
http://www.cambridge.org/9780521842389


A Guide to Monte Carlo Simulations in Statistical Physics,

Second Edition

This new and updated deals with all aspects of Monte Carlo simulation of

complex physical systems encountered in condensed-matter physics and sta-

tistical mechanics as well as in related fields, for example polymer science,

lattice gauge theory and protein folding.

After briefly recalling essential background in statistical mechanics and prob-

ability theory, the authors give a succinct overview of simple sampling meth-

ods. The next several chapters develop the importance sampling method,

both for lattice models and for systems in continuum space. The concepts

behind the various simulation algorithms are explained in a comprehensive

fashion, as are the techniques for efficient evaluation of system configurations

generated by simulation (histogram extrapolation, multicanonical sampling,

Wang-Landau sampling, thermodynamic integration and so forth). The fact

that simulations deal with small systems is emphasized. The text incorporates

various finite size scaling concepts to show how a careful analysis of finite size

effects can be a useful tool for the analysis of simulation results. Other

chapters also provide introductions to quantum Monte Carlo methods,

aspects of simulations of growth phenomena and other systems far from

equilibrium, and the Monte Carlo Renormalization Group approach to cri-

tical phenomena. A brief overview of other methods of computer simulation

is given, as is an outlook for the use of Monte Carlo simulations in disciplines

outside of physics. Many applications, examples and exercises are provided

throughout the book. Furthermore, many new references have been added to

highlight both the recent technical advances and the key applications that

they now make possible.

This is an excellent guide for graduate students who have to deal with

computer simulations in their research, as well as postdoctoral researchers,

in both physics and physical chemistry. It can be used as a textbook for

graduate courses on computer simulations in physics and related disciplines.
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Preface

Historically physics was first known as ‘natural philosophy’ and research was

carried out by purely theoretical (or philosophical) investigation. True pro-

gress was obviously limited by the lack of real knowledge of whether or not a

given theory really applied to nature. Eventually experimental investigation

became an accepted form of research although it was always limited by the

physicist’s ability to prepare a sample for study or to devise techniques to

probe for the desired properties. With the advent of computers it became

possible to carry out simulations of models which were intractable using

‘classical’ theoretical techniques. In many cases computers have, for the

first time in history, enabled physicists not only to invent new models for

various aspects of nature but also to solve those same models without sub-

stantial simplification. In recent years computer power has increased quite

dramatically, with access to computers becoming both easier and more com-

mon (e.g. with personal computers and workstations), and computer simula-

tion methods have also been steadily refined. As a result computer

simulations have become another way of doing physics research. They pro-

vide another perspective; in some cases simulations provide a theoretical basis

for understanding experimental results, and in other instances simulations

provide ‘experimental’ data with which theory may be compared. There are

numerous situations in which direct comparison between analytical theory

and experiment is inconclusive. For example, the theory of phase transitions

in condensed matter must begin with the choice of a Hamiltonian, and it is

seldom clear to what extent a particular model actually represents a real

material on which experiments are done. Since analytical treatments also

usually require mathematical approximations whose accuracy is difficult to

assess or control, one does not know whether discrepancies between theory

and experiment should be attributed to shortcomings of the model, the

approximations, or both. The goal of this text is to provide a basic under-

standing of the methods and philosophy of computer simulations research

with an emphasis on problems in statistical thermodynamics as applied to

condensed matter physics or materials science. There exist many other simu-

lational problems in physics (e.g. simulating the spectral intensity reaching a

detector in a scattering experiment) which are more straightforward and

which will only occasionally be mentioned. We shall use many specific exam-

ples and, in some cases, give explicit computer programs, but we wish to
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emphasize that these methods are applicable to a wide variety of systems

including those which are not treated here at all. As computer architecture

changes the methods presented here will in some cases require relatively

minor reprogramming and in other instances will require new algorithm

development in order to be truly efficient. We hope that this material will

prepare the reader for studying new and different problems using both

existing as well as new computers.

At this juncture we wish to emphasize that it is important that the simula-

tion algorithm and conditions be chosen with the physics problem at hand in

mind. The interpretation of the resultant output is critical to the success of

any simulational project, and we thus include substantial information about

various aspects of thermodynamics and statistical physics to help strengthen

this connection. We also wish to draw the reader’s attention to the rapid

development of scientific visualization and the important role that it can play

in producing understanding of the results of some simulations.

This book is intended to serve as an introduction to Monte Carlo methods

for graduate students, and advanced undergraduates, as well as more senior

researchers who are not yet experienced in computer simulations. The book

is divided up in such a way that it will be useful for courses which only wish

to deal with a restricted number of topics. Some of the later chapters may

simply be skipped without affecting the understanding of the chapters which

follow. Because of the immensity of the subject, as well as the existence of a

number of very good monographs and articles on advanced topics which have

become quite technical, we will limit our discussion in certain areas, e.g.

polymers, to an introductory level. The examples which are given are in

FORTRAN, not because it is necessarily the best scientific computer lan-

guage, but because it is certainly the most widespread. Many existing Monte

Carlo programs and related subprograms are in FORTRAN and will be

available to the student from libraries, journals, etc. A number of sample

problems are suggested in the various chapters; these may be assigned by

course instructors or worked out by students on their own. Our experience in

assigning problems to students taking a graduate course in simulations at the

University of Georgia over a 20-year period suggests that for maximum

pedagogical benefit, students should be required to prepare cogent reports

after completing each assigned simulational problem. Students were required

to complete seven ‘projects’ in the course of the quarter for which they

needed to write and debug programs, take and analyze data, and prepare a

report. Each report should briefly describe the algorithm used, provide sam-

ple data and data analysis, draw conclusions and add comments. (A sample

program/output should be included.) In this way, the students obtain prac-

tice in the summary and presentation of simulational results, a skill which will

prove to be valuable later in their careers. For convenience, the case studies

that are described have been simply taken from the research of the authors of

this book – the reader should be aware that this is by no means meant as a

negative statement on the quality of the research of numerous other groups in

the field. Similarly, selected references are given to aid the reader in finding
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more detailed information, but because of length restrictions it is simply not

possible to provide a complete list of relevant literature. Many coworkers

have been involved in the work which is mentioned here, and it is a pleasure

to thank them for their fruitful collaboration. We have also benefited from the

stimulating comments of many of our colleagues and we wish to express our

thanks to them as well.

The pace of advances in computer simulations continues unabated. This

Second Edition of our ‘guide’ to Monte Carlo simulations updates some of

the references and includes numerous additions. New text describes algo-

rithmic developments that appeared too late for the first edition or, in some

cases, were excluded for fear that the volume would become too thick.

Because of advances in computer technology and algorithmic developments,

new results often have much higher statistical precision than some of the

older examples in the text. Nonetheless, the older work often provides valu-

able pedagogical information for the student and may also be more readable

than more recent, and more compact, papers. An additional advantage is that

the reader can easily reproduce some of the older results with only a modest

investment of modern computer resources. Of course, newer, higher resolu-

tion studies that are cited often permit yet additional information to be

extracted from simulational data, so striving for higher precision should

not be viewed as ‘busy work’. We have also added a brief new chapter that

provides an overview of some areas outside of physics where traditional

Monte Carlo methods have made an impact. Lastly, a few misprints have

been corrected, and we thank our colleagues for pointing them out.
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1 Introduction

1.1 WHAT IS A MONTE CARLO SIMULATION?

In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a

model for which change, or growth, does not proceed in some rigorously

predefined fashion (e.g. according to Newton’s equations of motion) but

rather in a stochastic manner which depends on a sequence of random

numbers which is generated during the simulation. With a second, different

sequence of random numbers the simulation will not give identical results but

will yield values which agree with those obtained from the first sequence to

within some ‘statistical error’. A very large number of different problems fall

into this category: in percolation an empty lattice is gradually filled with

particles by placing a particle on the lattice randomly with each ‘tick of the

clock’. Lots of questions may then be asked about the resulting ‘clusters’

which are formed of neighboring occupied sites. Particular attention has been

paid to the determination of the ‘percolation threshold’, i.e. the critical con-

centration of occupied sites for which an ‘infinite percolating cluster’ first

appears. A percolating cluster is one which reaches from one boundary of a

(macroscopic) system to the opposite one. The properties of such objects are

of interest in the context of diverse physical problems such as conductivity of

random mixtures, flow through porous rocks, behavior of dilute magnets, etc.

Another example is diffusion limited aggregation (DLA) where a particle

executes a random walk in space, taking one step at each time interval,

until it encounters a ‘seed’ mass and sticks to it. The growth of this mass

may then be studied as many random walkers are turned loose. The ‘fractal’

properties of the resulting object are of real interest, and while there is no

accepted analytical theory of DLA to date, computer simulation is the

method of choice. In fact, the phenomenon of DLA was first discovered

by Monte Carlo simulation!

Considering problems of statistical mechanics, we may be attempting to

sample a region of phase space in order to estimate certain properties of the

model, although we may not be moving in phase space along the same path

which an exact solution to the time dependence of the model would yield.

Remember that the task of equilibrium statistical mechanics is to calculate

thermal averages of (interacting) many-particle systems: Monte Carlo simu-

lations can do that, taking proper account of statistical fluctuations and their

1



effects in such systems. Many of these models will be discussed in more detail

in later chapters so we shall not provide further details here. Since the

accuracy of a Monte Carlo estimate depends upon the thoroughness with

which phase space is probed, improvement may be obtained by simply run-

ning the calculation a little longer to increase the number of samples. Unlike

in the application of many analytic techniques (e.g. perturbation theory for

which the extension to higher order may be prohibitively difficult), the

improvement of the accuracy of Monte Carlo results is possible not just in

principle but also in practice!

1.2. WHAT PROBLEMS CANWE SOLVE WITH IT?

The range of different physical phenomena which can be explored using

Monte Carlo methods is exceedingly broad. Models which either naturally

or through approximation can be discretized can be considered. The motion

of individual atoms may be examined directly; e.g. in a binary (AB) metallic

alloy where one is interested in interdiffusion or unmixing kinetics (if the

alloy was prepared in a thermodynamically unstable state) the random hop-

ping of atoms to neighboring sites can be modeled directly. This problem is

complicated because the jump rates of the different atoms depend on the

locally differing environment. Of course, in this description the quantum

mechanics of atoms with potential barriers in the eV range is not explicitly

considered, and the sole effect of phonons (lattice vibrations) is to provide a

‘heat bath’ which provides the excitation energy for the jump events. Because

of a separation of time scales (the characteristic times between jumps are

orders of magnitude larger than atomic vibration periods) this approach

provides very good approximation. The same kind of arguments hold true

for growth phenomena involving macroscopic objects, such as DLA growth

of colloidal particles; since their masses are orders of magnitude larger than

atomic masses, the motion of colloidal particles in fluids is well described by

classical, random Brownian motion. These systems are hence well suited to

study by Monte Carlo simulations which use random numbers to realize

random walks. The motion of a fluid may be studied by considering ‘blocks’

of fluid as individual particles, but these blocks will be far larger than indi-

vidual molecules. As an example, we consider ‘micelle formation’ in lattice

models of microemulsions (water–oil–surfactant fluid mixtures) in which

each surfactant molecule may be modeled by two ‘dimers’ on the lattice

(two occupied nearest neighbor sites on the lattice). Different effective inter-

actions allow one dimer to mimic the hydrophilic group and the other dimer

the hydrophobic group of the surfactant molecule. This model then allows

the study of the size and shape of the aggregates of surfactant molecules (the

micelles) as well as the kinetic aspects of their formation. In reality, this

process is quite slow so that a deterministic molecular dynamics simulation

(i.e. numerical integration of Newton’s second law) is not feasible. This

example shows that part of the ‘art’ of simulation is the appropriate choice
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(or invention!) of a suitable (coarse-grained) model. Large collections of

interacting classical particles are directly amenable to Monte Carlo simula-

tion, and the behavior of interacting quantized particles is being studied

either by transforming the system into a pseudo-classical model or by con-

sidering permutation properties directly. These considerations will be dis-

cussed in more detail in later chapters. Equilibrium properties of systems of

interacting atoms have been extensively studied as have a wide range of

models for simple and complex fluids, magnetic materials, metallic alloys,

adsorbed surface layers, etc. More recently polymer models have been stu-

died with increasing frequency; note that the simplest model of a flexible

polymer is a random walk, an object which is well suited for Monte Carlo

simulation. Furthermore, some of the most significant advances in under-

standing the theory of elementary particles have been made using Monte

Carlo simulations of lattice gauge models.

1.3 WHAT DIFFICULTIES WILL WE ENCOUNTER?

1.3.1 Limited computer time andmemory

Because of limits on computer speed there are some problems which are

inherently not suited to computer simulation, at this time. A simulation

which requires years of cpu time on whatever machine is available is simply

impractical. Similarly a calculation which requires memory which far exceeds

that which is available can be carried out only by using very sophisticated

programming techniques which slow down running speeds and greatly

increase the probability of errors. It is therefore important that the user

first consider the requirements of both memory and cpu time before embark-

ing on a project to ascertain whether or not there is a realistic possibility of

obtaining the resources to simulate a problem properly. Of course, with the

rapid advances being made by the computer industry, it may be necessary to

wait only a few years for computer facilities to catch up to your needs.

Sometimes the tractability of a problem may require the invention of a

new, more efficient simulation algorithm. Of course, developing new strate-

gies to overcome such difficulties constitutes an exciting field of research by

itself.

1.3.2 Statistical and other errors

Assuming that the project can be done, there are still potential sources of

error which must be considered. These difficulties will arise in many different

situations with different algorithms so we wish to mention them briefly at this

time without reference to any specific simulation approach. All computers

operate with limited word length and hence limited precision for numerical

values of any variable. Truncation and round-off errors may in some cases

lead to serious problems. In addition there are statistical errors which arise as
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an inherent feature of the simulation algorithm due to the finite number of

members in the ‘statistical sample’ which is generated. These errors must be

estimated and then a ‘policy’ decision must be made, i.e. should more cpu

time be used to reduce the statistical errors or should the cpu time available

be used to study the properties of the system under other conditions. Lastly

there may be systematic errors. In this text we shall not concern ourselves

with tracking down errors in computer programming – although the practi-

tioner must make a special effort to eliminate any such errors! – but with

more fundamental problems. An algorithm may fail to treat a particular

situation properly, e.g. due to the finite number of particles which are simu-

lated, etc. These various sources of error will be discussed in more detail in

later chapters.

1.4 WHAT STRATEGY SHOULD WE FOLLOW IN
APPROACHING A PROBLEM?

Most new simulations face hidden pitfalls and difficulties which may not be

apparent in early phases of the work. It is therefore often advisable to begin

with a relatively simple program and use relatively small system sizes and

modest running times. Sometimes there are special values of parameters for

which the answers are already known (either from analytic solutions or from

previous, high quality simulations) and these cases can be used to test a new

simulation program. By proceeding in this manner one is able to uncover

which are the parameter ranges of interest and what unexpected difficulties

are present. It is then possible to refine the program and then to increase

running times. Thus both cpu time and human time can be used most

effectively. It makes little sense of course to spend a month to rewrite a

computer program which may result in a total saving of only a few minutes

of cpu time. If it happens that the outcome of such test runs shows that a new

problem is not tractable with reasonable effort, it may be desirable to attempt

to improve the situation by redefining the model or redirect the focus of the

study. For example, in polymer physics the study of short chains (oligomers)

by a given algorithm may still be feasible even though consideration of huge

macromolecules may be impossible.

1.5 HOW DO SIMULATIONS RELATE TO
THEORY AND EXPERIMENT?

In many cases theoretical treatments are available for models for which there

is no perfect physical realization (at least at the present time). In this situation

the only possible test for an approximate theoretical solution is to compare

with ‘data’ generated from a computer simulation. As an example we wish to

mention recent activity in growth models, such as diffusion limited aggrega-
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tion, for which a very large body of simulation results already exists but for

which extensive experimental information is just now becoming available. It

is not an exaggeration to say that interest in this field was created by simula-

tions. Even more dramatic examples are those of reactor meltdown or large

scale nuclear war: although we want to know what the results of such events

would be we do not want to carry out experiments! There are also real

physical systems which are sufficiently complex that they are not presently

amenable to theoretical treatment. An example is the problem of understand-

ing the specific behavior of a system with many competing interactions and

which is undergoing a phase transition. A model Hamiltonian which is

believed to contain all the essential features of the physics may be proposed,

and its properties may then be determined from simulations. If the simulation

(which now plays the role of theory) disagrees with experiment, then a new

Hamiltonian must be sought. An important advantage of the simulations is

that different physical effects which are simultaneously present in real sys-

tems may be isolated and through separate consideration by simulation may

provide a much better understanding. Consider, for example, the phase

behavior of polymer blends – materials which have ubiquitous applications

in the plastics industry. The miscibility of different macromolecules is a

challenging problem in statistical physics in which there is a subtle interplay

between complicated enthalpic contributions (strong covalent bonds compete

with weak van der Waals forces, and Coulombic interactions and hydrogen

bonds may be present as well) and entropic effects (configurational entropy of

flexible macromolecules, entropy of mixing, etc.). Real materials are very

difficult to understand because of various asymmetries between the consti-

tuents of such mixtures (e.g. in shape and size, degree of polymerization,

flexibility, etc.). Simulations of simplified models can ‘switch off’ or ‘switch

on’ these effects and thus determine the particular consequences of each

contributing factor. We wish to emphasize that the aim of simulations is

not to provide better ‘curve fitting’ to experimental data than does analytic

theory. The goal is to create an understanding of physical properties and
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processes which is as complete as possible, making use of the perfect control

of ‘experimental’ conditions in the ‘computer experiment’ and of the possi-

bility to examine every aspect of system configurations in detail. The desired

result is then the elucidation of the physical mechanisms that are responsible

for the observed phenomena. We therefore view the relationship between

theory, experiment, and simulation to be similar to those of the vertices of a

triangle, as shown in Fig. 1.1: each is distinct, but each is strongly connected

to the other two.

