(_%Vz —m)%(rz) = By, (r,)

where E is the energy eigenvalue, and (r,|¢,)=¢,(r;) and (r,|d,) = ¢, (r,) are the energy
eigenfunction.
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Fig.1 Model of hydrogen molecule. Protons at r, and r,. Electrons at r; and r».

Since
[P, H]=0, (23)
we have a simultaneous eigenket of f’lz and H:
AI-A||1//>: E|w> and I5’12|w>:/1|y/>. (2.4)
Since R, =1,
Pe'lw) = 2Relv) = 2lv) =v), (2.5)

we have A = %1. Since the spins are fermion, the wave function should be antisymmetric
under the exchange of two particles.

Here we discuss the eigenvalue and eigenfunction of the system.'* The Hamiltonian H
of the system in the case of no magnetic field does not contain the spin operators, and
hence, when it is applied to the wave function, it has no effect on the spin variables. The
wave function of the system of particles can be written in the form of product,

|W> = '//space> Zspin> ' (26)
://Space> depends only on the co-ordinates of the particles and

where

Zspin> only on their

spins. If the Hamiltonian H contains the spin operators, the separation of the spacial part
and spin part is not possible. We need to introduce the Slater determinant. For the two
particle systems, the wavefunction can be described by

)= bl )|,
IN |} B), )] B),

where N is the normalization factor, |¢i|> (i = a, b) are the spatial states of the isolated

, (2.7)

hydrogen atom, |a),|3) are the spin states, the index 1 and 2, are the positions of
particles.

If the Hamiltonian H does not contain the spin operators, the spacial wavefunction
can be described by the antisymmetric wavefunction (Baym'?)

a\ _ 1 4.), 14.), 28
o' = Tl ) e

for the triplet spin state (S = 1) and by the symmetric wave function
1

)= : 2.9
Ve ) m[|¢a>ll¢b>2+|¢b>l|¢a>2] (2.9)




for the singlet spin state (S = 0), where ¢ is the overlap integral, (¢,|d,) = (. The singlet
spin state is expressed by | ;(spin> = %[(H —) —|—- )] (see Sec. 2.4A).

The expectation value of the Hamiltonian in the states

l//spaces> and l//spacea> iS
£, —(H), - (ab|H|ab) + (ba|H|ba) + <e;b|H|ba> (ba|H|ab) |

* 2+ 2/
where the upper sign denotes the singlet spin state, the lower the triplet, and

(abJH|ab) = [, [ dr (13|, ) (1| ) H {13 )|y

(2.10)

(oala) = o, ) 1) M) ) -
(ab|H|ba) = [ dr, [ dr,{r,|,) (r,|dh) H (x| )(r. [ )
(ba]H|ab) = [dr, [dr, (r,|d,) (r.|4) H ([¢,)(r.|,)

Because of (ba|H|ba) = (ab|H|ab) and (ab|H|ba) = (ba|H|ab), we have
£~ (H). - {ab|H|ab>i<2ba|H|ab> | (2.12)

+ 1+7

where
(ab]H]ab) = 2E, + S +V. (2.13)
(ba|H|ab) = /7 (2E, + ;Z )4V, (2.14)

ab
Here R, :|ra —rb|, V. is the Coulomb integral, and V,, is the exchange contribution to

the electron energy

V, = Idrljdrz rl|¢5al e’ ¢

\r2|¢b\[ - + ]

a| |r1 _rb| |r1 —r2|

e e e
Vex - Idrljdr2<rl |¢a> <I'2 |¢b> <I'1|¢b><l'2 |¢a>[_ |l'2 _ra| - |lf'1 _rb| + |I'1 —I'2|
(2.15)
Then we have
e’ V%V,
E.=2E,+ R, +W (2.16)
or
2 2
Vet o )£Vt )
E.=2E,+ & L a (2.17)
The term V,_ + e is always positive, while V,, + /2 ¢ is in general negative. Thus E.
ab ab

(singlet spin state) is lower than E. (triplet spin state). So we can conclude that the H,



molecule binds in the spin singlet state, but not in the triplet state. The strength of the
binding is roughly proportional to the amount of the overlap of the two electron states.
((Note))

In the Heitler-London model, the overlap integral ¢ is not equal to zero since

|4,) =[1s) and |¢,) =[1s). In this case, Vex becomes negative, favoring the singlet spin
state (S = 0) or antiferromagnetic spin alignment.

2.2 Direct exchange interaction in the case of the zero overlap integral
We now consider the simple case when the overlap integral is equal to zero;
(¢.|,) = =0 (orthogonal). The electron energy is given by

2 2
:250+;—+vc iveX:2E0+;—+KiJ, (2.18)

ab ab

E

+

where

V,=J= J.drljdr2 r|d,) 1’2|¢n>| |<rl|¢b><r2|¢>

2 2 (2.19)
e ¢
V. =K =|dr dr r, -
Jan e ol ol
The matrix of H in the basis of 1//5(;;%> and t//s(ja)ce> is calculated as
(WS H W)= K +1 | .20
<l//s(§a)ce H Wé:;ce> K-J
or
Hjp$e) = (K + 3) w8 )
Hjp &) = (K = 3)w.). (2.21)

The integral K is called as the Coulomb integral. The integral J is called an exchange
integral. Here we can prove that J is always positive. The Fourier transform of the

Coulomb interaction is given by

2 2
e - iz 4723 gia(nn) (2.22)
, Q% Q

The substitution of this into the integral J leads to
e’ < 1 . i * iqr
J= 7;: Z?J-d3r1<r1|¢a> <r1|¢7b>eq 1jd3r2<r2|¢)b> <r2|§0a>e i
q
2
- (el

Q
We note that the spin part Zspin> Is symmetric (S = 1, triplet) for \V/gggce> and

>0. (2.23)

q

antisymmetric (S = 0, singlet) for

t//s(;;ce> respectively. Since J>0, the energy of the spin

triplet state (= K — J) is lower than that of the spin singlet state (= K + J). In other words,
the ferromagnetic spin alignment is energetically favorable (Heisenberg model).



In general, the direct exchange is ferromagnetic if the two orbitals |p,) and |¢,) are

orthogonal. If two orbitals |p,) and |¢,) are not orthogonal, then the magnitude of the

overlap integral provide a measure for the covalency of these orbitals. This rule will be
used in Sec.7.

2.3 Dirac spin-exchange operator
We use the Dirac exchange operator™:

I512:%(1+&l-6-2):%(1+4§1-§2)=%+2§1-§2. (2.24)

Since S, =%0'1 and S, =%02

A 1 .2 & : .

I:)12 Zsin glet> = (E + ZS1 ’ S2) Zsin glet> =~ Zsin glet> (antlsymmetnC), (225)

A 1 .2 2 .

I:)12 Ztriplet> = (E + 281 ’ SZ)‘Ztriplet> = ‘Ztriplet> (SymmetrIC) (226)
or

2 & 3

Sl ’ SZ Xsin glet> = _Z Xsin glet> 1 (227)

2 & 1

Sl ’ SZ Ztriplet> = Z‘Ztriplet> : (228)
We define the Spin Hamiltonian (exchange energy) by

ﬁszK—23(§1-§2+%). (2.29)

Since J is positive, the interaction is ferromagnetic.

~ 1 A A

Hs Zsinglet> = [K -J (E+ 281 ) 82)] Zsinglet> = (K + J) Zsinglet> ! (230)
~ 1 2 ~ A

Hs Ztriplet> = [K -J (E"—?Sl ’ SZ)]‘ Ztriplet> = (K - J)‘/%riplet> . (231)

The above equation is usually referred to as the Heisenberg exchange interaction.

24 Clebsch-Gordan co-efficient
A Addition of two spin S (=1/2)
The results of the calculation are summarized as follows (Sakurai
j1=12,jp =12 (m| <1/ 2,|m,|<1/2)
D, x Dy, =D+ Db,
(i) j =1 (symmetric)
m=mq+m,

11)
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Fig.2 Recursion relations to obtain the Clebsch-Gordon co-efficients for |j, m>, where j
=landm=1,0,and-1.

1 1\[. 1 1 _
h _§1m1 :§> ) =E’m2 :E> (m = 1)7 (2-32)
‘1 1>‘1 _1>+‘1 21 ‘1 1>
2'2/|2° 2/ |27 2/|2"2 _

72 (m=0), (2.33)
1 1\|1 1 _
3353 o= (239
(if) j = 0 (m = 0) (antisymmetric)

HEESEE
2'2/|2" 2/ |2" 2/|2'2 (m=0). (2.35)

N

B. Mathematica program for the Clebsch-Gordan coefficient
Determination of CG co-efficient
Addition of $;=1/2, S,=1/2

CG[j1_,3j2 ,j 1:=Table[Sum[ClebschGordan[{j1l,k1},{j2,k2},{j.k
1+k2}] aljl,k1] b[j2,k2] KroneckerDeltal[kl+k2,m], {k1, -
31,31}, {k2,-32,32}1,{m,-3,3}]

CG[1/2,1/2,1] //TableForm

a3 3[bl17]
al3-3/03.-3]  al3-3]03-3]
J2 J2
al2.3]b(3. 3
CG[1/2,1/2,0]1//TableForm
Aol 3] " oA ]
J2 J2
3. Exchange interaction due to the electron transfer

3.1 Localized spins and itinerant spins

10



In the ferromagnetic theory proposed by Heisenberg,® it is assumed that the 3d
electrons are localized around atoms. Since the orbital angular momentum is almost
guenched, we consider only the spin angular momentum. According to the Hund’law, the
spin S is given by S = 2 for (3d)° (Fe®*) and S = 3/2 for (3d)’. Correspondingly, the spin
magnetic moment is 4. per atom for (3d)® and 3ug per atom for (3d)’, respectively. The
measurement of the saturation magnetization at low temperatures shows that the
magnetic moment is 2.22 ug, corresponding to the electron configuration (3d)”’®. This
implies that the 3d electrons are not localized, but rather itinerant. Anderson® have shown
that in magnetic insulator compounds the d electrons are localized owing to the Mott
mechanism of strong correlation. Relatively weak covalency between localized states or
delocalization mechanism gives rise to the superexchange interaction of usually
antiferromagnetic sign between the local moments.

The localized model starts with the electronic states localized in the real space, while
the itinerant model starts with those localized in the reciprocal or wave-vector space.
What happens to the interactions between the d electrons when the d electrons are
itinerant? In order to understand the essential point for the difference between these
model, here we now consider a solid formed of hydrogen atoms (see Fig.1). The
separation distance is d. Each hydrogen atom has one electron in average. We assume
that the orbital state of each atom is in the 1s state. When the lattice constant d becomes
shorter, the energy band is formed. Since there is one (odd number) electron per unit cell,
it is predicted from the energy band theory that the system should be a metal with a half-
filled band. Here we assume a repulsive Coulomb interaction U between electrons with

different spin states (‘T> and ‘¢>) in the same atom, and the transition matrix t for

electrons to jump from one atom to the nearest neighbor atoms. The state of the atom is
characterized by the number of electrons; neutral state (the number of electrons is 1), and
ionic states (the number of electrons is 0 or 2). When U is much larger than t, the electron
transfer does not occur at al. It is expected that a state close to the isolated ionic is
realized (Mott insulator’*'?). On the other hand, when t is much larger than U, the
electrons move about the whole crystal and behave as conduction electrons. The
difference between these two cases is controlled by the relative magnitude of t and U in
the Hamiltonian. When the ratio of t to U is changed, a transition is expected to occur
from one state to the other state. This transition (which is presumably discontinuous in
three and two dimensions) is called the Mott transition or the Mott problem in the
electron theory of solids. The Hamiltonian is called the Hubbard Hamiltonian, although it
was used before the work of Hubbard.

3.2 Hubbard model

The Hubbard Hamiltonian has been proposed to discuss the electron correlation in the
spin system. In this model, the correlation on the same atom is considered to be important.

11
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Fig.3 One-dimensional model of hydrogen-atom solid, where the lattice constant is d.
Each atom has one of four states ‘T,¢>, ‘T,0>, ‘0,~L>, and |0,0), where |0) is an

empty state. U is a repulsive Coulomb interaction between electrons with
different spin states in the same atom. t is the transition matrix for electrons to
jump from one atom to the nearest neighbor atoms.

We consider a simple model when each electron is in the (1s) state. There is one
electron per atom. In each atom, there are two spin states: up-spin state and down-spin
state. According to the Pauli’s exclusive principle, there are four states in each atom;
ionic state (one empty state, two one-electron states), and a neutral state (one two-
electron state).

o o o}

Fig.4 Each atom has one of four states ‘T,~L>, ‘T,0>, ‘0,¢>, and |0,0), where |0) is an
empty state.

We assume that the distance between atoms is constant (d). When d is small, the
system becomes metal with half-filled band. In an ionic state where two electrons are
occupied in the up-spin state and the down-spin state, the repulsive Coulomb energy
between two electrons leads to the increase of energy of the system. When d becomes
large, the probability of jumping from one atom to the adjacent atom becomes small.

We assume that tj; is the transfer integral between the sites i and j (denoted by R; and
R;). U is the Coulomb interaction between two electrons in the same atom. The model
Hamiltonian H is given by a so-called Hubbard model (Yosida,*® Shiba'®)

H= (Z): (t;Cio Cj + h.c.)+UanTnN : (3.1)
I ])o J
where the summation is taken over the pair (i, j), cj; and c,, are the creation and

annihilation operators of electron with spin o on the atom j. The number operator is
defined by n;, =c;, ¢c;,. The commutation relations for these operators are given by

12



{Ci0'+’cjo"}+ = Cio-+cj0- +C. .C * = 5 5

jo'Vio ij“ oo’
{Cis:Cjo-}, =0 . (3.2
{Ci0'+’cj0"+}+ =0
The first term of the Hamiltonian is the translation term from the j-site to the i-site. The
second term is the Coulomb interaction between the electrons with the up-state and
down-spin state on the same atom and is the origin of electron correlation.

For simplicity we consider the system with only two atoms at the sites 1 and 2. There
are two spin states (up-state and down-state) on the same atom. The relevant Hamiltonian
IS given by

H = t(C1T+C2T - ClTC2T+ + C1¢+C2i - Cliczi+) +U(nyn, +nyun,). (3.3)
There are possible six states; |4)= ‘1 12 T> . e, = ‘l 12 ¢> . |e) = ‘l 4,2 T> ,
AE ‘1 1 ¢>, \¢5) = ‘2 1.2 ~L>, and |¢,) :‘1¢,2 ~L>. Note that there are two electrons at
the same atoms for the states |¢,) and |4, ), while the atoms 1 and 2 are occupied by one

electron for |4), [4,), |¢,), and |¢).

A
state-1  —4— (3 —

'y
state-2  —4 7 —

state-3 40—17
state-4 4_17

state-5 —O——

state-6 40—17

1
Fig.5 Possible states of two neighboring atoms located at positions (1) and (2).

LT LT

The matrix element of the Hubbard Hamiltonian based on the above six states is given by

13



0O 0 0 O O O
0O 0 0 -t -t O
0O 0 0 -t -t O
H = . (3'4)
0O -t -t U 0 O
0O -t -t O 0
0O 0 0 0O O O
((Note))

H |¢4> = [t(C1T+C2T - C1T02T+ + C1¢+C2i o C1¢02¢+) +U (annw + nzTnzi)]‘l T’l ‘L>
=-tl1d2 ) +U1 1) -t1h2)

(3.5)
=—t|¢,) —t/¢) +U[4,)
3.3  Eigenvalue problem
We solve the eigenvalue problem using the Mathematica (sse below). The results are
as follows. The energy eigenvalues and eigenkets

E=Ei1=0, |p)=|d), (3.6)
o R

E=E=0, |‘//2>_\/§(|¢2> |¢3>)’ 3.7)
E=Es=0, |y;)=|d), (3.8)
E=E=U [)=7(4)-|4). (3.9)
E=E5:%(U—x/ 2 +16t%),

) = LI ) i+l + ). (310
E=Es= %(U +4U? +16t%)

) =L ) i+l + ). (3D

where |y, ) and |y;) are not normallzed in order to avoid the complication. The ground
state energy is Es and the corresponding eigenket is rewritten as

U+\/U +16t2
lvs) = V2( f|¢2> f|¢3>) ++/2( f|¢4> f|¢5>
(3.12)

Note that the eigenket |y, ) is rewritten as

U —\/U +16t2
|‘/’e>

1 1
J2( f|¢2> |¢3>)+ﬁ(ﬁ|¢4>+3|¢5>).

(3.13)
We now consider the two extreme cases.
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(>i) The case of U>>t

4t 4t?
E1=0,E2=0,E3=0,E4=U, E; = 0 and E, =U T
U 1 1
lws) = Eﬁ(ﬁ|¢z>+ﬁ|¢s>)+\/§(ﬁ|¢4>+ﬁ|¢s>), (3.14)
or
1
lws) = ﬁ(|¢2>+|¢3>) - (3.15)
Note that this eigenket is normalizad.
1 1
|We>:ﬁ(|¢4>+ﬁ|¢5>)- (3.16)
W E = U+4t2/1)
Wy L
W1 Wz wn E-1
w3 -4ty

Fig.6 Energy levels of states [y;) (i=1-6).

Wi ). Jwo ) |ws)|ws) are the states where atoms 1 and 2 are occupied by one electron.
v, ).|w,) are the states where atom 1 (or atom 2) is occupied by two electrons.

lyr) =112 1)
lv,)=——=(1T.24)-[14,2T)
“/_‘ A ) (3.17)
) =[14.24)
lws) = %qnu) 14,21
Hly) =~ lya).