1.6 PERSPECTIVE

The Monte Carlo method has had a considerable history in physics. As far

back as 1949 a review of the use of Monte Carlo simulations using ‘modern

computing machines’ was presented by Metropolis and Ulam (1949). In

addition to giving examples they also emphasized the advantages of the

method. Of course, in the following decades the kinds of problems they

discussed could be treated with far greater sophistication than was possible

in the first half of the twentieth century, and many such studies will be

described in succeeding chapters.

With the rapidly increasing growth of computer power which we are now

seeing, coupled with the steady drop in price, it is clear that computer

simulations will be able to rapidly increase in sophistication to allow more

subtle comparisons to be made. Even now, the combination of new algo-

rithms and new high performance computing platforms has allowed simula-

tions to be performed for more than 106 (up to even 109!) particles (spins).

As a consequence it is no longer possible to view the system and look for

‘interesting’ phenomena without the use of sophisticated visualization tech-

niques. The sheer volume of data that we are capable of producing has also

reached unmanageable proportions. In order to permit further advances in

the interpretation of simulations, it is likely that the inclusion of intelligent

‘agents’ (in the computer science sense) for steering and visualization, along

with new data structures, will be needed. Such topics are beyond the scope of

the text, but the reader should be aware of the need to develop these new

strategies.
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2 Some necessary background

2.1 THERMODYNAMICS AND STATISTICAL
MECHANICS: A QUICK REMINDER

2.1.1 Basic notions

In this chapter we shall review some of the basic features of thermodynamics

and statistical mechanics which will be used later in this book when devising

simulation methods and interpreting results. Many good books on this sub-

ject exist and we shall not attempt to present a complete treatment. This

chapter is hence not intended to replace any textbook for this important field

of physics but rather to ‘refresh’ the reader’s knowledge and to draw attention

to notions in thermodynamics and statistical mechanics which will henceforth

be assumed to be known throughout this book.

2.1.1.1 Partition function

Equilibrium statistical mechanics is based upon the idea of a partition func-

tion which contains all of the essential information about the system under

consideration. The general form for the partition function for a classical

system is

Z ¼
X

all states

e�H=kBT ; ð2:1Þ

where H is the Hamiltonian for the system, T is the temperature, and kB is

the Boltzmann constant. The sum in Eqn. (2.1) is over all possible states of

the system and thus depends upon the size of the system and the number of

degrees of freedom for each particle. For systems consisting of only a few

interacting particles the partition function can be written down exactly with

the consequence that the properties of the system can be calculated in closed

form. In a few other cases the interactions between particles are so simple that

evaluating the partition function is possible.
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Example

Let us consider a system with N particles each of which has only two states, e.g. a

non-interacting Ising model in an external magnetic field H, and which has the

Hamiltonian

H ¼ �H
X
i

�i; ð2:2Þ

where �i ¼ �1. The partition function for this system is simply

Z ¼ e�H=kBT þ eþH=kBT
� �N

; ð2:3Þ
where for a single spin the sum in Eqn. (2.1) is only over two states. The energies

of the states and the resultant temperature dependence of the internal energy

appropriate to this situation are pictured in Fig. 2.1.

Problem 2.1 Work out the average magnetization per spin, using Eqn.
(2.3), for a system of N non-interacting Ising spins in an external magnetic
field. [Solution M ¼ �ð1=NÞ@F=@H; F ¼ �kBT lnZ ) M ¼ tanhðH=kBTÞ	
There are also a few examples where it is possible to extract exact results for

very large systems of interacting particles, but in general the partition func-

tion cannot be evaluated exactly. Even enumerating the terms in the partition

function on a computer can be a daunting task. Even if we have only 10 000

interacting particles, a very small fraction of Avogadro’s number, with only

two possible states per particle, the partition function would contain 210 000

8 2 Some necessary background

Fig. 2.1 (left) Energy

levels for the two level

system in Eqn. (2.2);

(right) internal energy

for a two level system

as a function of

temperature.



terms! The probability of any particular state of the system is also determined

by the partition function. Thus, the probability that the system is in state � is

given by

P� ¼ e�Hð�Þ=kBT=Z; ð2:4Þ

where Hð�Þ is the Hamiltonian when the system is in the �th state. As we

shall show in succeeding chapters, the Monte Carlo method is an excellent

technique for estimating probabilities, and we can take advantage of this

property in evaluating the results.

2.1.1.2 Free energy, internal energy, and entropy

It is possible to make a direct connection between the partition function and

thermodynamic quantities and we shall now briefly review these relation-

ships. The free energy of a system can be determined from the partition

function (Callen, 1985) from

F ¼ �kBT lnZ ð2:5Þ

and all other thermodynamic quantities can be calculated by appropriate

differentiation of Eqn. (2.5). This relation then provides the connection

between statistical mechanics and thermodynamics. The internal energy of

a system can be obtained from the free energy via

U ¼ �T2@ðF=TÞ=@T : ð2:6Þ

By the use of a partial derivative we imply here that F will depend upon other

variables as well, e.g. the magnetic field H in the above example, which are

held constant in Eqn. (2.6). This also means that if the internal energy of a

system can be measured, the free energy can be extracted by appropriate

integration, assuming, of course, that the free energy is known at some

reference temperature. We shall see that this fact is important for simulations

which do not yield the free energy directly but produce instead values for the

internal energy. Free energy differences may then be estimated by integra-

tion, i.e. from �ðF=TÞ ¼ Ð
dð1=TÞU :

Using Eqn. (2.6) one can easily determine the temperature dependence of

the internal energy for the non-interacting Ising model, and this is also shown

in Fig. 2.1. Another important quantity, the entropy, measures the amount of

disorder in the system. The entropy is defined in statistical mechanics by

S ¼ �kB lnP; ð2:7Þ

where P is the probability of occurrence of a state. The entropy can be

determined from the free energy from

S ¼ �ð@F=@TÞV ;N : ð2:8Þ
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2.1.1.3 Thermodynamic potentials and corresponding ensembles

The internal energy is expressed as a function of the extensive variables, S, V,

N, etc. There are situations when it is appropriate to replace some of these

variables by their conjugate intensive variables, and for this purpose addi-

tional thermodynamic potentials can be defined by suitable Legendre trans-

forms of the internal energy; in terms of liquid–gas variables such relations

are given by:

F ¼ U � TS; ð2:9aÞ
H ¼ U þ pV ; ð2:9bÞ
G ¼ U � TSþ pV ; ð2:9cÞ

where F is the Helmholtz free energy, H is the enthalpy, and G is the Gibbs

free energy. Similar expressions can be derived using other thermodynamic

variables, e.g. magnetic variables. The free energy is important since it is a

minimum in equilibrium when T and V are held constant, while G is a

minimum when T and p are held fixed. Moreover, the difference in free

energy between any two states does not depend on the path between the

states. Thus, in Fig. 2.2 we consider two points in the p�T plane. Two

different paths which connect points 1 and 2 are shown; the difference in

free energy between these two points is identical for both paths, i.e.

F2 � F1 ¼
ð

path I

dF ¼
ð

path II

dF: ð2:10Þ

The multidimensional space in which each point specifies the complete

microstate (specified by the degrees of freedom of all the particles) of a system

is termed ‘phase space’. Averages over phase space may be constructed by

considering a large number of identical systems which are held at the same

fixed conditions. These are called ‘ensembles’. Different ensembles are rele-

vant for different constraints. If the temperature is held fixed the set of

systems is said to belong to the ‘canonical ensemble’ and there will be

some distribution of energies among the different systems. If instead the

energy is fixed, the ensemble is termed the ‘microcanonical’ ensemble. In
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the first two cases the number of particles is held constant; if the number

of particles is allowed to fluctuate the ensemble is the ‘grand canonical’

ensemble.

Systems are often held at fixed values of intensive variables, such as

temperature, pressure, etc. The conjugate extensive variables, energy,

volume, etc. will fluctuate with time; indeed these fluctuations will actually

be observed during Monte Carlo simulations.

Problem 2.2 Consider a two level system composed of N non-interacting
particles where the groundstate of each particle is doubly degenerate and
separated from the upper level by an energy �E. What is the partition func-
tion for this system? What is the entropy as a function of temperature?

2.1.1.4 Fluctuations

Equations (2.4) and (2.5) imply that the probability that a given ‘microstate’ �
occurs is P� ¼ expf½F �Hð�ÞÞ	=kBTg ¼ expf�S=kBg. Since the number of
different microstates is so huge, we are not only interested in probabilities of

individual microstates but also in probabilities of macroscopic variables, such

as the internal energy U. We first form the moments (where � 
 1=kBT ; the
average energy is denoted U and U is a fluctuating quantity),

Uð�Þ ¼ hHð�Þi 

X
�

P�Hð�Þ ¼
X
�

Hð�Þe��Hð�Þ
�X

�

e��Hð�Þ;

hH2i ¼
X
�

H2e��Hð�Þ
�X

�

e��Hð�Þ; ð2:11Þ

and note the relation �ð@Uð�Þ=@�ÞV ¼ hH2i � hHi2. Since ð@U=@TÞV ¼
CV , the specific heat thus yields a fluctuation relation

kBT
2CV ¼ hH2i � hHi2 ¼ ð�UÞ2� �

NVT
; �U 
 H� hHi: ð2:12Þ

Now for a macroscopic system (N � 1) away from a critical point, U / N

and the energy and specific heat are extensive quantities. However, since both

hH2i and hHi2 are clearly proportional to N2, we see that the relative fluc-

tuation of the energy is very small, of order 1=N. While in real experiments

(where often N � 1022) such fluctuations may be too small to be detectable,

in simulations these thermal fluctuations are readily observable, and relations

such as Eqn. (2.12) are useful for the actual estimation of the specific heat

from energy fluctuations. Similar fluctuation relations exist for many other

quantities, for example the isothermal susceptibility � ¼ ð@hMi=@HÞT is

related to fluctuations of the magnetization M ¼P
i �i, as

kBT� ¼ hM2i � hMi2 ¼
X
i;j

h�i�ji � h�iih�ji
� �

: ð2:13Þ

Writing the Hamiltonian of a system in the presence of a magnetic field H

as H ¼ H0 �HM, we can easily derive Eqn. (2.13) from hMi ¼P
� M exp
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½��Hð�Þ	=P� exp½��Hð�Þ	 in a similar fashion as above. The relative

fluctuation of the magnetization is also small, of order 1=N.

It is not only of interest to consider for quantities such as the energy or

magnetization the lowest order moments but to discuss the full probability

distribution PðUÞ or PðMÞ, respectively. For a system in a pure phase the

probability is given by a simple Gaussian distribution

PðUÞ ¼ ð2	kBCVT
2Þ�1=2 exp �ð�UÞ2=2kBTCV


 � ð2:14Þ

while the distribution of the magnetization for the paramagnetic system

becomes

PðMÞ ¼ ð2	kBT�Þ�1=2 exp �ðM� hMiÞ2=2kBT�

 �

: ð2:15Þ

It is straightforward to verify that Eqns. (2.14), (2.15) are fully consistent with

the fluctuation relations (2.12), (2.13). Since Gaussian distributions are com-

pletely specified by the first two moments, higher moments hHki, hMki,
which could be obtained analogously to Eqn. (2.11), are not required. Note

that on the scale of U=N and hMi=N the distributions PðUÞ, PðMÞ are
extremely narrow, and ultimately tend to d-functions in the thermodynamic

limit. Thus these fluctuations are usually neglected altogether when dealing

with relations between thermodynamic variables.

An important consideration is that the thermodynamic state variables do

not depend on the ensemble chosen (in pure phases) while the fluctuations

do. Therefore, one obtains the same average internal energy UðN;V ;TÞ in
the canonical ensemble as in the NpT ensemble while the specific heats and

the energy fluctuations differ (see Landau and Lifshitz, 1980):

ð�UÞ2� �
NpT

¼ kBT
2CV � T

@p

@T

� 

V

� p

� �2
kBT

@V

@p

� 

T

: ð2:16Þ

It is also interesting to consider fluctuations of several thermodynamic vari-

ables together. Then one can ask whether these quantities are correlated, or

whether the fluctuations of these quantities are independent of each other.

Consider the NVT ensemble where entropy S and the pressure p (an inten-

sive variable) are the (fluctuating) conjugate variables fp ¼ �ð@F=@V ÞNT ,

S ¼ �ð@F=@TÞNV g. What are the fluctuations of S and p, and are they

correlated? The answer to these questions is given by

ð�SÞ2� �
NVT

¼ kBCp; ð2:17aÞ
ð�pÞ2� �

NVT
¼ �kBTð@p=@V ÞS; ð2:17bÞ

ð�SÞð�pÞ� �
NVT

¼ 0: ð2:17cÞ

One can also see here an illustration of the general principle that fluctuations

of extensive variables (like S) scale with the volume, while fluctuations of

intensive variables (like p) scale with the inverse volume.
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2.1.2 Phase transitions

The emphasis in the standard texts on statistical mechanics clearly is on those

problems that can be dealt with analytically, e.g. ideal classical and quantum

gases, dilute solutions, etc. The main utility of Monte Carlo methods is for

problems which evade exact solution such as phase transitions, calculations of

phase diagrams, etc. For this reason we shall emphasize this topic here. The

study of phase transitions has long been a topic of great interest in a variety of

related scientific disciplines and plays a central role in research in many fields

of physics. Although very simple approaches, such as mean field theory,

provide a very simple, intuitive picture of phase transitions, they generally

fail to provide a quantitative framework for explaining the wide variety of

phenomena which occur under a range of different conditions and often do

not really capture the conceptual features of the important processes which

occur at a phase transition. The last half century has seen the development of

a mature framework for the understanding and classification of phase transi-

tions using a combination of (rare) exact solutions as well as theoretical and

numerical approaches.

We draw the reader’s attention to the existence of zero temperature quan-

tum phase transitions (Sachdev, 1999). These are driven by control para-

meters that modify the quantum fluctuations and can be studied using

quantum Monte Carlo methods that will be described in Chapter 8. The

discussion in this chapter, however, will be limited to classical statistical

mechanics.

2.1.2.1 Order parameter

The distinguishing feature of most phase transitions is the appearance of a

non-zero value of an ‘order parameter’, i.e. of some property of the system

which is non-zero in the ordered phase but identically zero in the disordered

phase. The order parameter is defined differently in different kinds of phy-

sical systems. In a ferromagnet it is simply the spontaneous magnetization. In

a liquid–gas system it will be the difference in the density between the liquid

and gas phases at the transition; for liquid crystals the degree of orientational

order is telling. An order parameter may be a scalar quantity or may be a

multicomponent (or even complex) quantity. Depending on the physical

system, an order parameter may be measured by a variety of experimental

methods such as neutron scattering, where Bragg peaks of superstructures in

antiferromagnets allow the estimation of the order parameter from the inte-

grated intensity, oscillating magnetometer measurement directly determines

the spontaneous magnetization of a ferromagnet, while NMR is suitable for

the measurement of local orientational order.

2.1.2.2 Correlation function

Even if a system is not ordered, there will in general be microscopic regions

in the material in which the characteristics of the material are correlated.
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Correlations are generally measured through the determination of a two-point

correlation function

GðrÞ ¼ h
ð0Þ
ðrÞi; ð2:18Þ

where r is the spatial distance and 
 is the quantity whose correlation is being

measured. (The behavior of this correlation function will be discussed

shortly.) It is also possible to consider correlations that are both space-depen-

dent and time-dependent, but at the moment we only consider equal time

correlations that are time-independent. As a function of distance they will

decay (although not always monotonically), and if the correlation for the

appropriate quantity decays to zero as the distance goes to infinity, then

the order parameter is zero.

2.1.2.3 First order vs. second order

These remarks will concentrate on systems which are in thermal equilibrium

and which undergo a phase transition between a disordered state and one

which shows order which can be described by an appropriately defined order

parameter. If the first derivatives of the free energy are discontinuous at the

transition temperature Tc, the transition is termed first order. The magnitude

of the discontinuity is unimportant in terms of the classification of the phase

transition, but there are diverse systems with either very large or rather small

‘jumps’. For second order phase transitions first derivatives are continuous;

transitions at some temperature Tc and ‘field’ H are characterized by singu-

larities in the second derivatives of the free energy, and properties of rather

disparate systems can be related by considering not the absolute temperature

but rather the reduced distance from the transition " ¼ j1� T=Tcj. (Note
that in the 1960s and early 1970s the symbol " was used to denote the

reduced distance from the critical point. As renormalization group theory

came on the scene, and in particular "-expansion techniques became popular,

the notation changed to use the symbol t instead. In this book, however, we

shall often use the symbol t to stand for time, so to avoid ambiguity we have

returned to the original notation.) In Fig. 2.3 we show characteristic behavior

for both kinds of phase transitions. At a first order phase transition the free

energy curves for ordered and disordered states cross with a finite difference

in slope and both stable and metastable states exist for some region of tem-

perature. In contrast, at a second order transition the two free energy curves

meet tangentially.

2.1.2.4 Phase diagrams

Phase transitions occur as one of several different thermodynamic fields is

varied. Thus, the loci of all points at which phase transitions occur form

phase boundaries in a multidimensional space of thermodynamic fields. The

classic example of a phase diagram is that of water, shown in pressure–

temperature space in Fig. 2.4, in which lines of first order transitions separate
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ice–water, water–steam, and ice–steam. The three first order transitions join

at a ‘triple point’, and the water–steam phase line ends at a ‘critical point’

where a second order phase transition occurs. (Ice actually has multiple

inequivalent phases and we have ignored this complexity in this figure.)

Predicting the phase diagram of simple atomic or molecular systems, as

well as of mixtures, given the knowledge of the microscopic interactions, is

an important task of statistical mechanics which relies on simulation methods

quite strongly, as we shall see in later chapters. A much simpler phase dia-

gram than for water occurs for the Ising ferromagnet with Hamiltonian

H ¼ �Jnn
X
nn

�i�j �H
X
i

�i; ð2:19Þ

where �i ¼ �1 represents a ‘spin’ at lattice site i which interacts with nearest

neighbors on the lattice with interaction constant Jnn > 0. In many respects

this model has served as a ‘fruit fly’ system for studies in statistical mechanics.