The addition of two electron spins of S = 1/2 gives the total spin S = 1 (symmetric state)
and S = 0 (anti-symmetric state). |y, )corresponds to |S =1, m=1). |y ) corresponds to

|S=1,m=0). |w;)corresponds to |S =1,m =-1). |y,) corresponds to |S =0,m =0).
(ii) The case of U<<t
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E1=0,E;=0,Es=0,Es= U, ESZ%U—zt,and EGZ%U +2t
g = |¢2>+|¢3>;|¢4>+|¢5> ’ (3.18)
|'//6>: _(|¢2>+|¢3>)2+ (|¢4>+|¢5>) . (3.19)

Note that |W5> Is the ground state, where both the up and spin electrons occupy.

34 Effective spin Hamiltonian for Mott insulator'
We now consider the case of U>>t., where atoms 1 and 2 are occupied by one

electron (|¢)=[11.21), |4,)=[11.21), ) =[14,27), and [g;) =[11,2{)). We use

the perturbation theory. The excited state are |¢4>:‘1T,1 ¢> and |¢5>:‘2 1.2 ~L>, where

the atom is occupied by two electrons. The Hamiltonian consists of unperturbed
Hamiltonian Hy and the perturbation Hamiltonian H,

H=H,+H,
U + + + +4y ! (320)
- (nn”u + nzTnzi) +t(cﬁ Cop =CpCyr +0Cyy Gy —CCyy )

where
H,=U(n,n, +n.n_ ),
0 1+T 13 27 zj ) N (3.21)
H, =1(C,; €,y —C;3Cpp 46, C,y —C1Cyy )
and
Hol#) = Eo|#) =0 (i=1,2,3,6), Hjg,)=U|g,), Ho|a)=U|4), (3.22)
H1|¢2>:t(|¢4>_|¢5>)- (3-23)
From the perturbation theory (time-independent non-degenerate case), we have
E, = £, +(p, " Hilw, ™)+ (1,7 [HU(E,” — Ho) PHJw, ), (3.24)
where P is the complementary projection operator. Here we calculate the second process.
H,(E, = Ho) PH.|g) for |y, ) =|g;). (3.25)

Note that P|¢)=|@) (=1, 2,3, 6), Plg,)=|@,), Pl)=|d). Hi|g,) =t(4,)+|4)), and
Ho|4,) =t(¢,) +|4s)) . Then we have

Heff |¢2> = Hl(EO - Ho)ilPH1|¢2>

M . (3.26)
= tHl(EO - Ho) (|¢4>+|¢5>) :tHl(_HO) (|¢4>+|¢5>)
or
t 2t?

Hald) == Fld) 1) == (4) 1)) (3.27)
Here we use the Dirac notation for the spin exchange operator*!

-~ 1 A 1 A A

P, :E(1+ G,-G,) =E(1+ 48, -8S,), (3.28)
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where S; and S; are the spin operators of the 1 and 2 sites. Here we note that

2 (.4 o~ 1 2t% (=~
_(2s1.sz—zj|¢2>=v(az—1}1T,2¢>

v (3.29)
—- 2112 0) a2 )= h
=-735 ih )-[14.21))=H|,)
or
M - 5 1 ~ o 1
Heg ZU(Sl'Sz—Z)ZZJ(Sl'Sz—Z)y (3.30)
2
with 3 =2,
U
Thus the effective spin Hamiltonian for 2" states is given by
Hy=21)'S,'S,, (3.31)

(i)
where J = 2t%/U>0. This Hamiltonian is called an antiferromagnetic Heisenberg
Hamiltonian. The summation is taken over the nearest neighbor pairs of spins.
In summary, the resultant spin Hamiltonian is a sum of antiferromagnetic and
ferromagnetic interactions,

A 2t? ~ o~ ]
Htotal = Z(U - ‘]direct)(sl ’ SZ + Z) . (332)

Where Jgirect IS the ferromagnetic interaction (direct exchange interaction).

3.5. Mathematica program: eigenvalue problem for the Hubbard model
Simple case of the Hubbard model, eigenvalue problem
a1={{0,0,0,0,0,0},{0,0,0,-t,-t,0},{0,0,0,-t, -t,0},{0,-t,-
t,U,0,0%,{O,-t,-t,O,U,O},{0,0,0,0,0,0}};A1//MatrixForm
(0 0 0O O 0\

100 0 -t -t 0]

00 0 -t -t 0]

0 -t tU 0 O]

0 -t -t 0 U O]

(00 0 0 0 o0

eql=Eigensystem[Al] //Simplify

{{0, 0,0,0,0,1, (0,-1,1,0,0,03, {1,0,0,0, 0,03,

(0,0,0,-1,1,0, {0, e 110,
“U+/16€ 102 U+/16€2: 12
{O, B 4t B 4t 1.1, O}H

U+ V16202 U+ /I6t25 2
Eg=eql[[1,5]]
% {U—\/16t2+U2]
The ground state energy of the system Eg
We use x =t/U and U =ty depending on the magnitudes of U and t.
Egll=Eg/.{t-> U x}//Simplify[#,U>0]&
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% u-ui1162
Egl%;Series[Egll,{x,0,3}]//Norma1
-4Ux
Eg21=Eg/.{U-» t y}//Simplify[#,t>0]&
Gereral ::spelll : Possible spelling error @ new
symbol name "EQ21 ™ is similar to existing symbol “Egl2 . More.

—t[y— 16+y2)
Eg22=Series[Eg21,{y,0,3}]1//Normal
ty t
2t & - ——
2 16
Eigenkets
¢l (E=0), 92 (E=0), ¢3 (E=0), ¢4 (E=U),
#5 (E=E5)
¢6 (E =E6)
1= eqli2, 11
veqliiZ, 117-eql[2, 111
{o,o,o,o,o,1£
2= eqlr2, 21

W/fql[[zl, 211-eql[[2, 2]]
{0, I T | 0, 0, 0}

V2o N2
3 eql[[Z, 31]

Vvedl[[2, 311-eql[[2, 31]
{1,0,0,0,0,0

. eqli[2, 41]
VEITTZ, 477 -8q1 T2, 4]
[0,0,0, =, =, 0}
V272

¢5and ¢6 are not normalized.
We consider the special case for p5and ¢6 in the limit of U>>t and U<<t.
¢51=eql[[2,5]]

o, — 2% A 11,0
$52=¢51//.{t> U

x}//Simplify[#,U>0]&//Series[#,{x,0,3}]&//Normal
{o, % L 2x-8%, zilx +2x-8x%3,1,1, o}

$53=¢51//.{U-t
y}//Simplify [#,t>0]&//Series[#,{y,0,3}]1&//Normal

{0,1+¥+7,1+X+7,1,1,0}

2" 32 2" 32
¢6l=eql[[2,6]]

o, At ) at 110

U+V16€+ 12 U+V16€2+ 12
$62=¢61//.{t> U
x}//Simplify[#,U>0]&//Series[#,{x,0,3}]&//Normal
(0, 2x+8%x°, 2x+8x3,1,1, 0
$63=¢061//.{U> t
y}//Simplify [#,t>0]1&//Series[#,{y,0,3}]1&//Normal
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o, QY Y Y Yy 1,0
4 32 4 32

Plot of energy levels
Energy = % eqlr[l1] /- {t- Uxy /7 Simplify[#, U> 0] &

[0,0,0,1, % [1_J1+16x2), % (1+\/1+16x2J}

Plot [Evaluate [Energyl,{x,0,1}, PlotStyle-Table[Hue[0.2
il,{i,0,5}]1, Prolog-AbsoluteThickness[3],

AxesLabel-{"t/U","E/U"},Background-»GrayLevel [0.7]]
E/U

Fig.7 The normalized energy levels E/U as a function of t/U. |y, ).|w,).|ws) (green),
) (blue), |ws) (purple), and |y,) (red).

4. Superexchange interaction (first approach by Anderson,” 1950)
Mn= +{~ o

\ A
T e

I
Fig.8 Electron configuration of Mn®* with (3d)°.

The idea can be illustrated by two Mn”* ions and one intervening O* (White'") The
Mn**(A)- 0> —Mn?* (B) are arranged along the one axis, forming a 180° position. There

are two spins in the O site (the up-spin state |+)and down-spin state |-)). Because of

the overlap of wave functions, one of p electrons (with down-spin state |—>) from the O%

hops over to one of Mn?* ions (A). (in Figs.8, 9, and 10) we assume that a part of one
electron hops). Note that only the down-state electron of p-electrons can move to the
Mn** site (A). The remaining unpaired p electron on the O site then enters into a direct
exchange with the other Mn?*" ion (B) with an exchange interaction J. The resultant
interaction between the Mn®* ions coupled through O ions is antiferromagnetic.

Here we evaluate the magnitude of effective interaction between Mn** (A) and Mn?*
(B). We introduce two parameters; (i) the energy matrix element t for shifting p-electron
to A and (ii) the increase of energy (= &) for the shift of p-electron to Mn®* (A). Then
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probability of the above process is evaluated as (t/§)2, where & = Eq — E;. The resultant
exchange energy arising from a mixture between ground state and excited state, is
J(t/£)%. The same thing happens for the case when one of p electrons (with down-spin

state |—>) from the O% hops over to one of Mn®" ions (B). So the resultant exchange

energy is given by 2Jt?/(¢)*. When S; and S, are spins of Mn?* ions (A and B), the

superexchange is described by
E, =-2JS,S,, (4.1)

where J'=Jt?/(£?S?) . When J’<0, S; and S, are antiparallel, favoring the
antiferromagnetic spin arrangement.

Fig.9 180° configuration

or
d(3z*- 1)
i
A B
[P
J
“exchange interaction
Fig.10 Schematic diagram of the 180° configuration.
S. Superexchange interaction: revised approach

5.1 Molecular orbital due to d-p mixing (P.W. Anderson,’ 1959)

It was realized that the original theory (above mentioned) became involved in
increasing uncertainties and complexities. The exchange effect appears in a third order of
the perturbation theory. One encountered some difficulty. This perturbation theory is
poorly convergent. The early terms which do not lead to magnetic effects are rather large.

The basic idea of Anderson® (1959) is simple. We use the following model of the
molecular orbital to explain this idea. We consider a Ni** (F)s octahedron, and consider
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the z-axis to lie along one Ni?* - F- bond. The p, orbital, of the z symmetry, and the p;, x
and y. It is clear that a covalent bond between the p, (p(z))and d(3z% - r?) along the z axis
could be formed. The appropriate matrix element to cause this bond does not exist, but, of
course, that the d function is considerably higher than the p, function in energy and that
tt;erefore the best bonding function contains only a relatively small admixture y of d(3z* -
ro.
l//bonding ~ l//pJ + ?/Gl//d(3zz—r2) (51)

This bonding function is expected to contain two electrons, the two which originally

occupied ps (p(z)) on the F ion. Now the only wavefunction which is left for the
magnetic electrons to occupy is the corresponding antibonding function

l//antibonding ~ l//d(322,r2) - (70— + So—)l//pg (52)

which is orthogonal to ¥, - <1//bonding l//amibonding> =0. Here S; is the overlap integral

S, = J.Wd(&z_rz)*l//p“dl‘. (5.3)
The energy of w4, IS lower than that of v, o - There will be a corresponding
energy shift in this orbital relative to d(3z° - r?),

AE, =E,s —E4 =7/(;2(Ed _Ep):7/azég- (5.4)
(see 5.4 for the derivation).

5.2 Slater wavefunctions due to the d-p orbital mixing.

We now consider the d-p mixing for the wavefunctions in the system of three-
electrons. When the Hamiltonian depends on the spin operators, the wavefunction of the
three electrons cannot be described by a product of spatial and spin parts of

wavefunctions Suppose that there are three states; |d, ), | p,) and | p, ), where p is one of

Px, Py, P; orbitals, and d is one of dy (&) and de (tg) orbitals, and the arrows denote the
spi-up and down-states. It is well described by the Slater determinant (Kanamori*®)

d,(@ d, (2 d,(3 d,@ d,(2 d,3
1/1(1,2,3)=T Pr@ P2 P B+A|Pr@D) P (2) P B, (5.5)
P p(2) p,(B3) d,@ d,(2 d,(3
where 1, 2, and 3 are position of each electron and spin-coordinates. The second
determinant represents the electron configuration after the charge transfer ‘ p ~L> — ‘d ¢>.

Using the general property of the determinant (purely mathematics), the above equation
can be rewritten as

. d, (@ d,(2) d, (3
23 =l | PO p(2) p:(3) (5.6)
p,@M+4d @ p2)+4d (2 p,E)+4d,(3)
This is also rewritten as
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d,@)-p,1) Q-2 @)~
23 =l O+ 240 @+ A4EQ) p@+AGE) | (6T)
p,@M+4d @ p2)+4d (2 p,E)+4d(3)
where N is the normalization factor and A is an arbitrary constant. We choose A such that
|d)— 4| p) and |p)+ A'|d) are orthogonal.

((p|+A'(d](d)-A4|p)) =0, (5.8)
or
(p|d)—A+A=22'(p|d) =0. (5.9)
If 2, 2’,and (p|d) are real, we have
A==t Al (5.10)
1-4S

where S =(p|d) is the overlap integral. We consider two states; |d)—A|p), |p)+ A'|d).
The state |d)—A|p) is an antibonding orbital (higher energy) and |p)+A'|d) is a
bonding orbital (lower energy). In the three-electrons configuration, one electron is in the
state |d) — 4| p), and two electrons are in the state |p)+ A'|d). In the bonding orbital, the

resultant spin is equal to zero since two spins (up and down state) would cancel out each
other. The spin in the antibonding orbital |d)—A|p) is responsible for the spin

distribution of the system.

5.3  Evaluation of superexchange interaction
In the above picture of the molecular orbital, the spin of magnetic ion is located on
the orbit given by v ionsing Which extends over the negative ion. This magnetic ion

interacts with the magnetic ion on the other side through a direct exchange interaction.
The exchange interaction between the magnetic d-electrons is expressed by

~23,4S,-S,, (5.11)
where the effective interaction is given by
Jog =22°(3 g +Wq), (5.12)

where Jyq is the direct exchange interaction and W4 (= -t*/U) is the exchange interaction
due to the charge transfer. Here we use the factor of 2 since two magnetic ions are
equivalent and no change occurs in the magnetic property, even if the role of one
magnetic ion can be replaced by that of the other magnetic ion.

5.4  Simple model of p-d mixing
A. Eigenvalue problem

We now consider a simple eigenvalue problem for the non-degenerate case. H is the
Hamiltonian leading to the p-d mixing.

H|d)=E,|d)+1p)

Hlp)=td)+E,|p)
The eigenvalue problem is given by

(5.13)
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Hly) =Ely), (5.14)

ly)=C4|d)+C,|p). (5.15)
The matrix of H is given by
H =[E" t j . (5.16)
t E,
The energy eigenvalues are determined from the following quadratic equation
(E, —E)E,-E)-t*=0. (5.17)

The bonding state is given by

vel=—7, \/— +|p~|p>——ld>

with the energy eigenvalue,

E.+E. —./(E,—E )*+4t> E +E
E, - d b \/(d 0) _ d p_% /§2+4t2, (5.19)

(5.18)

2 2
or
1 t>

where £ =E, —E,. The antibonding state is given by

|‘//AB \/7|p | > (5.21)
with the energy elgenvalue
E,+E,+,/(E,—E ) +4t> E,+E
e . J(zd o) + A d; p % Fiat,  (5.22)
or
2 4
EAB:Ed—§+%w/§2+4t2 :Ed+%—%+.... (5.23)
We define the energy difference AE given by
2 4
AE:EAB—Ed:Ep—EB_—§+ JEL + 4t _%—;—+ (5.24)
or
t? t? )
zgzg?zgy , (5.25)

where y=t/Sand £ =E; —E,.
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* — Eap

Eqd ¥

Ep

s

Fig.11 Energy levels Eq and E, for the d and p orbitals, Eag and Eg for the antibonmding
and bonding molecular orbitals.

B. Perturbation approach

Eg

Ep
Fig.12 Energy levels Eq and E;, for the d and p orbitals before perturbation.

We apply the perturbation theory to this problem (p-d mixing), where &= E4— Ep>>t.

AJd)=EJd),  Hlp)=E,[p), (526)
Hyd)=1p), Hy|p)=td). (5.27)
The energy of the anti-bonding and bonding states is described by
i i 2 2
£~ £, +AHdPAPIRId) o €t (5.28)
(Ed - Ep) Ed - Ep §
i q 2 2
T R R S,
(E, —Ey) E,—E, 4
The energy difference AE is given by
t? t?
AE=EAB—Ed=EB—Ed=Ed_Ep=E, (5.30)
_ (p[H.Jd) _ U yojgyat
|WAB>_|d>+|p>(E ) |d>+Ed_Ep|p>_|d>+é_’|p>’ (531)
d|H t
ol =lo)+ S o)L po)fo)-Lah, G
Then the bonding state is descrlbed by |l//a> = | p)—y|d). Then the energy difference is
2 2
rewritten as AE :%:%‘f =y?¢, where y=t/éand £ =E, - E,.
C. Mathematica program for the case A
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Exact solution of the eigenvalue problem
Y=cl yd+c2 yp

H1={{Ed,t},{t,Ep}}
{{Ed,t}, {t,Ep}}
eql=Eigensystem[H1]

L (ed.ep ER 2EdEp- B2 4€2),
3

% (Ed+Ep+\/Ed2-2EdEp+Ep2+4t2)},

{{_ -Ed+Ep++Ed?-2EdEp + Ep? + 4 2 . l},

2t
-Ed+Ep- vV Ed?-2EdEp + Ep? + 4 2
{- 5t 333
rulel={Ed-Ep+&}
{Ed—Ep+&}
Antibonding state
&=Ed - Ep
ol={1, ! } 77 Simplify
_ -EdvEp+/ ER-2Ed EprEp244 12
2t
& - }

" Ed-Ep+~/EP_2EdEp-Ep? 42
YAB=¢l/.rulel//FullSimplify

{11 T}
§+\/—4t2_+§_2
Bonding state
-Ed+ Ep+V EF-2EdEp+ Ep?+ 412
(p2={_ 2t 51}
{ -Ed+Ep+VEd?-2EdEp + Ep? + 4 2 1}
2t ’
YB=¢2/.rulel//FullSimplify
_JAtZI 2
{5 Vatie ’1}