At low temperatures a first order transition occurs as H is swept through

zero, and the phase boundary terminates at the critical temperature Tc as

shown in Fig. 2.4. In this model it is easy to see, by invoking the symmetry

involving reversal of all the spins and the sign of H, that the phase boundary

must occur at H ¼ 0 so that the only remaining ‘interesting’ question is the

location of the critical point. Of course, many physical systems do not possess

this symmetry. As a third example, in Fig. 2.4 we also show the phase

boundary for an Ising antiferromagnet for which J < 0. Here the antiferro-

magnetic phase remains stable in non-zero field, although the critical tem-

perature is depressed. As in the case of the ferromagnet, the phase diagram is

symmetric about H ¼ 0. We shall return to the question of phase diagrams

for the antiferromagnet later in this section when we discuss ‘multicritical

points’.
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2.1.2.5 Critical behavior and exponents

We shall attempt to explain thermodynamic singularities in terms of the

reduced distance from the critical temperature. Extensive experimental

research has long provided a testing ground for developing theories

(Kadanoff et al., 1967) and more recently, of course, computer simulations

have been playing an increasingly important role. Of course, experiment is

limited not only by instrumental resolution but also by unavoidable sample

imperfections. Thus, the beautiful specific heat peak for RbMnF3, shown in

Fig. 2.5, is quite difficult to characterize for " � 10�4. Data from multiple

experiments as well as results for a number of exactly soluble models show

that the thermodynamic properties can be described by a set of simple power

laws in the vicinity of the critical point Tc, e.g. for a magnet the order

parameter m, the specific heat C, the susceptibility � and the correlation

length � vary as (Stanley, 1971; Fisher, 1974)

m ¼ mo"
�; ð2:20aÞ

� ¼ �o"
��; ð2:20bÞ

C ¼ Co"
��; ð2:20cÞ

� ¼ �o"
��; ð2:20dÞ

where " ¼ j1� T=Tcj and the powers (Greek characters) are termed ‘critical

exponents’. Note that Eqns. (2.20a–d) represent asymptotic expressions

which are valid only as "! 0 and more complete forms would include

additional ‘corrections to scaling’ terms which describe the deviations from

the asymptotic behavior. Although the critical exponents for a given quantity

are believed to be identical when Tc is approached from above or below, the

prefactors, or ‘critical amplitudes’ are not usually the same. The determina-

tion of particular amplitude ratios does indeed form the basis for rather

extended studies (Privman et al., 1991). Along the critical isotherm, i.e. at

T ¼ Tc we can define another exponent (for a ferromagnet) by

m ¼ DH1=�; ð2:21Þ
where H is an applied, uniform magnetic field. (Here too, an analogous

expression would apply for a liquid–gas system at the critical temperature

as a function of the deviation from the critical pressure.) For a system in d-

dimensions the two-body correlation function GðrÞ, which well above the
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critical temperature has the Ornstein–Zernike form (note that for a ferro-

magnet in zero field 
ðrÞ in Eqn. (2.18) corresponds to the magnetization

density at r while for a fluid 
ðrÞ means the local deviation from the average

density)

GðrÞ / r�ðd�1Þ=2 expð�r=�Þ; r!1; ð2:22Þ

also shows a power law decay at Tc,

GðrÞ ¼ G0r
�ðd�2þ�Þ; r!1; ð2:23Þ

where � is another critical exponent. These critical exponents are known

exactly for only a small number of models, most notably the two-dimensional

Ising square lattice (Onsager, 1944) (cf. Eqn. (2.19)), whose exact solution

shows that � ¼ 0, � ¼ 1=8, and � ¼ 7=4. Here, � ¼ 0 corresponds to a

logarithmic divergence of the specific heat. We see in Fig. 2.5, however,

that the experimental data for the specific heat of RbMnF3 increases even

more slowly than a logarithm as "! 0, implying that � < 0, i.e. the specific

heat is non-divergent. In fact, a suitable model for RbMnF3 is not the Ising
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model but a three-dimensional Heisenberg model with classical spins of unit

length and nearest neighbor interactions

H ¼ �J
X
nn

ðSixSjx þ SiySjy þ SizSjzÞ; ð2:24Þ

which has different critical exponents than does the Ising model. (Although

no exact solutions are available, quite accurate values of the exponents have

been known for some time due to application of the field theoretic renorma-

lization group (Zinn-Justin and LeGuillou, 1980), and extensive Monte Carlo

simulations have yielded some rather precise results, at least for classical

Heisenberg models (Chen et al., 1993).)

The above picture is not complete because there are also special cases

which do not fit into the above scheme. Most notable are two-dimensional

XY-models with Hamiltonian

H ¼ �J
X
nn

ðSixSjx þ SiySjyÞ; ð2:25Þ

where Si is a unit vector which may have either two components (plane

rotator model) or three components (XY-model). These models develop no

long range order at low temperature but have topological excitations, termed

vortex–antivortex pairs, which unbind at the transition temperature KKT
(Kosterlitz and Thouless, 1973). The correlation length and susceptibility

for this model diverge exponentially fast as the transition temperature is

approached from above, e.g.

� / expða"��Þ; ð2:26Þ
and every temperature below TKT is a critical point. Other classical models

with suitable competing interactions or lattice structures may also show

‘unusual’ transitions (Landau, 1994) which in some cases include different

behavior of multiple order parameters at Tc and which are generally amenable

to study by computer simulation.

The above discussion was confined to static aspects of phase transitions

and critical phenomena. The entire question of dynamic behavior will be

treated in a later section using extensions of the current formulation.

2.1.2.6 Universality and scaling

Homogeneity arguments also provide a way of simplifying expressions which

contain thermodynamic singularities. For example, for a simple Ising ferro-

magnet in a small magnetic field H and at a temperature T which is near the

critical point, the singular portion of the free energy FðT;HÞ can be written

as

Fs ¼ "2��F�ðH="DÞ; ð2:27Þ
where the ‘gap exponent’ D is equal to 1

2
ð2� �þ �Þ and F� is a function of

the ‘scaled’ variable ðH="DÞ, i.e. does not depend upon " independently. This
formula has the consequence, of course, that all other expressions for ther-

18 2 Some necessary background



modynamic quantities, such as specific heat, susceptibility, etc. can be written

in scaling forms as well. Similarly, the correlation function can be expressed

as a scaling function of two variables

Gðr; �; "Þ ¼ r�ðd�2þ�ÞGðr=�;H="DÞ; ð2:28Þ
where Gðx; yÞ is now a scaling function of two variables.

Not all of the six critical exponents defined in the previous section are

independent, and using a number of thermodynamic arguments one can

derive a series of exponent relations called scaling laws which show that

only two exponents are generally independent. For example, taking the deri-

vative of the free energy expressed above in a scaling form yields

�@Fs=@H ¼ M ¼ "2���DF 0ðH="DÞ; ð2:29Þ
where F 0 is the derivative of F , but this equation can be compared directly

with the expression for the decay of the order parameter to show that

� ¼ 2� �� D. Furthermore, using a scaling expression for the magnetic

susceptibility

� ¼ "��CðH="DÞ ð2:30Þ
one can integrate to obtain the magnetization, which for H ¼ 0 becomes

m / "D��: ð2:31Þ
Combining these simple relations one obtains the so-called Rushbrooke

equality

�þ 2�þ � ¼ 2 ð2:32Þ
which should be valid regardless of the individual exponent values. Another

scaling law which has important consequences is the ‘hyperscaling’ expres-

sion which involves the lattice dimensionality d

d� ¼ 2� �: ð2:33Þ
Of course, here we are neither concerned with a discussion of the physical

justification of the homogeneity assumption given in Eqn. (2.27), nor with

this additional scaling relation, Eqn. (2.32), see e.g. Yeomans (1992).

However, these scaling relations are a prerequisite for the understanding of

finite size scaling which is a basic tool in the analysis of simulational data near

phase transitions, and we shall thus summarize them here. Hyperscaling may

be violated in some cases, e.g. the upper critical (spatial) dimension for the

Ising model is d ¼ 4 beyond which mean-field (Landau theory) exponents

apply and hyperscaling is no longer obeyed. Integration of the correlation

function over all spatial displacement yields the susceptibility

� ¼ "��ð2��Þ; ð2:34Þ
and by comparing this expression with the ‘definition’, cf. Eqn. (2.20b), of the

critical behavior of the susceptibility we have

� ¼ �ð2� �Þ: ð2:35Þ
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Those systems which have the same set of critical exponents are said to

belong to the same universality class (Fisher, 1974). Relevant properties

which play a role in the determination of the universality class are known

to include spatial dimensionality, spin dimensionality, symmetry of the

ordered state, the presence of symmetry breaking fields, and the range of

interaction. Thus, nearest neighbor Ising ferromagnets (see Eqn. (2.19)) on

the square and triangular lattices have identical critical exponents and belong

to the same universality class. Further, in those cases where lattice models

and similar continuous models with the same symmetry can be compared,

they generally belong to the same universality class. A simple, nearest neigh-

bor Ising antiferromagnet in a field has the same exponents for all field values

below the zero temperature critical field. This remarkable behavior will

become clearer when we consider the problem in the context of renormaliza-

tion group theory (Wilson, 1971) in Chapter 9. At the same time there are

some simple symmetries which can be broken quite easily. For example, an

isotropic ferromagnet changes from the Heisenberg universality class to the

Ising class as soon as a uniaxial anisotropy is applied to the system:

H ¼ �J
X
½ð1� DÞðSixSjx þ SiySjyÞ þ SizSjz	; ð2:36Þ

where D > 0. The variation of the critical temperature is then given by

TcðDÞ � TcðD ¼ 0Þ / D1=�; ð2:37Þ
where � is termed the ‘crossover exponent’ (Riedel and Wegner, 1972).

There are systems for which the lattice structure and/or the presence of

competing interactions give rise to behavior which is in a different univers-

ality class than one might at first believe from a cursory examination of the

Hamiltonian. From an analysis of the symmetry of different possible adlayer

structures for adsorbed films on crystalline substrates Domany et al. (1980)

predict the universality classes for a number of two-dimensional Ising-lattice

gas models. Among the most interesting and unusual results of this symmetry

analysis is the phase diagram for the triangular lattice gas (Ising) model with

nearest neighbor repulsive interaction and next-nearest neighbor attractive

coupling (Landau, 1983). In the presence of non-zero chemical potential, the

groundstate is a three-fold degenerate state with 1/3 or 2/3 filling (the

triangular lattice splits into three sublattices and one is full and the other

two are empty, or vice versa, respectively) and is predicted to be in the

universality class of the 3-state Potts model (Potts, 1952; Wu, 1982)

H ¼ �J
X

��i�j ; ð2:38Þ

where �i ¼ 1, 2, or 3. In zero chemical potential all six states become degen-

erate and a symmetry analysis predicts that the system is then in the uni-

versality class of the XY-model with sixth order anisotropy

H ¼ �J
X
ðSixSjx þ SiySjyÞ þ D

X
cosð6�iÞ; ð2:39Þ
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where �i is the angle which a spin makes with the x-axis. Monte Carlo results

(Landau, 1983), shown in Fig. 2.6, confirm these expectations: in non-zero

chemical potential there is a Potts-like phase boundary, complete with a 3-

state Potts tricritical point. (Tricritical points will be discussed in the follow-

ing sub-section.) In zero field, there are two Kosterlitz–Thouless transitions

with an XY-like phase separating a low temperature ordered phase from a

high temperature disordered state. Between the upper and lower transitions

‘vortex-like’ excitations can be identified and followed. Thus, even though

the Hamiltonian is that of an Ising model, there is no Ising behavior to be

seen and instead a very rich scenario, complete with properties expected only

for continuous spin models is found! At the same time, Fig. 2.6 is an example

of a phase diagram containing both continuous and first order phase transi-

tions which cannot yet be found with any other technique with an accuracy

which is competitive to that obtainable by the Monte Carlo methods which

will be described in this book.

2.1.2.7 Multicritical phenomena

Under certain circumstances the order of a phase transition changes as some

thermodynamic parameter is altered. Although such behavior appears to

violate the principles of universality which we have just discussed, examina-

tion of the system in a larger thermodynamic space makes such behavior easy

to understand. The intersection point of multiple curves of second order

phase transitions is known as a multicritical point. Examples include the

tricritical point (Griffiths, 1970; Stryjewski and Giordano, 1977; Lawrie

and Sarbach, 1984) which occurs in He3�He4 mixtures, strongly anisotropic
ferromagnets, and ternary liquid mixtures, as well as the bicritical point
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(Nelson et al., 1974) which appears on the phase boundary of a moderately

anisotropic Heisenberg antiferromagnet in a uniform magnetic field. The

characteristic phase diagram for a tricritical point is shown in Fig. 2.7 in

which one can see that the three second order boundaries to first order

surfaces of phase transitions meet at a tricritical point. One of the simplest

models which exhibits such behavior is the Ising antiferromagnet with nearest

and next-nearest neighbor coupling

H ¼ �Jnn
X
nn

�i�j � Jnnn
X
nnn

�i�j �H
X
i

�i �Hþ
X
i

�i; ð2:40Þ

where �i ¼ �1, H is the uniform magnetic field, and H+ is the staggered

magnetic field which couples to the order parameter. The presence of a

multicritical point introduces a new ‘relevant’ field g, which as shown in

Fig. 2.7 makes a non-zero angle with the phase boundary, and a second

scaling field t, which is tangential to the phase boundary at the tricritical

point. In the vicinity of a multicritical point a ‘crossover’ scaling law is valid

Fð";Hþ; gÞ ¼ jgj2��"FðHþ=jgjD" ; "=jgj�"Þ; ð2:41Þ
where �" is the specific heat exponent appropriate for a tricritical point, D"

the corresponding ‘gap exponent’, and �" a new ‘crossover’ exponent. In

addition, there are power law relations which describe the vanishing of dis-

continuities as the tricritical point is approached from below. For example,

the discontinuity in the magnetization from Mþ to M� as the first order

phase boundary for T < Tt is crossed decreases as

�M ¼ Mþ �M� / j1� T=Ttj�u : ð2:42Þ
The ‘u-subscripted’ exponents are related to the ‘"-subscripted’ ones by a

crossover exponent,
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�u ¼ ð1� �"Þ=�": ð2:43Þ
As will be discussed below, the mean field values of the tricritical exponents

are �" ¼ 1=2, �" ¼ 5=2, �" ¼ 1=2, and hence �u ¼ 1. Tricritical points have

been explored using both computer simulations of model systems as well as

by experimental investigation of physical systems, and their theoretical

aspects have been studied in detail (Lawrie and Sarbach, 1984).

2.1.2.8 Landau theory

One of the simplest theories with which simulations are often compared is the

Landau theory which begins with the assumption that the free energy of a

system can be expanded about the phase transition in terms of the order

parameter. The free energy of a d-dimensional system near a phase transition

is expanded in terms of a simple one-component order parameter mðxÞ

F ¼ Fo þ
ð
ddx

(
1

2
rm2ðxÞ þ 1

4
um4ðxÞ þ 1

6
vm6ðxÞ � H

kBT
mðxÞ

þ 1

2d
½RrmðxÞ	2 þ � � �

)
:

ð2:44Þ

Here a factor of ðkBTÞ�1 has been absorbed into F and Fo and the coefficients

r, u, and v are dimensionless. Note that the coefficient R can be interpreted as

the interaction range of the model. This equation is in the form of a Taylor

series in which symmetry has already been used to eliminate all odd order

terms for H ¼ 0. For more complex systems it is possible that additional

terms, e.g. cubic products of components of a multicomponent order para-

meter might appear, but such situations are generally beyond the scope of our

present treatment. In the simplest possible case of a homogeneous system this

equation becomes

F ¼ Fo þ V 1
2
rm2 þ 1

4
um4 þ 1

6
vm6 � mH=kBT þ � � �Þ:

� ð2:45Þ
In equilibrium the free energy must be a minimum; and if u > 0 we can

truncate the above equation and the minimization criterion @F=@m ¼ 0 yields

three possible solutions:

m1 ¼ 0; ð2:46aÞ
m2;3 ¼ �

ffiffiffiffiffiffiffiffiffiffi
�r=u

p
: ð2:46bÞ

Expanding r in the vicinity of Tc so that r ¼ r 0ðT � TcÞ, we find then for

r < 0 (i.e. T < Tc)

m2;3 ¼ � ðr 0Tc=uÞð1� T=TcÞ

 �1=2

: ð2:47Þ
Thus, m1 corresponds to the solution above Tc where there is no long range

order, and m2;3 correspond to solutions below Tc where the order parameter

approaches zero with a characteristic power law (see Eqn. (2.20a)) with

exponent � ¼ 1=2. A similar analysis of the susceptibility produces � ¼ 1,
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� ¼ 3. (Although straightforward to apply, Landau theory does not correctly

describe the behavior of many physical systems. For liquid–gas critical points

and most magnetic systems � � 1=3 (Kadanoff et al., 1967) instead of the

Landau value of � ¼ 1=2.) The appearance of tricritical points can be easily

understood from the Landau theory. If the term in m4 is negative it becomes

necessary to keep the sixth order term and the minimization process yields

five solutions:

m1 ¼ 0; ð2:48aÞ

m2;3 ¼ �
1

2v
�uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4rv

p� �� �1=2
; ð2:48bÞ

m4;5 ¼ �
1

2v
�u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4rv

p� �� �1=2
: ð2:48cÞ

If v is positive, there are multiple solutions and the transition is first order. A

tricritical point thus appears when r ¼ u ¼ 0, and the tricritical exponents

which result from this analysis are

�t ¼ 1
2
; ð2:49aÞ

�t ¼ 1
4
; ð2:49bÞ

�t ¼ 1; ð2:49cÞ
�t ¼ 5: ð2:49dÞ

Note that these critical exponents are different from the values predicted for

the critical point. The crossover exponent is predicted by Landau theory to

be � ¼ 1
2
.