2t
Bl={ 2t 1
E+\A2+ €
(—= .4
coVAR 2

YAB.YB//Simplify
0
The energy of antibonding state

EAB=eql[[1,2]]/.rulel//Simplify
% [2Ep+§+\/4t2+ §2)

Seri:s[%AB,{t,0,4}]//Simplify[#,§>0]&//Normal
T

Ep- 3 + — + &
g ¢
The energy of bonding state
EB=eql[[1,1]1]/.rulel//Simplify
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% [zEp+g_ JZEZ?)
SeriesFgB,{t,0,4}]//Simplify[#,§>0]&//Normal
Ep+ — - —

Pria e

The energy difference between the antibonding amd bonding states

DEN=EAB-EB/.rulel//Simplify

6 Molecular orbitals
6.1. hybridization of 2s and 2p(z) orbitals

Before discussing the molecular orbitals of 2p and 3d electrons, first we consider the
simple case, the hybridization of 2s orbital and 2p(z) orbital. The 2s orbital is spherically
symmetric about the origin, while the 2p(z) orbital has a dumbbell-shape whose rotation

axis is the z axis. We consider the wavefunction given by |y)=|2p(z))+ 4|2s), where 2
is chosen as a parameter. The electronic density of the state |25> is positive in both the +z
and -z directions, while the electronic density of the state |2p(z)> is positive in the z-

direction and negative in the —z direction. For A>0, the electronic density of |y/> has a
lopsided orbital. The amplitude in the +z axis side is larger than that in the —z direction.
For A<0, on the other side, the amplitude in the —z axis side is larger than in the +z axis
side. The shape depends on the sign of A. Figure 13 shows the result of the calculation for
the angular distribution of |y) using Mathematica (SphericalPlot3D), where A = -0.3, 0,

and 0.3. Such a phenomenon is called the hybridization. Note that in the Baym’s
textbook,'* he used the wavefunction given by |y)=|2s)+ 4|2p(2)) with 2 =-0.5 - 0.5

which is different from our notation. We tried to calculate the electronic density using
Mathematica. We could not reproduce the result which he showed in his textbook.

Fig.13 3D polar representation of |y} =|2p(z)) + |2s) with 2=-0.3, 0, and 0.3

6.2  Mixing of dy-p; orbitals and dy-ps
A. Antibonding molecular orbital of d(3z’-r*) and p(z) (= ps)
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d(3z2-r2y

Fig.14 Symmetry relation of d(3z° —r?) (= dyor eg), p(2) (= ps) and p(x) (= px).

Here we consider the antibonding molecular orbital |w>:‘d(3zz—r2)>—/1|p(z)>

which occurs as a result of the p-d mixing. The d(3z> —r?) orbital has a dumbbell shape
whose rotation axis is the z axis, and a small circular disk-shape around the origin. The
electron density of the dumbbell in the d(3z* —r?) orbital is positive in both the +z and —
z directions. The electron density of the circular disk shape in thed(3z? —r?) orbital is
negative in both +x and —x directions. The p(z) (= p,) orbital has a dumbbell shape whose
rotation axis is the z axis. The electronic density of the state p(z) is negative in the +z-
direction and positive in the —z direction. For A<0, the electronic density of |;//> has a
lopsided orbital. The amplitude of the dumbbell in the +z axis side is much larger than
that in the —z direction. For A<0, the amplitude of the dumbbell in the —z axis side is much
larger than in the +z axis side. The shape of the lopsided orbital depends on the sign of A.
In contrast, the circular disk-shape around the origin is almost independent of A. Figure
15 shows the results of the calculation for the angular distribution of |1,//> using

Mathematica (SphericalPlot3D), where A = -0.4, 0, and 0.4. In conclusion, there is a
strong covalency of dy and p, orbitals along the direction connecting between d and p
electrons (the z axis in the present case). We may say that there is an overlap of
wavefunctions between dyand ps. The orbits dyand p, are not orthogonal, dy + p..
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Fig.15 3D polar representation of |y/) = ‘d(Sz2 — r2)> — A p(2)) with 2=-0.4,0, and 0.4.

B. Antibonding molecular orbitals of d(322-r2) and p(X) (= px)
Here we consider the antibonding molecular orbital |y) =|d(32” ~r?))- 2| p(x)) .

The p(x) (= p.) orbital has a dumbbell shape whose rotation axis is the x axis. The
electronic density of the state p(x) (= p,) is positive in the +x direction and negative in the
—x direction. The dumbbell shape almost remains unchanged for 4 = -0.4, 0, and 0.4. In
contrast, the circular disk-shape is strongly dependent on the value of A. The center of the
circular disc shifts along the -x direction for 2>0 and along the +x direction. Figure 16
shows the electronic density of |1//> calculated using Mathematica (SphericalPlot3D),

where 1 =-0.4, 0, and 0.4. In conclusion, there is a weak covalency between dy and p;.
orbitals along the direction connecting between d and p electrons (the z axis in the present
case). We may say that there is no overlap between dyand p,. dy L p,.

Fig.16 3D polar representation of |y/) = ‘d (3z2° - r2)>—/1| p(x)) with 2=-0.4, 0, and 0.4.

6.2 Mixing of d&-ps orbitals and de-p,
A. Antibonding molecular orbital of d(zx) and p(z) (= ps)
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Fig.17 Symmetry relation of d(zx) (= deor tyg), p(z) (= ps) and p(x) (= px).

We consider the antibonding molecular orbital |y/) =|d(zx)) - 4| p(z)) . The d(zx) (=

de) orbital has a clover shape with 4 leaves in the z-x plane. The electronic density of the
d(zx) orbital is positive for the leaves in the first and third quadrants and negative in the
second and fourth quadrants. The p(z) (= ps) orbital has a dumbbell shape whose rotation
axis is the z axis. The electronic density of the state p(x) (= pr) IS positive in the +x-
direction and negative in the —x direction. Figurel8 shows the electronic density of
ly) =|d(2x)) - 2| p(z)) calculated using Mathematica (SphericalPlot3D), where 2 = -0.4,

0, and 0.4. For 2>0, the region of the leaves of the third and fourth quadrants in the z-x
plane becomes large, while the region of the leaves of the first and second quadrants
becomes small. For A<0, the region of the leaves of the third and fourth quadrants in the
z-x plane becomes small, while the region of the leaves of the first and second quadrants

becomes large. Note that for 4= 0, the electronic density of |d(zx)> is equal to zero on
the z axis. In conclusion, there is a weak covalency between de¢ and p,. orbitals along the

X axis, rather than the z axis connecting between d and p electrons. We may say that there
is no overlap of wavefunctions between de and ps, de L po.

Fig.18 3D polar representation of |y) =|d(zx))— 4| p(z)) with 2=-0.4, 0, and 0.4.
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B. Antibonding molecular orbital of d(zx) and p(X) (= py)
We consider the antibonding molecular orbital |y) =|d(2x)) - 4| p(x)). The p(x) (= px)

orbital has a dumbbell shape whose rotation axis is the x axis. The electronic density of
the state p(x) (= px) is positive in the +x-direction and negative in the —x direction. Figure
19 shows the electronic density of |y} =|d(zx)) - 4| p(x)) calculated using Mathematica

(SphericalPlot3D), where 4 = -0.4, 0, and 0.4. For A>0, the region of the leaves of the
first and fourth quadrants in the z-x plane becomes small, while the region of the leaves
of the second and third quadrants becomes large. For A<0, the region of the leaves of the
first and fourth quadrants in the z-x plane becomes large, while the region of the leaves of
the second and third quadrants becomes small. In conclusion, there is a relatively strong
covalency between de and p,. orbitals along the z axis connecting between d and p
electrons. We may say that there is overlap of wavefunctions between de and p, orbitals,
de ¥ p,

7. The Goodenough-Kanamori-Anderson rules
7.1 180° and 90%uperexchange interactions

A considerably more satisfactory system of semiempirical rules was developed over a
period of years by Goodenough’ and Kanamori.® The main features of the superexchange
interactions are usually explained in terms of the so-called Goodenough-Kanamori-
Anderson rules.®'® These rules have the important features of taking into account the
occupation of the various d levels as dictated by ligand field theory. According to these
rules, a 180° superexchange (the magnetic ion-ligand-magnetic ion angle is 180°) of two
magnetic ions with partially filled d shells is strongly antiferromagnetic, whereas a 90°
superexchange interaction is ferromagnetic and much weaker. In Appendix, we show the
magnetic properties of typical pure spin systems (2D and 3D) which we are interested

+~ 19,20
n.
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Fig.20 180° and 90° configurations for the 3d orbital-p orbital-3d orbital.

Fig.21 90° configuration for the 3d orbital-p orbital-3d orbital.
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7.2 General rules for GKA*"

These rules seem to explain almost the complete gamut of spin pattern data on a wide
variety of substances.’

A. When the two ions have lobes of magnetic orbitals pointing toward each other in such
a way that the orbitals would have a reasonably overlap integral, the exchange is
antiferromagnetic. There are several subcases.