2.1.3 Ergodicity and broken symmetry

The principle of ergodicity states that all possible configurations of the sys-

tem should be attainable. As indicated in Eqn. (2.4) the different states will

not all have the same probability, but it must nonetheless be possible to reach

each state with non-zero probability. Below a phase transition multiple dif-

ferent ordered states may appear, well separated in phase space. If the phase

transition from the disordered phase to the ordered phase is associated with

‘symmetry breaking’, the separate ordered states are related by a symmetry

operation acting on the order parameter (e.g. a reversal of the sign of the

order parameter for an Ising ferromagnet). In the context of a discussion of

dynamical behavior of such systems, symmetry breaking usually means ergo-

dicity breaking, i.e. the system stays in one separate region in phase space.

The question of non-ergodic behavior in the context of simulations is com-

plex. For example, in the simulation of an Ising system which may have all

spins up or all spins down, we may wish to keep the system from exploring all

of phase space so that only positive values of the order parameter are

observed. If instead the simulation algorithm is fully ergodic, then both

positive and negative values of order parameter will appear and the average
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will be zero. A danger for simulations is that specialized algorithms may be

unintentionally non-ergodic, thus yielding incorrect results.

2.1.4 Fluctuations and the Ginzburg criterion

As mentioned earlier, the thermodynamic properties of a system are not

perfectly constant but fluctuate with time as the system explores different

regions of phase space. In the discussion of fluctuations in Section 2.1.1.4 we

have seen that relative fluctuations of extensive thermodynamic variables

scale inversely with V or N, and hence such global fluctuations vanish in

the thermodynamic limit. One should not conclude, however, that fluctua-

tions are generally unimportant; indeed local fluctuations can have dramatic

consequences and require a separate discussion.

What is the importance of local fluctuations? As long as they do not play a

major role, we can expect that Landau theory will yield correct predictions.

Let us compare the fluctuations in mðxÞ for a d-dimensional system over the

‘correlation volume’ �d with its mean value mo. If Landau theory is valid and

fluctuations can be ignored, then

½mðxÞ � mo	2
� �

m2
o

� 1: ð2:50Þ

This condition, termed the Ginzburg criterion, leads to the expression

�dm2
o�
�1 � const:; ð2:51Þ

and following insertion of the critical behavior power laws we obtain

"��dþ2�þ� � const: ð2:52Þ
Inserting Landau exponents into this expression we find

"ðd�4Þ=2 � const:; ð2:53Þ
i.e. for Landau theory to be valid the lattice dimensionality must be greater

than or equal to the upper critical dimension du ¼ 4. In addition, below some

lower critical dimensionality dl fluctuations dominate completely and no

transition occurs. In order to consider the tricritical point scenario depicted

in Fig. 2.7, it becomes necessary to retain the next order term �vm6 in the

Landau free energy. The shape of the resultant free energy is shown in Fig.

2.8 below, at and above the tricritical point. It turns out that mean field (i.e.

Landau) theory is valid for tricritical behavior above an upper critical dimen-

sion; for the Ising model with competing interactions du ¼ 3, but for d ¼ 3

there are logarithmic corrections (Wegner and Riedel, 1973).

2.1.5 A standard exercise: the ferromagnetic Ising model

The Ising model of magnetism, defined in Eqn. (2.19), is extremely well

suited to Monte Carlo simulation. The same model is equivalent to simple

lattice gas models for liquid–gas transitions or binary alloy models. The
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transformation to a lattice gas model is straightforward. We first define site

occupation variables ci which are equal to l if the site is occupied and 0 if the

site is empty. These variables are simple related to the Ising variables by

ci ¼ ð1þ �iÞ=2: ð2:54Þ
If we now substitute these into the Ising Hamiltonian we find

Hlg ¼ ��
X

cicj � �
X

ci þ const: ð2:55Þ

where � ¼ 4J and � ¼ 2ðH þ 4zJÞ if there are z interacting neighbors. Note
that if the Ising model is studied in the canonical ensemble, any spin-flips

change the number of particles in the lattice gas language and the system is

effectively being studied in the grand canonical ensemble. A Monte Carlo

program follows a stochastic path through phase space, a procedure which

will be discussed in detail in the following chapters, yielding a sequence of

states from which mean values of system properties may be determined. In

the following example we show what a sample output from a Monte Carlo

run might look like. A complete description of the simulation algorithm,

methods of analysis, and error determination will be discussed in Chapter 4.
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Example

Sample output from a Monte Carlo program simulating the two-dimensional

Ising model ðJ ¼ 1Þ at kBT ¼ 1:5 for L ¼ 6, with periodic boundary conditions.

1000 MCS discarded for equilibration

5000 MCS retained for averages

1000 MCS per bin

bin EðtÞ MðtÞ
1 �1.9512 0.9866

2 �1.9540 0.9873

3 �1.9529 0.9867

4 �1.9557 0.9878

5 �1.9460 0.9850

Averages: hEi ¼ �1:952� 0:026

hMi ¼ 0:987� 0:014

specific heat ¼ 0:202

susceptibility ¼ 0:027

final state : þ þ þ þ þ þ
þ � þ þ þ þ
þ þ þ þ þ þ
þ þ þ þ � þ
þ þ � þ þ þ
þ þ þ þ þ þ

Problem 2.3 Use the fluctuation relation for the magnetization together
with Eqn. (2.54) to derive a fluctuation relation for the particle number in
the grand canonical ensemble of the lattice gas.

2.2 PROBABILITY THEORY

2.2.1 Basic notions

It will soon become obvious that the notions of probability and statistics are

essential to statistical mechanics and, in particular, to Monte Carlo simula-

tions in statistical physics. In this section we want to remind the reader about

some fundamentals of probability theory. We shall restrict ourselves to the

basics; far more detailed descriptions may be found elsewhere, for example in

the books by Feller (1968) or Kalos and Whitlock (1986). We begin by

considering an elementary event with a countable set of random outcomes,

A1;A2; . . . ;Ak (e.g. rolling a die). Suppose this event occurs repeatedly, say
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N times, with N � 1, and we count how often the outcome Ak is observed

(Nk). Then it makes sense to define probabilities pk for the outcome Ak or (we

assume that all possible events have been enumerated)

pk ¼ lim
N!1

ðNk=NÞ;
X
k

pk ¼ 1: ð2:56Þ

Obviously we have 0 � pk � 1 (if Ak never occurs, pk ¼ 0; if it is certain to

occur, pk ¼ 1). An equivalent notation, convenient for our purposes, is

PðAkÞ 
 pk. From its definition, we conclude that PðAi and/or AjÞ
� ½PðAiÞ þ PðAjÞ	. We call Ai and Aj ‘mutually exclusive’ events, if and

only if the occurrence of Ai implies that Aj does not occur and vice versa.

Then

PðAi and AjÞ ¼ 0; PðAi or AjÞ ¼ PðAiÞ þ PðAjÞ: ð2:57Þ
Let us now consider two events, one with outcomes fAig and probabilities p1i;
the second with outcomes fBjg and probabilities p2j, respectively. We con-

sider now the outcome ðAi;BjÞ and define pij as the joint probability that both
Ai and Bj occur. If the events are independent, we have

pij ¼ p1i � p2j: ð2:58Þ
If they are not independent, it makes sense to define the conditional prob-

ability pðjjiÞ that Bj occurs, given that Ai occurs

pðjjiÞ ¼ pijX
k

pik
¼ pij

p1i
: ð2:59Þ

Of course we have
P

j pðjjiÞ ¼ 1 since some Bj must occur.

The outcome of such random events may be logical variables (True or

False) or real numbers xi. We call these numbers random variables. We now

define the expectation value of this random variable as follows:

hxi 
 EðxÞ 

X
i

pixi: ð2:60Þ

Similarly, any (real) function gðxiÞ then has the expectation value

gðxÞ� � 
 Eðg; xÞÞ ¼
X
i

pigðxiÞ: ð2:61Þ

In particular, if we begin with two functions g1ðxÞ, g2ðxÞ and consider

the linear combination (�1, �2 being constants), we have

h�1g1ðxÞ þ �2g2ðxÞi ¼ �1hg1i þ �2hg2i. Of particular interest are the powers
of x. Defining the nth moment as

hxni ¼
X
i

pix
n
i ð2:62Þ

we then consider the so-called cumulants

ðx� hxiÞn� � ¼X
i

piðxi � hxiÞn: ð2:63Þ

28 2 Some necessary background



Of greatest importance is the case n ¼ 2, which is called the ‘variance’,

varðxÞ ¼ ðx� hxiÞ2� � ¼ hx2i � hxi2: ð2:64Þ
If we generalize these definitions to two random variables (xi and yj), the

analogue of Eqn. (2.60) is

hxyi ¼
X
i;j

pijxiyj: ð2:65Þ

If x and y are independent, then pij ¼ p1ip2j and hence

hxyi ¼
X
i

p1ixi
X
j

p2jyj ¼ hxihyi: ð2:66Þ

As a measure of the degree of independence of the two random variables it is

hence natural to take their covariance

covðx; yÞ ¼ hxyi � hxihyi: ð2:67Þ

2.2.2 Special probability distributions and the central limit
theorem

Do we find any special behavior which arises when we consider a very large

number of events? Consider two events A0 and A1 that are mutually exclusive

and exhaustive:

PðA1Þ ¼ p; x ¼ 1; PðA0Þ ¼ 1� p; x ¼ 0: ð2:68Þ
Suppose now that N independent samples of these events occur. Each out-

come is either 0 or 1, and we denote the sum X of these outcomes,

X ¼P
r¼1 xr. Now the probability that X ¼ n is the probability that n of

the Xr were 1 and ðN � nÞ were 0. This is called the binomial distribution,

PðX ¼ nÞ ¼ N

n

� 

pnð1� pÞN�n; ð2:69Þ

N

n

� 

being the binomial coefficients. It is easy to show from Eqn. (2.69) that

hXi ¼ Np; ðX � hXiÞ2� � ¼ Npð1� pÞ: ð2:70Þ
Suppose now we still have two outcomes ð1; 0Þ of an experiment: if the

outcome is 0, the experiment is repeated, otherwise we stop. Now the random

variable of interest is the number n of experiments until we get the outcome

1:

Pðx ¼ nÞ ¼ ð1� pÞn�1p; n ¼ 1; 2; 3; . . . : ð2:71Þ
This is called the geometrical distribution. In the case that the probability of

‘success’ is very small, the Poisson distribution

Pðx ¼ nÞ ¼ �n

n!
expð��Þ; n ¼ 0; 1; . . . ð2:72Þ
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represents an approximation to the binomial distribution. The most impor-

tant distribution that we will encounter in statistical analysis of data is the

Gaussian distribution

pGðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp � ðx� hxiÞ
2

2�2

" #
ð2:73Þ

which is an approximation to the binomial distribution in the case of a very

large number of possible outcomes and a very large number of samples. If

random variables x1; x2; . . . ; xn are all independent of each other and drawn

from the same distribution, the average value XN ¼
PN

i¼1 xi=N in the limit

N !1 will always be distributed according to Eqn. (2.73), irrespective of

the distribution from which the xi were drawn. This behavior is known as the

‘central limit theorem’ and plays a very important role in the sampling of

states of a system One also can show that the variance of XN is the quantity

�2 that appears in Eqn. (2.73), and that �2 / 1=N.

Of course, at this point it should be clear to those unfamiliar with prob-

ability theory that there is no way to fully understand this subject from this

‘crash course’ of only a few pages which we are presenting here. For the

uninitiated, our goal is only to ‘whet the appetite’ about this subject since it is

central to the estimation of errors in the simulation results. (This discussion

may then also serve to present a guide to the most pertinent literature.)

Problem 2.4 Compute the average value and the variance for the expo-
nential distribution and for the Poisson distribution.

2.2.3 Statistical errors

Suppose the quantity A is distributed according to a Gaussian with mean

value hAi and width �. We consider n statistically independent observations

fAig of this quantity A. An unbiased estimator of the mean hAi of this

distribution is

A ¼ 1

n

Xn

i¼1
Ai ð2:74Þ

and the standard error of this estimate is

error ¼ �=
ffiffiffi
n

p
: ð2:75Þ

In order to estimate the variance � itself from the observations, consider

deviations �Ai ¼ Ai � A. Trivially we have �Ai ¼ 0 and h�Ai ¼ 0. Thus

we are interested in the mean square deviation

�A2 ¼ 1

n

Xn

i¼1
ð�AiÞ2 ¼ A2 � A

� �2
: ð2:76Þ

The expectation value of this quantity is easily related to �2 ¼ hA2i � hAi2 as
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h�A2i ¼ �2ð1� 1=nÞ: ð2:77Þ
Combining Eqns. (2.75) and (2.77) we recognize the usual formula for the

computation of errors of averages from uncorrelated estimates,

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�A2i=ðn� 1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ð�AiÞ2=½nðn� 1Þ	

s
: ð2:78Þ

Equation (2.78) is immediately applicable to simple sampling Monte Carlo

methods. However, as we shall see later, the usual form of Monte Carlo

sampling, namely importance sampling Monte Carlo, leads to ‘dynamic’ cor-

relations between subsequently generated observations fAig. Then Eqn.

(2.78) is replaced by

(error)2 ¼ �2

n
ð1þ 2�A=�tÞ; ð2:79Þ

where �t is the ‘time interval’ between subsequently generated states Ai, Aiþ1
and �A is the ‘correlation time’ (measured in the same units as �t).

2.2.4 Markov chains andmaster equations

The concept of Markov chains is so central to Monte Carlo simulations that

we wish to present at least a brief discussion of the basic ideas. We define a

stochastic process at discrete times labeled consecutively t1; t2; t3; . . . ; for a
system with a finite set of possible states S1;S2;S3; . . . ; and we denote by Xt

the state the system is in at time t. We consider the conditional probability

that Xtn
¼ Sin

,

PðXtn
¼ Sin

jXtn�1 ¼ Sin�1 ;Xtn�2 ¼ Sin�2; . . . ;Xt1
¼ Si1

Þ; ð2:80Þ
given that at the preceding time the system state Xtn�1 was in state Sin�1 , etc.

Such a process is called a Markov process, if this conditional probability is in

fact independent of all states but the immediate predecessor, i.e.

P ¼ PðXtn
¼ Sin

jXtn�1 ¼ Sin�1Þ. The corresponding sequence of states fXtg
is called a Markov chain, and the above conditional probability can be inter-

preted as the transition probability to move from state i to state j,

Wij ¼ W ðSi ! SjÞ ¼ PðXtn
¼ SjjXtn�1 ¼ SiÞ: ð2:81Þ

We further require that

Wij ! 0;
X
j

Wij ¼ 1; ð2:82Þ

as usual for transition probabilities. We may then construct the total prob-

ability PðXtn
¼ SjÞ that at time tn the system is in state Sj as PðXtn

¼ SjÞ ¼
PðXtn

¼ SjjXtn�1 ¼ SiÞPðXtn�1 ¼ SiÞ ¼ WijPðXtn�1 ¼ SiÞ:
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The master equation considers the change of this probability with time t

(treating time as a continuous rather than discrete variable and writing then

PðXtn
¼ SjÞ ¼ PðSj; tÞÞ

dPðSj; tÞ
dt

¼ �
X
i

WjiPðSj; tÞ þ
X
i

WijPðSi; tÞ: ð2:83Þ

Equation (2.83) can be considered as a ‘continuity equation’, expressing the

fact that the total probability is conserved (
P

j PðSj; tÞ 
 1 at all times) and

all probability of a state i that is ‘lost’ by transitions to state j is gained in the

probability of that state, and vice versa. Equation (2.83) just describes the

balance of gain and loss processes: since the probabilities of the events

Sj ! Si1
, Sj ! Si2

, Sj ! Si3
are mutually exclusive, the total probability

for a move away from the state j simply is the sum
P

i WijPðSj; tÞ.
Of course, by these remarks we only wish to make the master equation

plausible to the reader, rather than dwelling on more formal derivations.

Clearly, Eqn. (2.83) brings out the basic property of Markov processes: i.e.

knowledge of the state at time t completely determines the future time

evolution, there is no memory of the past (knowledge of behavior of the

systems at times earlier than t is not needed). This property is obviously

rather special, and only some real systems actually do have a physical

dynamics compatible with Eqn. (2.83), see Section 2.3.1. But the main sig-

nificance of Eqn. (2.83) is that the importance sampling Monte Carlo process

(like the Metropolis algorithm which will be described in Chapter 4) can be

interpreted as a Markov process, with a particular choice of transition prob-

abilities: one must satisfy the principle of detailed balance with the equili-

brium probability PeqðSjÞ,
WjiPeqðSjÞ ¼ WijPeqðSiÞ; ð2:84Þ

as will be discussed later. At this point, we already note that the master

equation yields

dPeqðSj; tÞ=dt 
 0; ð2:85Þ
since Eqn. (2.85) ensures that gain and loss terms in Eqn. (2.83) cancel

exactly.

Finally we mention that the restriction to a discrete set of states fSig is not
at all important – one can generalize the discussion to a continuum of states,

working with suitable probability densities in the appropriate space.

2.2.5 The ‘art’ of random number generation

2.2.5.1 Background

Monte Carlo methods are heavily dependent on the fast, efficient production

of streams of random numbers. Since physical processes, such as white noise

generation from electrical circuits, generally introduce new numbers much

too slowly to be effective with today’s digital computers, random number

sequences are produced directly on the computer using software (Knuth,
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1969). (The use of tables of random numbers is also impractical because of

the huge number of random numbers now needed for most simulations and

the slow access time to secondary storage media.) Since such algorithms are

actually deterministic, the random number sequences which are thus pro-

duced are only ‘pseudo-random’ and do indeed have limitations which need

to be understood. Thus, in the remainder of this book, when we refer to

‘random numbers’ it must be understood that we are really speaking of

‘pseudo-random’ numbers. These deterministic features are not always nega-

tive. For example, for testing a program it is often useful to compare the

results with a previous run made using exactly the same random numbers.

The explosive growth in the use of Monte Carlo simulations in diverse areas

of physics has prompted extensive investigation of new methods and of the

reliability of both old and new techniques. Monte Carlo simulations are

subject to both statistical and systematic errors from multiple sources,

some of which are well understood (Ferrenberg et al., 1991). It has long

been known that poor quality random number generation can lead to sys-

tematic errors in Monte Carlo simulation (Marsaglia, 1968; Barber et al.,

1985); in fact, early problems with popular generators led to the development

of improved methods for producing pseudo-random numbers. For an ana-

lysis of the suitability of different random number generators see Coddington

(1994). As we shall show in the following discussion both the testing as well as

the generation of random numbers remain important problems that have not

been fully solved. In general, the random number sequences which are

needed should be uniform, uncorrelated, and of extremely long period, i.e.

do not repeat over quite long intervals. Later in this chapter we shall give

some guidance on the testing for these ‘desirable’ properties.

In the following sub-sections we shall discuss several different kinds of

generators. The reason for this is that it is now clear that for optimum

performance and accuracy, the random number generator needs to be

matched to the algorithm and computer. Indeed, the resolution of Monte

Carlo studies has now advanced to the point where no generator can be

considered to be completely ‘safe’ for use with a new simulation algorithm

on a new problem. The practitioner is now faced anew with the challenge of

testing the random number generator for each high resolution application,

and we shall review some of the ‘tests’ later in this section. The generators

which are discussed in the next sub-sections produce a sequence of random

integers. Usually floating point numbers between 0 and 1 are needed; these

are obtained by carrying out a floating point divide by the largest integer

Nmax which can fit into a word.

One important topic which we shall not consider here is the question of

the implementation of random number generators on massively parallel com-

puters. In such cases one must be certain that the random number sequences

on all processors are distinct and uncorrelated. As the number of processors

available to single users increases, this question must surely be addressed, but

we feel that at the present time this is a rather specialized topic and we shall

not consider it further.
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2.2.5.2 Congruential method

A simple and very popular method for generating random number sequences

is the multiplicative or congruential method. Here, a fixed multiplier c is

chosen along with a given seed and subsequent numbers are generated by

simple multiplication:

Xn ¼ ðc�Xn�1 þ aoÞMODNmax; ð2:86Þ
where Xn is an integer between 1 and Nmax. It is important that the value of

the multiplier be chosen to have ‘good’ properties and various choices have

been used in the past. In addition, the best performance is obtained when the

initial random number X0 is odd. Experience has shown that a ‘good’ con-

gruential generator is the 32-bit linear congruential algorithm (CONG)

Xn ¼ ð16807�Xn�1ÞMODð231 � 1Þ: ð2:87Þ
A congruential generator which was quite popular earlier turned out to have

quite noticeable correlation between consecutive triplets of random numbers.

Nonetheless for many uses congruential generators are acceptable and are

certainly easy to implement. (Congruential generators which use a longer

word length also have improved properties.)

2.2.5.3 Mixed congruential methods

Congruential generators can be mixed in several ways to attempt to improve

the quality of the random numbers which are produced. One simple and

relatively effective method is to use two distinct generators simultaneously:

the first one generates a table of random numbers and the second generator

draws randomly from this table. For best results the two generators should

have different seeds and different multipliers. A variation of this approach for

algorithms which need multiple random numbers for different portions of the

calculations is to use independent generators for different portions of the

problem.

2.2.5.4 Shift register algorithms

A fast method which was introduced to eliminate some of the problems with

correlations which had been discovered with a congruential method is the

shift register or Tausworthe algorithm (Kirkpatrick and Stoll, 1981). A table

of random numbers is first produced and a new random number is produced

by combining two different existing numbers from the table:

Xn ¼ Xn�p �XOR �Xn�q ð2:88Þ
where p and q must be properly chosen if the sequence is to have good

properties. The �XOR� operator is the bitwise exclusive-OR operator. The

best choices of the pairs (p, q) are determined by the primitive trinomials

given by

Xp þXq þ 1 ¼ primitive ð2:89Þ
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Examples of pairs which satisfy this condition are:

p ¼ 98 q ¼ 27

p ¼ 250 q ¼ 103

p ¼ 1279 q ¼ 216; 418

p ¼ 9689 q ¼ 84; 471; 1836; 2444; 4187

R250 for which p ¼ 250, q ¼ 103 has been the most commonly used gen-

erator in this class. In the literature one will find cases where Xn�q is used and
others where Xn�p�q is used instead. In fact, these two choices will give the

same stream of numbers but in reverse order; the quality of each sequence is

thus the same. In general, higher quality of random number sequences results

when large values of p and q are used although for many purposes R250

works quite well. In order for the quality of the random number sequence to

be of the highest possible quality, it is important for the ‘table’ to be properly

initialized. One simple method is to use a good congruential generator to

generate the initial values; the best procedure is to use a different random

number to determine each bit in succession for each entry in the initial table.

2.2.5.5 Lagged Fibonacci generators

The shift-register algorithm is a special case of a more general class of gen-

erators known as lagged Fibonacci generators. Additional generators may be

produced by replacing the exclusive-or (�XOR�) in Eqn. (2.88) by some other
operator. One generator which has been found to have good properties uses

the multiplication operator:

Xn ¼ Xn�p "Xn�q ð2:90Þ

with rather small values of the ‘off-set’, e.g. p ¼ 17, q ¼ 5. More complex

generators have also been used, e.g. a ‘subtract with carry generator’

(Marsaglia et al., 1990) (SWC), which for 32-bit arithmetic is

Xn ¼ Xn�22 �Xn�43 � C ð2:91Þ
if Xn ! 0; C ¼ 0

if Xn < 0; Xn ¼ Xn þ ð232 � 5Þ; C ¼ 1

and the compound generator, a combined subtract with carry-Weyl generator

(Marsaglia et al., 1990) (SWCW)

Zn ¼ Zn�22 � Zn�43 � C ð2:92Þ
if Zn ! 0; C ¼ 0

if Zn < 0; Zn ¼ Zn þ ð232 � 5Þ; C ¼ 1

Yn ¼ ðYn�1 � 362436069ÞMOD 232

Xn ¼ ðZn �YnÞMOD 232:
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As mentioned earlier, it is known that the performance of a random number

generator can be adversely affected by improper initialization of its lookup

table (Kirkpatrick and Stoll, 1981) and we recommend the same initialization

procedure for all generators as that described for R250. The above are only

examples of a few different random number generators.

2.2.5.6 Tests for quality

Properties of random number generators have been carefully examined using

a battery of mathematical tests (Marsaglia, 1968, 1985); a few simple examples

of such tests are:

Uniformity test: Break up the interval between zero and one into a large

number of small bins and after generating a large number of random

numbers check for uniformity in the number of entries in each bin.

Overlapping M-tuple test: Check the statistical properties of the number of

times M-tuples of digits appear in the sequence of random numbers.

Parking lot test: Plot points in an m-dimensional space where the m-coor-

dinates of each point are determined by m-successive calls to the random

number generator. Then look for regular structures.

Although the ‘quality’ of a sequence of random numbers is notoriously

difficult to assess, often all indications from standard tests are that any resi-

dual errors from random number generation should now be smaller than

statistical errors in Monte Carlo studies. However, these mathematical tests

are not necessarily sufficient, and an example of a ‘practical’ test in a Monte

Carlo study of a small lattice Ising model (which can be solved exactly) will be

presented later; here both ‘local’ and ‘non-local’ sampling methods were

shown to yield different levels of systematic error with different ‘good’ gen-

erators. (The exact nature of these algorithms is not really important at this

stage and will be discussed in detail in later sections.) More sophisticated,

high quality generators, such as RANLUX (James, 1994; Luscher, 1994)

which is based upon an algorithm by Marsaglia and Zaman (1991), are find-

ing their way into use, but they are slow and must still be carefully tested with

new algorithms as they are devised. (RANLUX includes two lags, plus a

carry, plus it discards portions of the sequence of generated numbers. The

complications tend to destroy short time correlations but have the negative

effect of slowing down the generator.)

Problem 2.5 Suppose we have a computer with 4 bit words. Produce a
sequence of random numbers using a congruential generator. What is the
cycle length for this generator?

Example:

Carry out a ‘parking lot’ test on two different random number generators. 10 000

points are plotted using consecutive pairs of random numbers as x- and y-coor-
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dinates. At the top is a picture of a ‘bad’ generator (exhibiting a striped pattern)

and at the bottom are the results of a ‘good’ generator.
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2.2.5.7 Non-uniform distributions

There are some situations in which random numbers xi which have different

distributions, e.g. Gaussian, are required. The most general way to perform

this is to look at the integrated distribution function FðxÞ of the desired

distribution f ðxÞ, generate a uniform distribution of random numbers yi
and then take the inverse function with the uniformly chosen random num-

ber as the variable, i.e.

y ¼ FðyÞ ¼
ðy
0

f ðxÞdx ð2:93Þ

so that

x ¼ F�1ðyÞ: ð2:94Þ

Example

Suppose we wish to generate a set of random numbers distributed according to

f ðxÞ ¼ x. The cumulative distribution function is y ¼ FðxÞ ¼ Ð x
0
x 0dx 0 ¼ 0:5x2.

If a random number y is chosen from a uniform distribution, then the desired

random number is x ¼ 2:0y1=2.

An effective way to generate numbers according to a Gaussian distribution is

the Box–Muller method. Here two different numbers x1 and x2 are drawn

from a uniform distribution and then the desired random numbers are com-

puted from

y1 ¼ ð�2 ln x1Þ1=2 cosð2	x2Þ; ð2:95aÞ
y2 ¼ ð�2 ln x1Þ1=2 sinð2	x2Þ: ð2:95bÞ

Obviously the quality of the random numbers produced depends on the

quality of the uniform sequence which is generated first. Because of the

extra cpu time needed for the computation of the trigonometric functions,

the speed with which x1 and x2 are generated is not particularly important.

Problem 2.6 Given a sequence of uniformly distributed random numbers
yi, show how a sequence xi distributed according to x2 would be produced.
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2.3 NON-EQUILIBRIUM AND DYNAMICS: SOME
INTRODUCTORY COMMENTS

2.3.1 Physical applications of master equations

In classical statistical mechanics of many-body systems, dynamical properties

are controlled by Newton’s equations of motion for the coordinates ri of the

atoms labeled by index i, mi€rri ¼ �riU , mi being the mass of the ith particle,

and U being the total potential energy (which may contain both an external

potential and interatomic contributions). The probability of a point in phase

space then develops according to Liouville’s equation, and obviously the

deterministic trajectory through phase space generated in this way has noth-

ing to do, in general, with the probabilistic trajectories generated in stochastic

processes, such as Markov processes (Section 2.2.4).

However, often one is not aiming at a fully atomistic description of a

physical problem, dealing with all coordinates and momenta of the atoms.

Instead one is satisfied with a coarse-grained picture for which only a subset

of the degrees of freedom matters. It then is rather common that the degrees

of freedom that are left out (i.e. those which typically occur on a much

smaller length scale and much faster time scale) act as a heat bath, inducing

stochastic transitions among the relevant (and slower) degrees of freedom. In

the case of a very good separation of time scales, it is in fact possible to reduce

the Liouville equation to a Markovian master equation, of the type written in

Eqn. (2.83).

Rather than repeating any of the formal derivations of this result from the

literature, we rather motivate this description by a typical example, namely

the description of interdiffusion in solid binary alloys (AB) at low tempera-

tures (Fig. 2.9). The solid forms a crystal lattice, and each lattice site i may be

occupied by an A-atom (then the concentration variable cAi ¼ 1, otherwise

cAi ¼ 0), by a B-atom (then cBi ¼ 1, otherwise cBi ¼ 0), or stay vacant.

Interdiffusion then happens because A-atoms jump to a (typically nearest

neighbor) vacant site, with a jump rate GA, and B-atoms jump to a vacant

site at jump rate GB, and many such random hopping events relax any

concentration gradients. The distribution of the atoms over the available

sites may be completely random or correlated, and the jump rates may

depend on the local neighborhood or may simply be constants, etc. Now a

consideration of the potential energy in solids shows that such jump events

are normally thermally activated processes, GA;B / expð��E=kBTÞ, where
the energy barrier to be overcome is much higher than the thermal energy

(e.g. �E � 1 eV). As a result, the time a vacancy needs in order to move

from one lattice site to the next one is orders of magnitude larger than the

time constant of the lattice vibrations. This separation of time scales (a

phonon vibration time may be of the order of 10�13 seconds, the time

between the moves of a vacancy can be 10 orders of magnitude slower) is

due to the different length scales of these motions (vibrations take only one

percent of a lattice spacing at low temperatures). Thus a simulation of the
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dynamics of these hopping processes using the molecular dynamics method

which numerically integrates Newton’s equations of motion, would suffer

from a sampling of extremely rare events. The master equation, Eqn.

(2.83), which can be straightforwardly simulated by Monte Carlo methods,

allows the direct simulation of the important hopping events, completely

disregarding the phonons. But it is also clear, of course, that knowledge of

the basic rate constants for the slow degrees of freedom (the jump rates GA,
GB in the case of our example) are an ‘input’ to the Monte Carlo simulation,

rather than an ‘output’: the notion of ‘time’ for a Markov process (Section

2.2.4) does not specify anything about the units of this time. These units are

only fixed if the connection between the slow degrees of freedom and the fast

ones is explicitly considered, which usually is a separate problem and out of

consideration here.

Although the conditions under which a master equation description of a

physical system is appropriate may seem rather restrictive, it will become

apparent later in this book that there is nevertheless a rich variety of physical

systems and/or processes that can be faithfully modeled by this stochastic

dynamics. (Examples include relaxation of the magnetization in spin glasses;

Brownian motion of macromolecules in melts; spinodal decomposition in

mixtures; growth of ordered monolayer domains at surfaces; epitaxial growth

of multilayers; etc.)

2.3.2 Conservation laws and their consequences

Different situations may be examined in which different properties of the

system are held constant. One interesting case is one in which the total

magnetization of a system is conserved (held constant); when a system under-

goes a first order transition it will divide into different regions in which one

phase or the other dominates. The dynamics of first order transitions is a

fascinating topic with many facets (Gunton et al., 1983; Binder, 1987). It is

perhaps instructive to first briefly review some of the static properties of a

system below the critical point; for a simple ferromagnet a first order transi-

tion is encountered when the field is swept from positive to negative. Within

the context of Landau theory the behavior can be understood by looking at

the magnetization isotherm shown in Fig. 2.10. The solid portions of the

curve are thermodynamically stable, while the dashed portions are metastable,

and the dotted portion is unstable. The endpoints of the unstable region are

termed ‘spinodal points’ and occur at magnetizations �Msp. The spinodal
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Interdiffusion proceeds

via the vacancy

mechanism: A-atoms

jump with rate GA
and B-atoms with rate

GB.



points occur at magnetic fields �Hc. As the magnetic field is swept, the

transition occurs at H ¼ 0 and the limits of the corresponding coexistence

region are at �Ms. If fcg is a coarse-grained free energy density, then

@2fcg=@M
2 ¼ ��1T ! 0 ð2:96Þ

at the spinodal. However, this singular behavior at the spinodal is a mean-

field concept, and one must ask how this behavior is modified when statistical

fluctuations are considered. A Ginzburg criterion can be developed in terms

of a coarse-grained length scale L and coarse-grained volume Ld. The fluc-

tuations in the magnetization as a function of position MðxÞ from the mean

value M must satisfy the condition

h½MðxÞ �M	2iLd=½M�Msp	2 � 1: ð2:97Þ
This leads to the condition that

1� RdðHc �HÞð6�dÞ=4: ð2:98Þ
Thus the behavior should be mean-field-like for large interaction range R and

far from the spinodal.

If a system is quenched from a disordered, high temperature state to a

metastable state below the critical temperature, the system may respond in

two different ways depending on where the system is immediately after the

quench (see Fig. 2.11). If the quench is to a point which is close to one of the

equilibrium values characteristic of the two-phase coexistence then the state

evolves towards equilibrium by the nucleation and subsequent growth of

‘droplets’, see Fig. 2.12. (This figure is shown for pedagogical reasons and

is not intended to provide an accurate view of the droplet formation in a

particular physical system.) There will be a free energy barrier �F"l to the

growth of clusters where l" is the ‘critical cluster size’ and the nucleation rate

J will be given by

J / expð��F"l =kBTÞ: ð2:99Þ
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Fig. 2.10

Magnetization as a

function of magnetic

field for T < Tc. The

solid curves represent

stable, equilibrium

regions, the dashed

lines represent

‘metastable’, and the

dotted line ‘unstable’

states. The values of

the magnetization at

the ‘spinodal’ are

�Msp and the

spinodal fields are

�Hc. Mþ and M� are

the magnetizations at

the opposite sides of

the coexistence curve.



Near the spinodal the argument of the exponential will be

�F"l =kBT / Rdð1� T=TcÞð4�dÞ=2½ðMms �MspÞ=ðMþ �M�Þ	ð6�dÞ=2;
ð2:100Þ

whereas near the coexistence curve

�F"l =kBT / Rdð1� T=TcÞð4�dÞ=2½ðMþ �MmsÞ=ðMþ �M�Þ	�ðd�1Þ:
ð2:101Þ

In solid mixtures the latter stages of this growth are thought to be described

by the Lifshitz–Slyozov theory (Lifshitz and Slyozov, 1961). At short times a

nucleation barrier must be overcome before droplets which can grow form,

and at later times the process leads to a power law growth of the characteristic

length scale LðtÞ, i.e.
LðtÞ / t1=3 ð2:102Þ

for d ! 2. Scaling behavior is also predicted for both the droplet size dis-

tribution nlðtÞ and the structure factor Sðq; tÞ:
nlðtÞ ¼ ð�llðtÞÞ2 ~nnðl=�llðtÞÞ; ðl !1; t!1Þ; ð2:103aÞ

Sðq; tÞ ¼ ðLðtÞÞd ~SSðqLðtÞÞ; ðq! 0; t!1Þ; ð2:103bÞ
where �ll / tdx is the mean cluster size and x is a characteristic exponent which

is 1/3 if conserved dynamics applies.