(a) When the lobes are d(3z%-r?) type orbitals in the octahedral case, particularly in the
180 ° position in which these lobes point directly toward a ligand and each other, one
obtain particularly large superexchange.

(b) When d(xy) orbitals are in the 180° position to each other, so that they can interact via
pr orbitals on the ligand, one again obtain antiferromagnetism.

(c) In a 90° ligand situation, when one ion has a d(3z°-r?) occupied and the other a d(xy),
the p, for one is the p, for the other and one expect strong overlap and thus
antiferromagnetic exchange.

B. When the orbitals are arranged in such a way that they are expected to be in contact
but to have no overlap integral- most notably a d(3z%-r%) and d(xy) in 180° position,
where the overlap is zero by symmetry, the rule gives ferromagnetic interaction (not,
however, usually as strong as the antiferromagnetic one).

7.3.  Rules of GKA

There are four rules, de L ps, dy L ps, de y Pr dy i Psy Where de = tyg and dy = ey,
A. de Ll ps

The ps-orbital does not change its sign when the coordinate axes are rotated around
the line connecting these ions. The occupied de-orbitals do change their sign. Therefore
the p. -orbital is orthogonal to the de -orbital (de L p,). This implies that the exchange
integral between deand p, is positive (ferromagnetic) (see Sec.2.2).

-z

diz

Pa

Fig.22 The symmetry relation. de[d(zx)] L po [p(2)]. de[d(zX)] & p~ [P(X)].
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Fig.23 The symmetry relation. de{d(xy)] L ps [P(X)]. de[d(xy)] & P [P(Y)]-

B. dyyps

The electron transfer, or partial covalence, can only take place between p, and dy.
The orbit d(3z° - r?) does not change sign by rotating the coordinate axes around the x-
axis. Therefore a partial covalent bond involving the p,-orbital can be formed with the dy
orbital; i.e., electron transfer from p, can take place to the dy orbital, but not to the de-
orbitals. The charge transfer can take place only if the cation and anion orbitals are non-
orthogonal. If the cation-anion orbitals are orthogonal, the direct exchange referred to
above is positive (ferromagnetic); otherwise it is negative (antiferromagnetic).

Fig.24 The symmetry relation. d{d(3z2°1%)] v po [P@)]. dAd(32% )] L p- [p(X)].

C dyLlps

Figure 23 shows the symmetry relation between the de-orbital [d(xy)] and the p-
orbital [p(x), ps and p(y); p- orbital]. Figure 25 shows the symmetry relation between the
dy-orbital [d(x* - y*)] and the p-orbital [p(x), po and p(y); p» orbital]. The p orbital is
orthogonal to the de-orbital [d(xy)]. But it is not orthogonal to the dj-orbital [d(x* - y?)].
There is a principal overlap between these orbitals, leading to the occurrence of the
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charge transfer, or partial covalence (so-called o transfer). On the other hand, the p.
orbital is orthogonal to the dj-orbital [d(x? - y?)]. But it is not orthogonal to the de-orbital
[d(xy)]. There is a principal overlap between these orbitals, leading to the occurrence of
the charge transfer (so-called = transfer). Since the orbital overlap involved in the o
transfer is greater than that in the ztransfer, processes involving o transfer are stronger.

In summary we have

Po-Lde (tag), strong overlap between p, and dy (eg),

pLdy (&), weak overlap between p, and de (tzg),
The orbit dy [d(x* — y?)] is orthogonal to the orbit p, So there is no charge transfer
between dy [d(x* — y?)] and p. The direct exchange is ferromagnetic.

a6 -y
Fig.25 The symmetry relation. d{d(x*y3)] L px [p(y)]. dAd(*-y?)] ¥ po [P(X)]-
D. de* p,

The de-p,bond should be weaker than the dy-p, bond owing to a smaller overlap. The
direct exchange interaction is antiferromagnetic.

LEF

dy)

Fig.26 The symmetry relation. de{d(xy)] L ps [P(X)]. de[d(xy)] & P~ [P(Y)]-

34



Note that o-transfer is stronger than the ztransfer. the de- p, bond should be weaker
than the d»- p, bond owing to a smaller overlap. The ds bond has the same property as
the dj- p, bond, and therefore we shall confine ourselves in the following to the dy p.
bond. In fact we have no mean of clearly distinguishing between them, because an
electron transfer can generally occur from an s-p hybridized orbital.

The rules obtained are summarized as follows.

e dy v p,< charge transfer

e dy . p.< antiferromagnetic (non-orthogonal)
e dyL p,< nocharge transfer

e dyl p,< ferromagnetic (orthogonal)

e d¢ 1 pr< charge transfer

e de v p,<antiferromagnetic (non-orthogonal)
e del p,< no charge transfer

e del p,< ferromagnetic (orthogonal)

7.4. GKA rules for the 90° configuration

The rules for the 90° configuration are different from those for the 180° configuration.
Here we take an example of the de (cation-1) - ps(anion) - de’ (cation-2) bond. As is
discussed above, the de-orbital of the cation-1 is orthogonal to the p, orbital of the anion.
The p, orbital has a dumbbell shape whose rotation axis is parallel to the direction of the
bond between the cation-1 and the anion. For 180° configuration, the bond between the
cation-1 and the anion is parallel to the bond between cation-2 and the anion. The ps
orbital can be regarded as the p,’ orbital from the viewpoint of the bond between the
anion and cation-2, since the rotation axis of p, orbital is parallel to the direction of the
bond between the cation-2 and anion. Since the de' orbital is orthogonal to the p,' orbital,
it follows that the p, (=ps') orbital is orthogonal to the de' for the cation-2.

In contrast, the situation is rather different for the 90° configuration. In this case, the
bond between the cation-2 and the anion is perpendicular to the bond between cation-1
and the anion. The p, can be regarded as the p,’ orbital from the viewpoint of the bond
between the anion and cation-2, since the rotation axis of the p, orbital is perpendicular
to the direction of the bond between the cation-2 and anion. Since the de' orbital is not
orthogonal to the p,' orbital, then it follows that the p, (=p.") orbital is not orthogonal to
the de’ orbital.

Similar discussion is made for various kinds of superexchange interaction in the 90°
and 180° configurations. The rules thus obtained are summarized in the Table for the 90°
and 180° configuration.

90° 180°
del ps Po (= pr)x dg Po(=ps)Lde
dy ¥ pos Po (= p<)L dy Po (= Pps)y dy
dyLps Pz (= ps)x dY Pz (= px)L dy
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de v ps px (= po’)L d& Pz (= Pr)k de
)
4
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Fig.28 dy v po po (=px)L dy.
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8. Application of GKA rules to real systems
8.1 180° configuration
A. CaMnOj; 180° case (Kanamori')

In this system, the manganese occurs in the crystal field at the Mn**, which means
that there are three d-electrons: (3d)°. The crystal field at the Mn** sites is cubic. Under
the effect of a cubic field, the five-fold degenerate orbital d state of a single d electron is
split into an orbital triplet (de, tyg) and an orbital doublet (dy, &). According to the
Hund’s rule, the three d-electrons will go to one of the de orbitals with their spins up.

) ”“’
Mn* ’]\ J/ hn*
fx *x
ul,l e 'f" iz’
dy -=+—w [, = L
charge transfer orthogonal (ferraomagnetic)

Fig.29 Schematic representation of the superexchange interaction (Mn** - 2p; — Mn**) in
the 180° case.

The superexchange involves the p-electrons of the O%. The p-orbitals are described
by p(x), p(y), and p(z), depending on the axis of rotation. These orbitals are classed into
two types: (i) the p, orbital (p-orbital whose axis points to one of the cations) and (ii) the
p, orbital (p-orbital whose axis is perpendicular to the line connecting the anion and
cation).

The p,, orbital is orthogonal to the d(3z% — r?), d(xy), d(yz), and d(zx), except for d(x* -
y?). A partial covalent bond between the p, orbital and dy state [d(x* — y?)]. can be formed,

Then the charge transfer occurs from the p, orbital with the spin up-state(‘T>to the dy

state [d(x* — y?)] of the Mn**, according to the Hund’s rule requiring that the total spin
should be maximum. The remaining p, orbital (spin-down state), which is orthogonal to
the de’ state, ferromagnetically couples to the de” orbitals of the other Mn**. Thus the
resultant superexchange interaction between Mn*" is antiferromagnetic.

B.  NiO, 180° case; (3d)*

37



+ N dy f dy

I:SUII* (3 e

dy =@ [, - -y
charge transfer non-orthogonal (antiferromagneticy

Pe oy
Fig.30 Schematic representation of the superexchange interaction (Ni** - 2ps — Ni**) in
the 180° case.

C. MnO 180° case

L e
(3dy* T (30
Mn;‘f \ \l/T Mn;\o
A w 4
s
i i
dy =+—® p; - - dy
charge transfer non-orthogonal (antiferromagneticy
T T ____________ A l
............ AF

Fig.31 Schematic representation of the superexchange interaction (Mn* - 2p; — Mn?*) in
the 180° case.