If, however, the initial quench is close to the critical point concentration,

the state is unstable and the system evolves towards equilibrium by the

formation of long wavelength fluctuations as shown in Fig. 2.12. The explicit

shape of these structures will vary with model and with quench temperature;

Fig. 2.12 is only intended to show ‘typical’ structures. The early stage of this

process is called spinodal decomposition and the late stage behavior is termed

‘coarsening’. The linearized theory (Cahn and Hilliard, 1958; Cahn, 1961)

predicts

Sðq; tÞ ¼ Sðq; 0Þe2!ðqÞt ð2:104Þ
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Fig. 2.11 Schematic

phase coexistence

diagram showing the

‘spinodal’ line. Paths

(A) and (B) represent

quenches into the

nucleation regime and

the spinodal

decomposition regime,

respectively.



where !ðqÞ is zero for the critical wavevector qc. The linearized theory is

invalid for systems with short range interactions but is approximately correct

for systems with large, but finite, range coupling.

2.3.3 Critical slowing down at phase transitions

As a critical point Tc is approached the large spatial correlations which

develop have long temporal correlations associated with them as well (van

Hove, 1954). At Tc the characteristic time scales diverge in a manner which is

determined in part by the nature of the conservation laws. This ‘critical

slowing down’ has been observed in multiple physical systems by light scat-

tering experiments (critical opalescence) as well as by neutron scattering. The

seminal work by Halperin and Hohenberg (Hohenberg and Halperin, 1977)

provides the framework for the description of dynamic critical phenomena in

which there are a number of different universality classes, some of which

correspond to systems which only have relaxational behavior and some of

which have ‘true dynamics’, i.e. those with equations of motion which are

derived from the Hamiltonian. One consequence of this classification is that

there may be different models which are in the same static universality class

but which are in different dynamic classes. Simple examples include the Ising

model with ‘spin-flip’ kinetics vs. the same model with ‘spin-exchange’

kinetics, and the Heisenberg model treated by Monte Carlo (stochastic)

simulations vs. the same model solved by integrating coupled equations of

motion. For relaxational models, such as the stochastic Ising model, the time-

dependent behavior is described by a master equation

@PnðtÞ=@t ¼ �
X
n6¼m
½PnðtÞWn!m � PmðtÞWm!n	; ð2:105Þ

where PnðtÞ is the probability of the system being in state ‘n’ at time t, and

Wn!m is the transition rate for n! m. The solution to the master equation is

a sequence of states, but the time variable is a stochastic quantity which does

not represent true time. A relaxation function �ðtÞ can be defined which

describes time correlations within equilibrium

�MMðtÞ ¼
hðMð0ÞMðtÞi � hMi2
hM2i � hMi2 : ð2:106Þ
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Fig. 2.12 Pictorial

view of different

possible modes for

phase separation: (a)

nucleation; (b)

spinodal

decomposition. The

dark regions represent

the phase with M�.



When normalized in this way, the relaxation function is 1 at t ¼ 0 and decays

to zero as t!1. It is important to remember that for a system in equili-

brium any time in the sequence of states may be chosen as the ‘t ¼ 0’ state.

The asymptotic, long time behavior of the relaxation function is exponential,

i.e.

�ðtÞ ! e�t=� ð2:107Þ
where the correlation time � diverges as Tc is approached. This dynamic

(relaxational) critical behavior can be expressed in terms of a power law as

well,

� / �z / "��z ð2:108Þ
where � is the (divergent) correlation length, " ¼ j1� T=Tcj, and z is the

dynamic critical exponent. Estimates for z have been obtained for Ising

models by epsilon-expansion RG theory (Bausch et al., 1981) but the numer-

ical estimates (Landau et al., 1988; Wansleben and Landau, 1991; Ito, 1993)

are still somewhat inconsistent and cannot yet be used with complete con-

fidence.

A second relaxation time, the integrated relaxation time, is defined by the

integral of the relaxation function

�int ¼
ð1
0

�ðtÞdt: ð2:109Þ

This quantity has particular importance for the determination of errors and is

expected to diverge with the same dynamic exponent as the ‘exponential’

relaxation time.

One can also examine the approach to equilibrium by defining a non-linear

relaxation function

�MðtÞ ¼
hMðtÞ �Mð1Þi
hMð0Þi � hMð1Þi : ð2:110Þ

The non-linear relaxation function also has an exponential decay at long

times, and the characteristic relaxation time �nl ¼
Ð1
0

�MðtÞdt diverges with
dynamic exponent znl. Fisher and Racz (1976) have shown, however, that

there is only one independent exponent and that

z ¼ znl
M þ �=�; ð2:111Þ

or if the relaxation has been determined for the internal energy then

z ¼ znl
E þ ð1� �Þ=�: ð2:112Þ

There are other systems, such as glasses and models with impurities,

where the decay of the relaxation function is more complex. In these systems

a ‘stretched exponential’ decay is observed

� / e�ðt=�Þ
n

; n < 1 ð2:113Þ
and the behavior of � may not be simple. In such cases, extremely long

observation times may be needed to measure the relaxation time.
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The properties of systems with true dynamics are governed by equations

of motion and the time scale truly represents real time; since this behavior

does not occur in Monte Carlo simulations it will not be discussed further at

this point.

2.3.4 Transport coeff|cients

If some observable A is held constant and all ‘flips’ involve only local, e.g.

nearest neighbor, changes, the Fourier components AðqÞ can be described by

a characteristic time

�AAðqÞ ¼ ðDAAq
2Þ�1 ð2:114Þ

where DAA is a transport coefficient. In the simulation of a binary alloy, the

concentrations of the constituents would be held fixed and DAA would cor-

respond to the concentration diffusivity. With different quantities held fixed,

of course, different transport coefficients can be measured and we only offer

the binary alloy model as an example. Equation (2.114) implies a very slow

relaxation of long wavelength variations. Note that this ‘hydrodynamic slow-

ing down’ is a very general consequence of the conservation of concentration

and not due to any phase transition. If there is an unmixing critical point, see

Fig. 2.11, then DAA / j"j� and at Tc the relaxation time diverges

as �AAðqÞ / q�ð4��Þ (Hohenberg and Halperin, 1977).

2.3.5 Concluding comments: why bother about dynamics
when doing Monte Carlo for statics?

Since importance sampling Monte Carlo methods correspond to a Markovian

master equation by construction, the above remarks about dynamical beha-

vior necessarily have some impact on simulations; indeed dynamical behavior

can possibly affect the results for statics. For example, in the study of static

critical behavior the critical slowing down will adversely affect the accuracy.

In the examination of hysteresis in the study of phase diagrams, etc. the long

time scales associated with metastability are an essential feature of the

observed behavior. Even if one simulates a fluid in the NVT ensemble

away from any phase transition, there will be slow relaxation of long wave-

length density fluctuations due to the conservation of density as in Eqn.

(2.114). Thus, insight into the dynamical properties of simulations always

helps to judge their validity.
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3 Simple sampling Monte Carlo methods

3.1 INTRODUCTION

Modern Monte Carlo methods have their roots in the 1940s when Fermi,

Ulam, von Neumann, Metropolis and others began considering the use of

random numbers to examine different problems in physics from a stochastic

perspective (Cooper (1989), this set of biographical articles about S. Ulam

provides fascinating insight into the early development of the Monte Carlo

method, even before the advent of the modern computer). Very simple

Monte Carlo methods were devised to provide a means to estimate answers

to analytically intractable problems. Much of this work is unpublished and a

view of the origins of Monte Carlo methods can best be obtained through

examination of published correspondence and historical narratives. Although

many of the topics which will be covered in this book deal with more complex

Monte Carlo methods which are tailored explicitly for use in statistical phy-

sics, many of the early, simple techniques retain their importance because of

the dramatic increase in accessible computing power which has taken place

during the last two decades. In the remainder of this chapter we shall con-

sider the application of simple Monte Carlo methods to a broad spectrum of

interesting problems.

3.2 COMPARISONS OF METHODS FOR
NUMERICAL INTEGRATION OF GIVEN
FUNCTIONS

3.2.1 Simple methods

One of the simplest and most effective uses for Monte Carlo methods is the

evaluation of definite integrals which are intractable by analytic techniques.

(See the book by Hammersley and Handscomb (1964) for more mathematical

details.) In the following discussion, for simplicity we shall describe the

methods as applied to one-dimensional integrals, but it should be understood

that these techniques are readily extended, and often most effective, when

applied to multidimensional integrals. In the simplest case we wish to obtain

the integral of f ðxÞ over some fixed interval:
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y ¼
ðb

a

f ðxÞdx: ð3:1Þ

In Fig. 3.1 we show a pictorial representation of this problem. A straightfor-

ward Monte Carlo solution to this problem via the ‘hit-or-miss’ (or accep-

tance–rejection) method is to draw a box extending from a to b and from 0 to

y0 where yo > f ðxÞ throughout this interval. Using random numbers drawn

from a uniform distribution, we drop N points randomly into the box and

count the number, No, which fall below f ðxÞ for each value of x. An estimate

for the integral is then given by the fraction of points which fall below the

curve times the area of the box, i.e.

yest ¼ ðNo=NÞ � ½yoðb � aÞ�: ð3:2Þ
This estimate becomes increasingly precise as N ! 1 and will eventually

converge to the correct answer. This technique is an example of a ‘simple

sampling’ Monte Carlo method and is obviously dependent upon the quality

of the random number sequence which is used. Independent estimates can be

obtained by applying this same approach with different random number

sequences and by comparing these values the precision of the procedure

can be ascertained. An interesting problem which can be readily attacked

using this approach is the estimation of a numerical value for p. The proce-

dure for this computation is outlined in the example described below.

Example

How can we estimate the value of � using simple sampling Monte Carlo? Choose

N points randomly in the xy-plane so that 0 < x < 1 and 0 < y < 1. Calculate

the distance from the origin for each point and count those which are less than a

distance of 1 from the origin. The fraction of the points which satisfy this con-

dition, No=N, provides an estimate for the area of one-quarter of a circle so that

� 
 4No=N. This procedure may be repeated multiple times and the variance of

the different results may be used to estimate the error. Here are some sample

results for a run with 10 000 points. Note that on the right we show estimates
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Fig. 3.1 Simple

representation of ‘hit-

or-miss’ Monte Carlo

integration of a

function f ðxÞ, given

by the solid curve,

between x ¼ a and

x ¼ b. N points are

randomly dropped

into the box, No of

them fall below the

curve. The integral is

estimated using Eqn.

(3.2).



based on up to the first 700 points; these results appear to have converged to the

wrong answer but the apparent difficulty is really due simply to the use of too few

points. This lesson should not be forgotten!

N Result

1000 3.0800 j
�!

100 3.1600

2000 3.0720 200 3.0400

3000 3.1147 300 3.1067

4000 3.1240 f 400 3.0800

5000 3.1344 500 3.0560

6000 3.1426 600 3.0800

7000 3.1343 700 3.0743

8000 3.1242

9000 3.1480

10000 3.1440

A variation of this approach is to choose the values of x in a regular, equi-

distant fashion. The advantage of this algorithm is that it requires the use of

fewer random numbers. For functions with very substantial variations over

the range of interest, these methods are quite likely to converge slowly, and a

different approach must be devised.

Another type of simple Monte Carlo method is termed the ‘crude

method’. In this approach we choose N values of x randomly and then

evaluate f ðxÞ at each value so that an estimate for the integral is provided by

yest ¼
1

N

X
i

f ðxiÞ ð3:3Þ

where, again, as the number of values of x which are chosen increases, the

estimated answer eventually converges to the correct result. In a simple

variation of this method, one can divide the interval into a set of unequal

sub-intervals and perform a separate Monte Carlo integration for each sub-

interval. In those regions where the function is large the sampling can be

extensive and less effort can be expended on those sub-intervals over which

the function is small.

3.2.2 Intelligent methods

Improved methods may be broadly classified as ‘intelligent’ Monte Carlo

methods. In one technique, the ‘control variate method’, one selects a

known, integrable function f 0ðxÞ which has a relatively similar functional

dependence on x and only integrates the difference ½ f 0ðxÞ � f ðxÞ� by some

Monte Carlo method, i.e.

yest ¼ F 0 þ
ðb

a

½ f 0ðxÞ � f ðxÞ�dx ð3:4Þ
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where F 0 ¼ Ð b

a
f 0ðxÞdx. The final estimate for yest can be improved without

additional numerical effort by an intelligent choice of f 0ðxÞ.
Instead of selecting all points with equal probability, one can choose them

according to the anticipated importance of the value of the function at that

point to the integral pðxÞ and then weight the contribution by the inverse of

the probability of choice. This is one of the simplest examples of the class of

Monte Carlo methods known as ‘importance sampling’ which will be dis-

cussed in much greater detail in the next chapter. Using importance sampling

an estimate for the integral is given by

yest ¼
X

i

p�1ðxiÞ f ðxiÞ: ð3:5Þ

For functions which vary wildly over the interval of interest, this approach

allows us to increase the sampling in the region in which the contribution to

the integral is particularly large. Since the values of x are no longer chosen

with equal probability, we begin to see the need for sequences of random

numbers which are not drawn from a uniform sequence. Obviously for oddly

behaved functions some expertise is needed in choosing pðxÞ, but this can be

done iteratively by first carrying out a rough Monte Carlo study and improv-

ing the choice of sampling method. Intelligent importance sampling is far

more effective in improving convergence than the brute force method of

simply generating many more points.

Problem 3.1 Suppose f ðxÞ ¼ x10 � 1. Use a ‘hit-or-miss’ Monte Carlo
simulation to determine the integral between x ¼ 1 and x ¼ 2.

Problem 3.2 Suppose f ðxÞ ¼ x10 � 1. Use an importance sampling Monte
Carlo simulation to determine the integral between x ¼ 1 and x ¼ 2.

Problem 3.3 Estimate p using the methods described above with
N ¼ 100 000 points.What is the error of your estimate? Does your estimate
agree with the correct answer?

3.3 BOUNDARY VALUE PROBLEMS

There is a large class of problems which involve the solution of a differential

equation subject to a specified boundary condition. As an example we con-

sider Laplace’s equation

r2u ¼ @2u=@x2 þ @2u=@y2 ¼ 0 ð3:6Þ
where the function uðrÞ ¼ f on the boundary. Eqn (3.6) can be re-expressed

as a finite difference equation, if the increment � is sufficiently small,

r2u ¼ ½uðx þ D; yÞ þ uðx � D; yÞ þ uðx; y þ DÞ
þ uðx; y � DÞ � 4uðx; yÞ�=�2 ¼ 0

ð3:7Þ
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or

uðx; yÞ ¼ ½uðx þ D; yÞ þ uðx � D; yÞ þ uðx; y þ DÞ þ uðx; y � DÞ�=4: ð3:8Þ

If we examine the behavior of the function uðrÞ at points on a grid with lattice

spacing �, we may give this equation a probabilistic interpretation. If we

consider a grid of points in the x–y plane with a lattice spacing of D, then the

probability of a random walk returning to the point ðx; yÞ from any of its

nearest neighbor sites is 1/4. If we place the boundary on the grid, as shown

in Fig. 3.2, a random walk will terminate at a boundary point ðx 0; y 0Þ where

the variable u has the value

uðx 0; y 0Þ ¼ f ðx 0; y 0Þ: ð3:9Þ

One can then estimate the value of uðx; yÞ by executing many random walks

which begin at the point ðx; yÞ as the average over all N walks which have

been performed:

uðx; yÞ 
 1

N

X
i

f ðx 0
i ; y 0

i Þ: ð3:10Þ

After a large number of such walks have been performed, a good estimate of

uðx; yÞ will be produced, but the estimate will depend upon both the coarse-

ness of the grid as well as the number of random walks generated.

Example

Consider two concentric, circular conductors in a plane which are placed into the

center of a square box which is 20 cm on a side. The inner conductor has a radius

of 4 cm and carries a potential of 2 V; the outer conductor has a radius of 16 cm

and has a potential of 4 V. What is the potential halfway between the two con-

ductors? Consider a square box with an L � L grid. Execute N random walks and

follow the estimates for the potential as a function of N for different grid sizes L.

Note that the variation of the estimates with grid size is not simple.

52 3 Simple sampling Monte Carlo methods

Fig. 3.2 Schematic

representation of a

grid superimposed

upon the region of
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N L ¼ 10 L ¼ 20 L ¼ 40 L ¼ 80 L ¼ 160 L ¼ 320

500 3.6560 3.3000 3.2880 3.3240 3.3400 3.3760V

5 000 3.5916 3.2664 3.3272 3.3372 3.3120 3.3172

10 000 3.6318 3.2886 3.3210 3.3200 3.3128 3.3222

50 000 3.6177 3.2824 3.3149 3.3273 3.3211 3.3237

100 000 3.6127 3.2845 3.3211 3.3240 3.3243 3.3218

exact value ¼ 3:3219 V.

Of course, with these comments and the preceding example we only wish to

provide the flavor of the idea – more detailed information can be found in a

comprehensive book (Sabelfeld, 1991).