Note that de-p . is very weak.

D. Ni** 3d)® and V** (3d)* 180° case
One can expect a ferromagnetic interaction for this system.
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A dy f+ dy
(3 1:' : (3
Mo
+f+ = s’
dy =@ [, - -y
charge transfer non-orthogonal (antiferromagneticy

Fig.32 Schematic representation of the superexchange interaction (V¥ - ps — Ni**) in
the 180° case.

E Fe’" (3d)° and Cr** (3d)* 180° case
(@) One can predict a ferromagnetic interaction.

) oy ff' iy
(3d)? IS SR (3dy L
cr* \ ’I\ \Lﬁy
f’ IjE f IjE'
i i
ty  — . - -
charge transfer non-orthogonal (antiferromagnetic)
T l ____________ A T

Fig.33 Schematic representation of the superexchange interaction (Cr®* - p, — Fe**) in
the 180° case.

(b) The ferromagnetic interaction between Fe®** and Cr®* may be explained by
considering that p,-dy bonds are more effective than de-p, bonds.
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‘Ff' dy th

2 v
\Jﬁr;'“dgh : \\ hf 4o
¥

dy =@ [, - -y
charge transfer non-orthogonal (antiferromagneticy
T T * l
............ F

Fig.34 Schematic representation of the superexchange interaction (Fe** - p, — Cr*") in
the 180° case.

8.2.  90° configuration

A. NiCl,
+ - d f dy

(3d)*® (3

M, M ™,
- [, . o
charge transfer arthogonal (ferrnmagnetmj
T T _____________ o T

............ F

Fig.35 Schematic representation of the superexchange interaction (Ni** - 3p, — Ni?*) in
the 90° case.

The superexchange involves the p-electrons of the CI". The p. orbital is orthogonal to
the d(3z° — r?), d(xy), d(yz), and d(zx), except for d(x* — y?). A partial covalent bond
between the p, orbital and dy state [d(x* — y*)]. can be formed, Then the charge transfer
occurs from the p, orbital with the spin down-state(M to the dy state of the Ni**. The
remaining p, orbital (spin-up state), which is orthogonal to the dy state,

ferromagnetically couples to the dy orbitals of the other Ni**. Thus the resultant
superexchange interaction between Ni?* is ferromagnetic.

B. COClz
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‘Ff' oy
3dy’
I:CD_EI, charge \l/
transfar . ¢
iz
de =+—m» p, = PR
charge transfer ferromagnetic
dz -, f,— de
F

Fig.36 Schematic representation of the superexchange interaction (Co** - 3p, — Co?") in
the 90° case.

C. CI‘C]3
X dy dy
(3dy° e (3dy’
o chargetransfer'fi\ \L Cr \
hf’ s \—‘_ﬁ:f ds’
dy -+—» . - - dg!
charge transfer nan-arthogonal {antiferromagnetic)
T l AF T
............ F

Fig.37 Schematic representation of the superexchange interaction (Cr** - 3p, — Cr**) in
the 90° case.

The superexchange involves the p-electrons of the CI" ion. The p, orbital is
orthogonal to the dy orbital. A partial covalent bond between the p, orbital and dy state
can be formed, Then the charge transfer occurs from the p, orbital with the spin up-

state(m to the dy state of the Cr®*. The remaining p. orbital (spin-down state), which is

orthogonal to the d¢’ state, antiferromagnetically couples to the de’ state of the other Cr*.
Thus the resultant superexchange interaction between Cr** spins is ferromagnetic.

D. NiZ* and V*' 90° interaction
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(3dyF ‘:_ \l/ T 3y

N charge tr.a'h'sferg v \
= f s’
x

dy =@ [, - » [z’
charge transfer non-orthogonal (antiferromagneticy

T T S A l

rnare than halt-filled N AF less than half-filled
Fig.38 Schematic representation of the superexchange interaction (Ni** - p, — V?*) in the
90° case.

Antiferromagnetic interaction between a cation with a less-than-half-filled d-shell and a
cation with a more-than-half-filled d-shell in the 90° case.

E. MnCl,
‘Pf' oy f+ hy
(3 (3dy
S charge transfer ‘l/ T Wn= \
‘F — s ff-fl d='
dg =+— @ Pqg - -y
charge transfer non-orthogonal (antiferromagneticy

Fig.39 Schematic representation of the superexchange interaction (Mn** - 3p, — Mn?*) in
the 90° case.

F. CuCl,

42



f F !:E — dy
(3" '
Cu*

oy

charge transfer ferromagnetic

T T LA T

Fig.40 Schematic representation of the superexchange interaction (Cu®* - 3p, — Cu?*) in
the 90° case.

9. Application: La,CuQ,4 as a Mott insulator

Finally we consider a superexchange interaction in La,CuO4 which is well-known as
a mother-material of high temperature cuprate superconductor (Koike,?* 2006). Cu** ions
are located on the square lattice. There is an intervening O® ion between the nearest
neighbor Cu®* ions. Because of the tetragonal crystal field produced by O% ions and the
Jahn-Teller effect related to the spontaneous lattice distortion, the dy (= &) levels are split
into the d(x* = y?) level and d(3z% — r?). The d(x* — y®) level (the highest energy level) is
occupied by one electron, forming a half-filled band state. Because of the strong electron
correlation (Coulomb energy between the electrons with the spin-up state and the spin-
down state) in the d(x* — y°) level, the d(x* - y?) level split into the upper Hubbard band
and the lower Hubbard band. The lower Hubbard band is fully occupied by one electron,
while the upper Hubbard state is empty. Thus the system becomes an insulator. In fact,
there is a 2p band of O* between the upper and lower Hubbard band.

Since there are odd numbers of electrons per unit cell, reflecting of 3d° for Cu* ion it
is expected that this system should be a conductor with half-filled state. However, it is
really an insulator. This implies that the band theory does not work well in this system.
Such an insulator is known as a Mott-Hubbard insulator arising from the strong Coulomb
interaction between electrons. When the Coulomb interaction U is much smaller than t,
the electrons move over the crystal as a Bloch wave, When U is much larger than t, each
electron is localized around the Cu* ion on the square lattice, leading to the insulator
(Sec.3.1).

Magnetically, there exists a superexchange interaction between Cu?* ions through the
intervening O ion. The mixing of the d(x* — y?) orbital of Cu®" ion and the p orbital of
O% ion form a antibonding molecular orbital. Figures 41 and 42 show the electronic

density of the antibonding molecular orbitals |y g, ) :‘d(x2 - y2)>—/1| p(x)) and
"//Aay> :‘d(x2 - y2)>—/1| p(x))with 2 = -0.3, 0, and 0.3, respectively. The region of one
of the clover leaves greatly expands along the +x axis for |l//ABx> and greatly expands
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along the — y axis for |y, ) for 4= 0.3. This implies the strong covalency between d(x*

—y?) and ps along the o axis where o = x or y. The superexchange interaction leads to
the 2D antiferromagnetic correlation between Cu®* spins in the CuO, layer. At low
temperatures, these CuO, planes show a 3D antiferromagnetic long range order through
an antiferromagnetic interplanar interaction between the CuO; layers.

When holes are doped into La,CuQ4, the O* ions change into O ions having electron
spins. The antiferromagnetic spin order of Cu** spins vanishes due to the spin frustration
effect from O spin between Cu?* ions. In turn, the superconductivity appears. When
electrons are doped into La,CuQs, the electrons enter into the upper Hubbard band. The
Cu®* ions change into Cu® with the electron configuration (3d)°. Then the
antiferromagnetic order disappears (Koike,** 2006).

Fig.42 3D polar representation of |y) =|dxy)— 4| p(y)) with 1=-0.3, 0, and 0.3.

10. Conclusion

In 1949, Mott'* discussed the insulating state and the metal-insulator transition
arising from the electron correlation, as an example of NiO. In 1959, Anderson proposed
a theory of superexchange interaction. Anderson pointed out that all of insulating
magnetic compounds are Mott insulators. The theory not only elucidates the origin of the
superexchange interaction but also gives a fundamental basis for the approach of spin
Hamiltonian. Thanks to this paper, both the metal state and insulation state can be
discussed on the same basis. The high temperature superconductivity is observed in Cu
oxides in 1980’s. In his proposed theory (1987), Anderson® claimed that the strong
Coulomb interaction (electron correlation) may be responsible for the high T,
superconductivity. It is our current understanding that the high T, superconductivity is
due to the condensation of electron pairs with the symmetry of the d-wave via
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antriferromagnetic spin fluctuations based on the superexchange interactions between
Cu?* spins.
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Appendix

A. Mathematica program

<<@Graphics ParametricPlot3D"
<<Graphics™
SuperStar; expr_* = expr /. {Complex[a , b ] :» Complex[a, -b]}
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ypx =

_\/7; SphericalHarmonicY[1, 1, e, ¢] +

\/; SphericalHarmonicY[l, -1, e, ¢1 // FullSimplify;

(SphericalHarmonicY[1, 1, e, ¢] + SphericalHarmonicY[1, -1, e, ¢1) //
FullSimplify; ypz = SphericalHarmonicY[1, 0, e, ¢] // FullSimplify;