3.4 SIMULATION OF RADIOACTIVE DECAY

One of the simplest examples of a physical process for which the Monte Carlo

method can be applied is the study of radioactive decay. Here one begins with

a sample of N nuclei which decay at rate 	 sec�1. We know that the physics of

the situation specifies that the rate of decay is given by

dN=dt ¼ �	N; ð3:11Þ
where the nuclei which decay during the time interval dt can be chosen

randomly. The resultant time dependence of the number of undecayed nuclei

is

N ¼ Noe�	t; ð3:12Þ
where No is the initial number of nuclei and 	 is related to the ‘half-life’ of

the system. In the most primitive approach, the position of the nuclei plays

no role and only the number of ‘undecayed’ nuclei is monitored. Time is

divided into discrete intervals, and each undecayed nucleus is ‘tested’ for

decay during the first time interval. The number of undecayed nuclei is

determined, time is then incremented by one step, and the process is repeated

so that the number of undecayed nuclei can be determined as a function of

time. The time discretization must be done intelligently so that a reasonable

number of decays occur in each time step or the simulation will require too

much cpu time to be effective. On the other hand, if the time step is chosen to

be too large, then so many decays occur during a given interval that there is

very little time resolution. This entire process may be repeated many times to

obtain a series of independent ‘experiments’ and the mean value of N, as well

as an error bar, may be determined for each value of time. Note that since

each ‘sample’ is independent of the others, measurements for each value of

time are uncorrelated even though there may be correlations between differ-

ent times for a single sample. The extension to systems with multiple decay

paths is straightforward.
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Problem 3.4 Given a sample with 10000 radioactive nuclei each of which
decays at rate p per sec, what is the half-life of the sample if p ¼ 0:2? (Hint:
The most accurate way to determine the half-life is not to simply determine
the time which it takes for each sample to decay to half its original size.
What does physics tell you about the expected nature of the decay for all
times?)

3.5 SIMULATION OF TRANSPORT PROPERTIES

3.5.1 Neutron transport

Historically the examination of reactor criticality was among the first pro-

blems to which Monte Carlo methods were applied. The fundamental ques-

tion at hand is the behavior of large numbers of neutrons inside the reactor.

In fact, when neutrons travelling in the moderator are scattered, or when a

neutron is absorbed in a uranium atom with a resultant fission event, particles

fly off in random directions according to the appropriate differential cross-

sections (as the conditional probabilities for such scattering events are called).

In principle, these problems can be described by an analytic theory, namely

integro-differential equations in a six-dimensional space (Davison, 1957); but

this approach is rather cumbersome due to the complicated, inhomogeneous

geometry of a reactor that is composed of a set of fuel elements surrounded

by moderator, shielding elements, etc. In comparison, the direct simulation of

the physical processes is both straightforward and convenient. (Note that

such types of simulations, where one follows the trajectories of individual

particles, belong to a class of methods that is called ‘event-driven Monte

Carlo’.)

To begin with we consider a neutron with energy E that is at position r at

time t and moving with constant velocity in the direction of the unit vector u.

The neutron continues to travel in the same direction with the same energy

until at some point on its straight path it collides with some atom of the

medium. The probability that the particle strikes an atom on an infinitesimal

element of its path is 
c�s, where 
c is the cross-section for the scattering or

absorption event. The value of 
c depends on E and the type of medium in

which the neutron is travelling. If we consider a path of length s which is

completely inside a single medium (e.g. in the interior of a uranium rod, or

inside the water moderator, etc.), the cumulative distribution of the distances

s that the particle travels before it hits an atom of the medium is

PcðsÞ ¼ 1 � expð�
csÞ.
In the Monte Carlo simulation we now simply keep track of the particles

from collision-to-collision. Starting from a state ðE; u; rÞ, we generate a dis-

tance s with the probability PcðsÞ (if the straight line from r to rþ su does not

intersect any boundary between different media). Now the particle has a

collision at the point r 0 ¼ rþ su. If there is a boundary, one only allows

the particle to proceed up to the boundary. If this is the outer boundary,
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this means that the neutron has escaped to the outside world and it is not

considered further. If it is an interior boundary between regions, one repeats

the above procedure, replacing r by the boundary position, and adjusts 
c to

be the appropriate value for the new region that the neutron has entered.

This procedure is valid because of the Markovian character of the distribu-

tion PcðsÞ. Note that E determines the velocity v of each neutron, and thus the

time t 0 of the next event is uniquely determined. The collision process itself

is determined by an appropriate differential cross-section, e.g. for an inelastic

scattering event it is d2
=dO d!, where O is the solid angle of the scattering

(with the z-axis in the direction of u) and �h! ¼ E 0 � E the energy change.

These cross-sections are considered to be known quantities because they can

be determined by suitable experiments. One then has to sample E 0 and the

angles O ¼ ð�; ’Þ from the appropriate conditional probability.

Now, one problem in reactor criticality is that the density function �ðE;
u; rÞ will develop in time with a factor exp½�ðt 0 � tÞ�: if � > 0, the system is

supercritical, whereas if � < 0, it is subcritical. In order to keep the number

of tracks from either decreasing or increasing too much, reweighting tech-

niques must be used. Thus, if � is rather large, one randomly picks out a

neutron and discards it with probability p. Otherwise, the neutron is allowed

to continue, but its weight in the sample is increased by a factor ð1 � pÞ�1.

The value p can be adjusted such that the size of the sample (i.e. the number

of neutron tracks that are followed) stays asymptotically constant.

3.5.2 Fluid flow

The direct simulation Monte Carlo method (Bird, 1987; Watanabe et al.,

1994) has proven to be useful for the simulation of fluid flow from an

atomistic perspective. The system is divided into a number of cells, and

trajectories of particles are followed for short time intervals by decoupling

interparticle collisions. Collision subcells are used in which interparticle col-

lisions are treated on a probabilistic basis. The size of the collision subcells

must be monitored so that it is smaller than the mean free path of the

particles; otherwise atomistic information is lost. (Thus, the method is well

suited to the study of gases but should not be expected to work well for very

dense fluids.) This method has succeeded in delivering information about a

number of different systems. For example, this technique produces vortices

in a flow field. The direct simulation Monte Carlo method has also been used

to study the transition from conduction to convection in a Rayleigh–Bénard

system, complete with the formation of convection rolls, as the bottom plate

is heated. The results for this problem compared quite favorably with those

from solution of the Navier–Stokes equation. Typically a system of 40 � 20

sampling cells each of which contained 5 � 5 collision cells was used. Each

collision cell contained between 16 and 400 particles. One result of this study

was the discovery that semi-slip boundary conditions at the top and bottom

are inadequate; instead strict diffuse boundary conditions must be used.
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3.6 THE PERCOLATION PROBLEM

A geometric problem which has long played a significant role in statistical

mechanics is that of ‘percolation’. Percolation processes are those in which,

by the random addition of a number of objects, a contiguous path which

spans the entire system is created. In general, particles may be distributed

continuously in space and the overlap between particles determines the con-

nected paths; however, for our purposes in the first part of this discussion we

shall confine ourselves to lattice systems in which the random creation of

bonds eventually leads to a connected ‘cluster’ which spans the lattice. We

shall briefly discuss some aspects of percolation here. Percolation has a long

history of study by various numerical methods, and for the reader who is

interested in obtaining a more thorough knowledge of various aspects of

percolation theory, we emphasize that other literature will provide further

information (Stauffer and Aharony, 1994).

3.6.1 Site percolation

A lattice is composed of a periodic array of potential occupation sites. Initially

the lattice is empty, i.e. none of the sites are actually occupied. Sites are then

randomly occupied with probability p and clusters are formed of spins which

occupy neighboring sites, i.e. bonds are drawn between all occupied nearest

neighbor sites. The smallest cluster can then be a single site if none of the

nearest neighbor sites are occupied. Two different properties of the system

can be determined directly. First of all, for each value of p the probability

Pspan of having a spanning, or ‘infinite’ cluster may be determined by gen-

erating many realizations of the lattice and counting the fraction of those cases

in which a spanning cluster is produced. As the lattice size becomes infinite,

the probability that a spanning cluster is produced becomes zero for p < pc
and unity for p > pc. Another important quantity is the order parameter M

which corresponds to the fraction of occupied sites in the lattice which belong

to the infinite cluster. The simplest way to determine M through a simulation

is to generate many different configurations for which a fraction p of the sites

is occupied and to count the fraction of states for which an infinite cluster

appears. For relatively sparsely occupied lattices M will be zero, but as p

increases eventually we reach a critical value p ¼ pc called the ‘percolation

threshold’ for which M > 0. As p is increased still further, M continues to

grow. The behavior of the percolation order parameter near the percolation

threshold is given by an expression which is reminiscent of that for the

critical behavior of the order parameter for a temperature induced transition

given in Section 2.1.2.

M ¼ Bðp � pcÞ� ð3:13Þ
where ðp � pcÞ plays the same role as ðTc � TÞ for a thermal transition. Of

course, for a finite Ld lattice in d-dimensions the situation is more compli-

cated since it is possible to create a spanning cluster using just dL bonds as
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shown in Fig. 3.3. Thus, as soon as p ¼ d=Ld�1 the percolation probability

becomes non-zero even though very few of the clusters percolate. For ran-

dom placement of sites on the lattice, clusters of all different sizes are formed

and percolation clusters, if they exist, are quite complex in shape. (An exam-

ple is shown in Fig. 3.3b.) The characteristic behavior of M vs. p is shown for

a range of lattice sizes in Fig. 3.4. As the lattice size increases, the finite size

effects become continuously smaller. We see that M (defined as P1 in the

figure) rises smoothly for values of p that are distinctly smaller than pc rather

than showing the singular behavior given by Eqn. (3.13). As L increases,

however, the curves become steeper and steeper and eventually Eqn. (3.13)
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emerges for macroscopically large lattices. Since one is primarily interested in

the behavior of macroscopic systems, which clearly cannot be simulated

directly due to limitations on cpu time and storage, a method must be

found to extrapolate the results from lattice sizes L which are accessible to

L ! 1. We will take up this issue again in detail in Chapter 4. The

moments of the cluster size distribution also show critical behavior. Thus,

the equivalent of the magnetic susceptibility may be defined as

� ¼
X

c

s2nðsÞ ð3:14Þ

where nðsÞ is the number of clusters of size s and the sum is over all clusters.

At the percolation threshold the cluster size distribution nðsÞ also has char-

acteristic behavior

nðsÞ / s��; s ! 1; ð3:15Þ
which implies that the sum in Eqn. (3.14) diverges for L ! 1.

The implementation of the Monte Carlo method to this problem is, in

principle, quite straightforward. For small values of p it is simplest to begin

with an empty lattice, and randomly fill the points on the lattice, using pairs

(in two dimensions) of random integers between 1 and L, until the desired

occupation has been reached. Clusters can then be found by searching for

connected pairs of nearest neighbor occupied sites. For very large numbers of

occupied sites it is easiest to start with a completely filled lattice and randomly

empty the appropriate number of sites. In each case it is necessary to check

that a point is not chosen twice, so in the ‘interesting’ region where the

system is neither almost empty nor almost full, this method becomes ineffi-
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cient and a different strategy must be found. Instead one can go through an

initially empty lattice, site by site, filling each site with probability p. At the

end of this sweep the actual concentration of filled sites is liable to be different

from p, so a few sites will need to be randomly filled or emptied until the

desired value of p is reached. After the desired value of p is reached the

properties of the system are determined. The entire process can be repeated

many times so that we can obtain mean values of all quantities of interest as

well as determine the error bars of the estimates.

Problem 3.5 Consider an L� L square lattice with L ¼ 16, 32, and 64.
Determine the percolation probability for site percolation as a function of
p. Estimate the percolation threshold.

3.6.2 Cluster counting: the Hoshen^Kopelman algorithm

In order to identify the clusters in a system and to determine the largest

cluster and see if it is a percolating cluster, a rapid routine must be devised. A

very fast ‘single-pass’ routine by Hoshen and Kopelman (1976) is simple to

implement and quite efficient. It is rather easy to identify clusters by going

through each row of the lattice in turn and labeling each site which is con-

nected to a nearest neighbor with a number. Thus the cluster label Li;j ¼ n

for each occupied site, where n is the cluster number which is assigned when

looking to see if previously inspected sites are nearest neighbors or not. This

process is shown for the first row of a square lattice in Fig. 3.5. The difficulty

which arises from such a direct approach becomes obvious when we consider

the third row of the lattice at which point we realize that those sites which

were initially assigned to cluster 1 and those assigned to cluster 2 actually

belong to the same cluster. A second pass through the lattice may be used to

eliminate such errors in the cluster assignment, but this is a time consuming

process. The Hoshen–Kopelman method corrects such mislabeling ‘on the

fly’ by introducing another set of variables known as the ‘labels of the labels’,

Nn. The ‘label of the label’ keeps track of situations in which we discover that

two clusters actually belong to the same cluster, i.e. that an occupied site has

two nearest neighbors which have already been assigned different cluster

numbers. When this happens the ‘label of the label’ which is larger is set

to the negative of the value of the smaller one (called the ‘proper’ label) so

that both ‘clusters’ are identified as actually belonging to the same cluster and

the proper label is set equal to the total size of the cluster. Thus in Fig. 3.5 we
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see that after examination of the third row has been completed, N1 ¼ 7, and

N2 ¼ �1. The Hoshen–Kopelman method finds a wide range of application

beyond the simple percolation problem mentioned here.

Of course, there are many other properties of the clusters which are

interesting. As an example we mention the ‘backbone’, which is that portion

of the cluster which forms a connected path with no dangling ends between

the two most distant points. This information is lost during implementation

of the Hoshen–Kopelman algorithm, but other types of ‘depth first’ and

‘breadth first’ searches may be used, see e.g. Babalievski (1998), which retain

more information. These generally sacrifice the very efficient use of storage in

order to keep more detail.

Problem 3.6 Use theHoshen^Kopelmanmethod to determine the cluster
size dependence for the site dilution problem with L ¼ 64 and p ¼ 0:59.
Can it be described in terms of a power law?

3.6.3 Other percolation models

The simplest variation of the percolation model discussed above is the case

where the bonds are thrown on the lattice randomly and clusters are formed

directly from connected bonds. All of the formalism applied to the site

problem above is also valid, and ‘bond percolation’ problems have been

studied quite extensively in the past. The major difference is that clusters,

defined in terms of connected lattice size, may have a minimum size of 2. A

physical motivation for the study of such models comes from the question of

the nature of the conductivity of disordered materials (‘random resistor net-

works’). Another class of models results if we remove the restriction of a

lattice and allow particles to occupy positions which vary continuously in

space. ‘Continuum percolation’, as it is called, suffers from the added com-

plication that tricks which can sometimes be used on lattice models cannot be

applied. A quite different process is known as ‘invasion percolation’; its

invention was prompted by attempts to understand flow in porous media

by Wilkinson and Willemsen (1983). Random numbers are assigned to each

site of a lattice. Choose a site, or sites, on one side of the lattice and draw a

bond to the neighbor which has the lowest random number assigned to it.

(The growing cluster represents the invading fluid with the remainder of the

sites representing the initial, or defending, fluid.) This process continues

until the cluster reaches the other side (i.e. the exit).

3.7 FINDING THE GROUNDSTATE OF A
HAMILTONIAN

For systems with Hamiltonians the groundstate is usually a relatively unique,

minimum energy state. If the groundstate of a system is not known, a simple

Monte Carlo simulation can be used to find states of low energy, and hope-
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fully that of lowest energy. For purposes of discussion we will consider a

system of Ising spins. Some initial, randomly chosen state of the system is

selected and then one proceeds through the lattice determining the change in

energy of the system if the spin is overturned; if the energy is lowered the

spin is overturned, otherwise it is left unchanged and one proceeds to the

next site. The system is swept through repeatedly, and eventually no spin-

flips occur; the system is then either in the groundstate or in some metastable

state. This process can be repeated using different initial configurations, and

one tests to see if the same state is reached as before or if a lower energy state

is found. For systems with very complicated energy landscapes (i.e. the

variation of the energy as some parameter x is changed) there may be

many energy minima of approximately the same depth and a more sophisti-

cated strategy will have to be chosen. This situation will be discussed in the

next chapter. In some cases relatively non-local metastable structures, e.g.

anti-phase domains, are formed and cannot be removed by single spin flips.

(Anti-phase domains are large regions of well ordered structures which are

‘shifted’ relative to each other and which meet at a boundary with many

unsatisfied spins.) It may then be helpful to introduce multiple spin flips

or other algorithmic changes as a way of eliminating these troublesome

defects. In all cases it is essential to begin with diverse initial states and

check that the same ‘groundstate’ is reached.

Example

Consider an L � L Ising square lattice in which all spins to the left of a diagonal

are initially up and all those to the right are down. All portions of the system are

in their lowest energy state except for those spins which are in the domain wall

between the up-spin and down-spin regions. Since the spins in the domain wall

have equal numbers of up and down neighbors they cannot lower their energy by

overturning, but if we allow those spins to flip with 50% probability, we provide

the method with a way of eventually eliminating the domain structure.

3.8 GENERATION OF ‘RANDOM’ WALKS

3.8.1 Introduction

In this sub-section we shall briefly discuss random walks on a lattice which is

a special case of the full class of random walks. A random walk consists of a

connected path formed by randomly adding new bonds to the end of the

existing walk, subject to any restrictions which distinguish one kind of ran-

dom walk from another. The mean-square end-to-end distance hR2i of a walk

with N steps may diverge as N goes to infinity as (de Gennes, 1979)

hR2ðNÞi ¼ aN2�ð1 þ bN�D þ � � �Þ ð3:16Þ
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where � is a ‘critical exponent’ that determines the universality class. Here a

and b are some ‘non-universal’ constants which depend on the model and

lattice structure chosen and D is a ‘correction to scaling’ exponent. In such

cases there is a strong analogy to critical behavior in percolation or in tem-

perature driven transitions in systems of interacting particles. The equivalent

of the partition function for a system undergoing a temperature driven tran-

sition is given by the quantity ZN which simply counts the number of distinct

random walks on the lattice and which behaves as

ZN / N��1qN
eff ð3:17Þ

as N ! 1. � is another critical exponent and qeff is an effective coordination

number which is related to the exchange constant in a simple magnetic

model. The formalism for describing this geometric phenomenon is thus

the same as for temperature driven transitions, even including corrections

to scaling in the expression for the mean-square end-to-end distance as

represented by the term in N�D in Eqn. (3.16). The determination of �
and � for different kinds of walks is essential to the classification of these

models into different universality classes. We now know that the lattice

dimensionality as well as the rules for the generation of walks affect the

critical exponents and thus the universality class (Kremer and Binder,

1988). Examples of several kinds of walks are shown in Fig. 3.6.