(SphericalHarmonicY[2, 2, e, ¢] - SphericalHarmonicY[2, -2, e, ¢]) //
FullSimplify:

(SphericalHarmonicY[2, 1, e, ¢] + SphericalHarmonicY[2, -1, e, ¢1) //
FullSimplify;
ydzx =

7

(SphericalHarmonicY[2, 1, e, ¢] - SphericalHarmonicY[2, -1, e, ¢]) //
FullSimplify;
yb2y? -

\[; (SphericalHarmonicY[2, 2, e, ¢] +

SphericalHarmonicY[2, -2, e, ¢]) // FullSimplify;
¥d3z2r2 = SphericalHarmonicY[2, 0, e, ¢] // Simplify;
AdSP3[K 1 == Abs[ yd3z2r2 - k ypz1? /7 Simplify;
AdSpLik ] = Absi yd3z2r2 - k ypx12 /7 Simplify;
Adzxp3[K ] := Abs[ ydzx- K ypz 12 /7 Simplify;
Adzxplrk ] := Abs[ ydzx- k ypx 12 // Simplify;

Qtl[k_]:=SphericalPlot3D[Evaluate[Ad5p3[k]l],{6,0,n},{¢,0,25}
,PlotLabel-{k},PlotPoints-40,PlotRange-All,DisplayFunction-
Identity] ;Rtl[k ]:=SphericalPlot3D[Evaluate[AdSpl[k]],{6,0,n
},{#,0,2n},PlotLabel-»{k},PlotPoints—»40,PlotRange—»All,Displa
yFunction-»Identity] ;Stl[k ]:=SphericalPlot3D[Evaluate [Adzxp
3[k11,{e,0,n},{¢,0,27},PlotLabel>{k},PlotPoints—»40,PlotRang
e->All,DisplayFunction-»Identity] ;Ttl[k ] :=SphericalPlot3D[Ev
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aluate[Adzxpl[kl]l,{6,0,n},{¢,0,2n},PlotLabel-»{k},PlotPoints
-40,PlotRange—»All,DisplayFunction-»Identity]
(a) Mixing of d(3z2-r2) and p(z) orbitals, d(3z2-r2) - k p(z). k is changed as a parameter.
p(z) is a po orbital.

Qt2=Table[Qt1l[k], {k, -
0.4,0.4,0.4}]1;Qt3=Show[GraphicsArray[Partition[Qt2,3]1],Displ
ayFunction-$DisplayFunction]

-GraphicsArray-
(b) Mixing of d(3z2-r2) and p(x) orbitals, d(3z2-r2) - k p(x). k is changed as a parameter.
p(x) is a prr orbital.

Rt2=Table [Rt1[k], {k, -
0.4,0.4,0.4}] ;Rt3=Show[GraphicsArray[Partition[Rt2,3]],Displ
ayFunction-»$DisplayFunction]

%01
. SR,

-GraphicsArray-
(c) Mixing of d(zx) and p(z) orbitals, d(zx) - k p(z). k is changed as a parameter. p(z) is
a po orbital.

St2=Table[Stl [k], {k, -
0.4,0.4,0.4}];St3=Show[GraphicsArray[Partition[St2,3]],Displ
ayFunction-$DisplayFunction]

-GraphicsArray-
(d) Mixing of d(zx) and p(x) orbitals, d(zx) - k p(x). k is changed as a parameter. p(x) is
a pr orbital.

Tt2=Table [Ttl1[k], {k, -
0.4,0.4,0.4}];Tt3=Show[GraphicsArray[Partition[Tt2,3]1],Displ

-GraphicsArray-
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B. Magnetic properties of typical magnetic compounds
The magnetic properties of pure compounds and graphite intercalation compounds
(GICs) (quasi 2D spin systems) are obtained from the Ref.19 and Ref.20, respectively.

FETiOg
IlImenite structure. An Ising antiferromagnet with the easy direction of spins along
the c-axis. The Fe ions on the hexagonal lattice are ferromagnetically ordered.
The 2D ferromagnetic layers are stacked along the ¢ axis. Ty =58.0 K. [J’/J] = 0.2.

MnTi03
IiImenite structure. An Ising antiferromagnet with the easy direction of spins along
the c-axis . The Mn ions on the hexagonal lattice are antiferromagnetically
ordered. Ty = 63.6 K. |J°/J] = 0.04.

KoMnF4
K,NiF, type structure. a = 4.20 A. ¢ = 13.14 A. Antiferromagnet. Ty = 42.37
(58.0) K. Spin//c. Typical 2D antiferromagnet.

K2C0F4
K2NiF, type structure. 2D Ising antiferromagnet. Spin//c. Ty = 107 K. S = 1/2
(Fictitious spin)
0c =6.30. ga = 3.13.

K2NiF,
a=4.006 A. c = 13.076 A. 2D antiferromagnet. Ty = 97.1 K. Spin//c. Typical 2D
antiferromagnet.

K,CuF4
K,NiF, type structure. a = 4.155 A. ¢ = 12.71 A. 2D Heisenberg-like Ferromagnet
with XY spin anisotropy. T, = 6.25 K. SpinLc. S=1/2. J =11.2 K. Ha = 2.44 kOe.
Typical 2D XY-like ferromagnet.

MnC|2
CdCl, type structure, a = 6.20 A, o = 33°33’. Antiferromagnet. Tn; = 1.96 K and
Tn2 = 1.81 K. Spin Lc. Complicated magtnetic structure (neutron scattering). Two
peaks of A-type in the heat capacity.

F9C|2
CdCl, type structure. a = 6.20 A. o = 33°33’. Antiferromagnet. spin direction //c,
Tn = 23.5 K. Ferromagnetic intraplanar exchange interaction (J = 3.4 K).
antiferromagnetic interplanar exchange interaction. Metamagnetism. H, = 11.6
kOe, Ha = 43 kOe, He = 140 kOe. Fictitious spin S = 1.

CoCl,
CdCl, type structure. a = 6.16 A. o = 33°33’. Antiferromagnet. Ty = 24.7 K.
Intraplanar ferromagnetic and interplanar antiferromagnetic exchange interactions.
Spin_Lc. XY-like spin anisotropy. g. = 3.04. g, = 4.95. S = 1/2 (fictitious spin).
J1 =104 K. J,=-0.89 K.

NiCl,
CdCl, type structure. a = 6.13 A. « = 33°36°. Antiferromagnet. S = 1. Ty = 52 K.
Intraplanar ferromagnetic and interplanar antiferromagnetic exchange interactions.
Spin_Lc. XY-like spin anisotropy. J; = 9.5 K. J, =-0.73 K.

CFC|3
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a = 5942 A. ¢ = 17.333 A. Antiferromagnet. Ty = 16.8 K. Intraplanar
ferromagnetic and interplanar antiferromagnetic exchange interactions. Spin.Lc.
Transion from antiferromagnetic phase to the ferromagnetic phase occurs only at
H. (= several kOe).

FeCI3
a = 6.065 A. ¢ = 17.44 A. Antiferromagnet. Ty = 15 K. spin spiral in the

(1450) plane. The rotation angle is 2r/15 per layer.

Stage-2 CrCl3; GIC
Quasi 2D XY-like ferromagnet on the hexagonal lattice. T¢, =11.5 K. T =10.3 -
10.5. ¢ = 12.80 A. The intraplanar interaction is ferromagnetiv (J = 5.86 K). The
interplanar interaction is very weak and antiferromagnetic. S = 3/2.

Stage-2 FeCl; GIC
Quasi 2D antiferromagnet on the hexagonal lattice. Spin glass like transitions at
Tse™ = 4.5 K. Tse" = 2 K. The FeCl; layers may be formed of majority Fe®*
spins with XY spin anisotropy and minority Fe?* spins with Ising anisotropy. The
intraplanar exchange interaction between Fe** spins is antiferromagnetic. S = 5/2.

Stage-2 MnCl, GIC
Quasi 2D Heisenberg-like antiferromagnet on the triangular lattice. S = 5/2. Ty =
1.1 K. No magnetic phase transition is observed from neutron scattering.

Stage-2 CoCl, GIC
Quasi 2D XY-like ferromagnet. Te, = 8.9 K. T = 6.9 K. Fictitious spin S = 1/2.
The interplanar exchange interaction is antiferromagnetic, while the intraplanar
exchange interaction is ferromagnetic (J = 7.75 K). The anisotropic exchange
interaction Ja is 3.72 K.

Stage-2 NiCl, GIC
Quasi 2D XY-like ferromagnet on the triangular lattice. T, = 21.3 K. Ty = 18 K.
Spin S = 1. The interplanar exchange interaction is antiferromagnetic, while the
intraplanar exchange interaction is ferromagnetic (J = 7.5 K).

Stage-2 CuCl, GIC
Quasi 2D Heisenberg-like antiferromagnet on the isosceles triangle. No magnetic
phase transition is observed from magnetic neutron scattering. The DC magnetic
susceptibility shows a broad peak at 62 - 65 K. S = 1/2.
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