3.8.2 Random walks

For simple, random walks (RW) the walker may cross the walk an infinite

number of times with no cost. In d dimensions the end-to-end distance

diverges with the number of steps N according toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2ðNÞi

q
/ N

1
2: ð3:18Þ

A simulation of the simple random walk can be carried out by picking a

starting point and generating a random number to determine the direction

of each subsequent, additional step. After each step the end-to-end distance
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can be calculated. Errors may be estimated by carrying out a series of inde-

pendent random walks and performing a statistical analysis of the resultant

distribution. Thus, the simple RW has the trivial result � ¼ 1=2 but is not

really very useful in understanding physical properties of polymers in dilute

solution; but random walks have great significance for the description of

diffusion phenomena – the number of steps N is then related to time.

At this point we briefly mention a simple variant of the RW for which the

choice of the ðn þ 1Þ step from the nth step of a return to the point reached at

the ðn � 1Þ step, i.e. an ‘immediate reversal’, is forbidden. Although for this

so-called ‘non-reversal random walk’ (NRRW) the exponents remain

unchanged, i.e. � ¼ 1=2, � ¼ 1, as for the ordinary RW, prefactors change.

This means that in Eqn. (3.17) qeff ¼ ðq � 1Þ for the NRRW whereas qeff ¼ q

for the ordinary RW, etc. This NRRW model represents, in fact, a rather

useful approach for the modeling of polymer configurations in dense melts,

and since one merely has to keep track of the previous step and then choose

one of the remaining q � 1 possibilities, it is straightforward to implement.

Furthermore, this NRRW model is also a good starting point for the simula-

tion of ‘self-avoiding walks’, a topic to which we shall turn in the next section.

Problem 3.7 Perform a number of random walk simulations to estimate
the value of � for a simple random walk on a square lattice. Give error bars
and compare your result with the exact answer in Eqn. (3.18).

3.8.3 Self-avoiding walks

In contrast to the simple random walk, for a self-avoiding walk (SAW), the

walker dies when attempting to intersect a portion of the already completed

walk. (Immediate reversals are inherently disallowed.) There has been enor-

mous interest in this model of SAWs since this is the generic model used to

probe the large scale statistical properties of the configurations of flexible

macromolecules in good solvents. Although it is possible to carry out an

exact enumeration of the distribution of walks for small N, it is in general

not possible to extract the correct asymptotic behavior for the range of N

which is accessible by this method. Monte Carlo methods have also been used

to study much larger values of N for different kinds of walks, but even here

very slow crossover as a function of N has complicated the analysis. After

each step has been added, a random number is used to decide between the

different possible choices for the next step. If the new site is one which

already contains a portion of the walk, the process is terminated at the Nth

step. Attrition becomes a problem and it becomes difficult to generate large

numbers of walks with large N. The most simple minded approach to the

analysis of the data is to simply make a plot of loghR2ðNÞi vs: logN and to

calculate � from the slope. If corrections to scaling are present, the behavior

of the data may become quite subtle and a more sophisticated approach is

needed. The results can instead be analyzed using traditional ‘ratio methods’
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which have been successful in analyzing series expansions. In this manner we

can calculate an ‘effective exponent’ by forming the ratio

�ðNÞ ¼ 1

2

ln hR2ðN þ iÞi=hR2ðN � iÞi� �
ln½ðN þ iÞ=ðN � iÞ� ð3:19Þ

for different values of i � N. The values of i must chosen to be large enough

to help eliminate ‘short time’ noise in the comparison of nearby values but

small enough that the effects of correction terms do not infect the effective

exponent estimate. The effective exponent is then related to the true value,

i.e. for N ¼ 1, by

�ðNÞ ¼ �� 1=2 bN�D þ � � � : ð3:20Þ
Thus, by extrapolation to N ! 1 we can extract a rather accurate estimate

for the (asymptotic) exponent. This method, which is introduced here for

convenience, is not restricted to SAWs and can be applied to many problems

involving enumeration. For SAWs the current estimates for � are (Kremer

and Binder, 1988)

� ¼ 3=4; d ¼ 2; ð3:21aÞ
� 
 0:588; d ¼ 3; ð3:21bÞ
� ¼ 1=2; d � 4: ð3:21cÞ

The exponent � is also of great interest and numerical estimates can be made

by comparing the values of the ‘partition function’ which are obtained for two

successive values of N, i.e. using Eqn. (3.17):

ln
ZðNÞ

ZðN � 1Þ
� 	

¼ ln qeff þ ð� � 1Þ=N: ð3:22Þ

Here, too, a more sensitive analysis can be made by using ‘symmetric’ values

in step number by looking not only at ZðNÞ but also ZðN þ iÞ and ZðN � iÞ
so that

ln
ZðNÞ

ZðN � iÞ � ln
ZðN þ iÞ

ZðNÞ ¼ ð� � 1Þ ln N2

ðN � iÞðN þ iÞ ð3:23Þ

! ð1 � �Þi2=N2:

Once again, i must be chosen to be sufficiently large that the effects of ‘short

time’ fluctuations are minimized but small enough that curvature effects do

not enter.

Although these techniques are very straightforward, many research pro-

blems of current interest remain that one can solve with them. For example,

consider the case of a star polymer adsorbed with its core on a wall as shown

in Fig. 3.7a. While in two dimensions we expect that the size of a polymer

scales with the number of monomers as R � N� ¼ N3=4, for a star polymer

we have the additional question of how the number of arms f affects the

scaling in the macromolecular object. This question was studied using a

simple sampling Monte Carlo method by Ohno and Binder (1991). To
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remedy the attrition problem mentioned earlier, they used a variation of

simple sampling known as the enrichment method. Treating each arm as a

self-avoiding walk on a lattice with q-fold coordination, and avoiding immedi-

ate reversals, they added each new bond to randomly connect to one of the

ðq � 1Þ neighbor sites. Thus, for example, on a square lattice the probability

that the self-avoiding walk does not ‘die’ in this step is ð3=qeff Þ�f 
 0:880 f .

For large f the probability of growing a star polymer with long arms would be

vanishingly small. Thus, the recipe is to attempt to add a bond to each arm

not just once but many times, i.e. on average m ¼ ð3=qeff Þ f times, and keep-

ing track of the survivors. In this way a ‘population’ of star polymers that is

grown in parallel from N centers neither dies out nor explodes in number as

bonds are added consecutively to create arms of length l. Of course there is a

price that must be paid: different star polymers that ‘survive’ in the final

‘generation’ are not, in general, statistically independent of each other.

Nevertheless, this method is useful in a practical sense.

3.8.4 Growing walks and other models

Because of the attrition, the generation of long SAWs is quite difficult. An

alternative strategy is to attempt to develop ‘smart walks’ which find a way to

avoid death. An example is the growing self-avoiding walk (GSAW)

(Lyklema and Kremer, 1986). The process proceeds at first as for SAWs,

but a walker senses a ‘trap’ and chooses instead between the remaining ‘safe’

directions so that it can continue to grow. Other, still ‘smarter’ walks have

been studied numerically (Lyklema, 1985) and a number of sophisticated
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Fig. 3.7 (a) A two-dimensional star polymer consisting of f ¼ 4 flexible arms covalently linked

together in a core (dot) adsorbed at a one-dimensional repulsive wall (shaded). (b) Log–log plot of

R=N3=4 for center-adsorbed stars plotted vs. the number of arms, where N ¼ fl is the total

number of monomers, l ¼ 50 is the number of monomers per arm, and R is the center-end

distance of the arms (upper set of points) or the mean distance of a monomer from the center

(lower set of points). Straight lines illustrate agreement with the theoretical prediction

R=N3=4 / f �1=2. From Ohno and Binder (1991).



methods have been devised for the simulation of polymeric models

(Baumgärtner, 1992).

To a great extent modeling has concentrated on the ‘good solvent’ case in

which polymers are treated as pure SAWs (self-avoiding walks); however, in

�-solutions the solvent–monomer repulsion leads to a net attraction between

the chain monomers. Thus, the SAW can be generalized by introducing an

energy that is won if two nearest neighbor sites are visited by the walk. Of

course, the weighting of configurations then requires appropriate Boltzmann

factors (Kremer and Binder, 1988). Exactly at the �–point the SAW condi-

tion and the attraction cancel and the exponents become those of the simple

random walk. The �-point may then be viewed as a kind of tricritical point,

and for d ¼ 3 the exponents should thus be mean-field-like.

3.9 FINAL REMARKS

In closing this chapter, we wish to emphasize that there are related applica-

tions of Monte Carlo ‘simple sampling’ techniques outside of statistical phy-

sics which exist in broad areas of applied mathematics, also including the so-

called ‘quasi-Monte Carlo methods’ (Niederreiter, 1992). These applications

deal with mathematical problems (Monte Carlo algorithms for calculating

eigenvalues, or for solving integro-differential equations, etc.) and various

applications ranging from economy to technology (option pricing, radiosity

and illumination problems, computer graphics, road visibility in fog, etc.).

One difficulty with quasi-Monte Carlo methods is that error estimation is not

straightforward. In fact, Schlier (2004) has shown that predictors of the

asymptotic discrepancy function which are often used as measures of the

‘quality’ of the results actually have little relevance in practical situations.

Such problems are completely outside of the scope of our presentation;

however, we direct the interested reader to Niederreiter et al. (1998) for a

series of recent review articles.
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4 Importance sampling Monte Carlo

methods

4.1 INTRODUCTION

In this chapter we want to introduce simple importance sampling Monte

Carlo techniques as applied in statistical physics and which can be used for

the study of phase transitions at finite temperature. We shall discuss details,

algorithms, and potential sources of difficulty using the Ising model as a

paradigm. It should be understood, however, that virtually all of the discus-

sion of the application to the Ising model is relevant to other models as well,

and a few such examples will also be discussed. Other models as well as

sophisticated approaches to the Ising model will be discussed in later chap-

ters. The Ising model is one of the simplest lattice models which one can

imagine, and its behavior has been studied for about three-quarters of a

century. The simple Ising model consists of spins which are confined to

the sites of a lattice and which may have only the values þ1 or �1. These

spins interact with their nearest neighbors on the lattice with interaction

constant J; the Hamiltonian for this model was given in Eqn. (2.19) but we

repeat it again here for the benefit of the reader:

H ¼ �J
X
i;j

�i�j �H
X
i

�i ð4:1Þ

where �i ¼ �1. The Ising model has been solved exactly in one dimension

and as a result it is known that there is no phase transition. In two dimensions

Onsager obtained exact results (Onsager, 1944) for the thermal properties of

L�M lattices with periodic boundary conditions in zero field which showed

that there is a second order phase transition with divergences in the specific

heat, susceptibility, and correlation length. In Fig. 4.1 we show configurations

for finite L� L Ising lattices in zero field; these states show the model almost

in the groundstate, near the phase transition, and at high temperatures where

there are virtually no correlations between spins. Note that in zero field the

model has up–down symmetry so that overturning all the spins produces a

degenerate state. At high temperature all the clusters of like spins are small,

near the transition there is a broad distribution of clusters, and at low tem-

peratures there is a single large cluster of ordered spins and a number of small

clusters of oppositely directed spins.
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In principle, the Ising model can be simulated using the simple sampling

techniques discussed in the previous chapter: spin configurations could be

generated completely randomly and their contribution weighted by a

Boltzmann factor. Unfortunately most of the configurations which are pro-

duced in this fashion will contribute relatively little to the equilibrium

averages, and more sophisticated methods are required if we are to obtain

results of sufficient accuracy to be useful.

Problem 4.1 Suppose we carry out a simple sampling of the Ising model
configurations on an L � L lattice at kBT=J ¼ 1:5. What is the distribution of
themagnetizationM of the states that are generated?How large is the prob-
ability that a state has a magnetization M > M0, where M0 is some given
value of order unity, e.g. the spontaneous magnetization for T < Tc. Use
your result to explain why simple sampling is not useful for studying the
Ising model.

4.2 THE SIMPLEST CASE: SINGLE SPIN-FLIP
SAMPLING FOR THE SIMPLE ISING MODEL

The nearest neighbor Ising model on the square lattice plays a special role in

statistical mechanics – its energy, spontaneous magnetization, and correla-

tions in zero magnetic field can be calculated exactly, and this fact implies

that the static critical exponents are also known. Critical exponents are known

exactly for only a small number of models. The most notable of the exactly

soluble models is the two-dimensional Ising square lattice (Onsager, 1944) for

which the exact solution shows that the critical exponents which were dis-

cussed in Chapter 2 are

� ¼ 0; � ¼ 1=8; and 	 ¼ 7=4: ð4:2Þ
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Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) T 	 Tc; (center) T 
 Tc; (right)

T � Tc.



We shall first discuss techniques which are suitable for simulating this model

so that there are exact results with which the data from the Monte Carlo

simulations may be compared.

4.2.1 Algorithm

In the classic, Metropolis method (Metropolis et al., 1953) configurations are

generated from a previous state using a transition probability which depends

on the energy difference between the initial and final states. The sequence of

states produced follows a time ordered path, but the time in this case is

referred to as ‘Monte Carlo time’ and is non-deterministic. (This can be

seen from an evaluation of the commutator of the Hamiltonian and an arbi-

trary spin; the value, which gives the time dependence of the spin, is zero.)

For relaxational models, such as the (stochastic) Ising model (Kawasaki,

1972), the time-dependent behavior is described by a master equation (cf.

Section 2.2.4)

@PnðtÞ
@t

¼ �
X
n6¼m

½PnðtÞWn!m � PmðtÞWm!n�; ð4:3Þ

where PnðtÞ is the probability of the system being in state n at time t, and

Wn!m is the transition rate for n ! m. In equilibrium @PnðtÞ=@t ¼ 0 and the

two terms on the right-hand side of Eqn. (4.3) must be equal! The resultant

expression is known as ‘detailed balance’, as mentioned previously in Eqn.

(2.84)

PnðtÞWn!m ¼ PmðtÞWm!n: ð4:4Þ
The probability of the nth state occurring in a classical system is given by

PnðtÞ ¼ e�En=kBT=Z ð4:5Þ
where Z is the partition function. This probability is usually not exactly

known because of the denominator; however, one can avoid this difficulty

by generating a Markov chain of states, i.e. generate each new state directly

from the preceding state. If we produce the nth state from the mth state, the

relative probability is the ratio of the individual probabilites and the denomi-

nator cancels. As a result, only the energy difference between the two states is

needed, e.g.

�E ¼ En � Em: ð4:6Þ
Any transition rate which satisfies detailed balance is acceptable. The first

choice of rate which was used in statistical physics is the Metropolis form

(Metropolis et al., 1953)

Wn!m ¼ ��1
o expð��E=kBTÞ; �E > 0 ð4:7aÞ

¼ ��1
o ; �E < 0 ð4:7bÞ
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where �o is the time required to attempt a spin-flip. (Often this ‘time unit’ is

set equal to unity and hence suppressed in the equations.) The way the

Metropolis algorithm is implemented can be described by a simple recipe:

After a set number of spins have been considered, the properties of the

system are determined and added to the statistical average which is being

kept. Note that the random number r must be chosen uniformly in the interval

[0,1], and successive random numbers should be uncorrelated. We shall have

a great deal more to say about random numbers shortly. The ‘standard’

measure of Monte Carlo time is the Monte Carlo step/site (MCS/site)

which corresponds to the consideration of every spin in the system once.

With this algorithm states are generated with a probability proportional to

Eqn. (4.5) once the number of states is sufficiently large that the initial

transients (see Fig. 4.2) are negligible. Then, the desired averages hAi ¼ P
n

PnAn of a variable A simply become arithmetic averages over the entire

sample of states which is kept. Note that if an attempted spin-flip is rejected,

the old state is counted again for the averaging.

A typical time development of properties of the system is shown in Fig.

4.2. For early times the system is relaxing towards equilibrium and both the

internal energy and order parameter are changing, but with different char-

acteristic time scales. There is a second range of times in which the system is

in equilibrium and the properties merely show thermodynamic fluctuations,

and at still longer times one can observe global spin inversion; in a finite

system this will occur in equilibrium between states of equal energy and

spontaneous magnetization which differs only in sign. Of course, the precise

results will depend upon many factors including temperature, lattice size,

boundary conditions, etc., and all of these considerations will be discussed in

forthcoming sections. Fig. 4.2 simply provides a starting point for these

presentations. In a more complex problem one might not know what the

groundstate looks like or what the relevant time scales are. It is thus always

wise to take precautions before interpreting the data. Prudent steps to take

include repeating a given run with different initial states to see if the same

equilibrium distribution is reached and to repeat runs with different random

numbers. By working initially with small systems one can generally keep the

characteristic times short so that it is easy to make ‘long’ runs.
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Metropolis importance sampling Monte Carlo scheme

(1) Choose an initial state

(2) Choose a site i

(3) Calculate the energy change �E which results if the spin at site i

is overturned

(4) Generate a random number r such that 0 < r < 1

(5) If r < expð��E=kBTÞ, flip the spin

(6) Go to the next site and go to (3)



A minor variation on the simple Metropolis algorithm described above

involves the random selection of sites in the lattice to be considered. If this

procedure is used for a system with N sites, 1 MCS/site corresponds to the

consideration of N randomly chosen sites. Note that it is likely that some

spins will be chosen more than once and some not at all during 1 MCS/site.

The time development of the system will look just like that shown in Fig. 4.2,

but the explicit variation and time scales will differ from those for the

Metropolis method. This random selection of sites must be used if one is

not just interested in static equilibrium properties but wishes to record

dynamic correlation functions of the corresponding stochastic model.

As shown in the ‘principle of detailed balance’, Eqn. (4.4), the Metropolis

flipping probability is not a unique solution. An alternative method, com-

monly referred to as ‘Glauber dynamics’ (Glauber, 1963), uses the single

spin-flip transition rate

Wn!m ¼ ��1
o ½1 þ �i tanhðEi=kBTÞ�; ð4:8Þ

where �iEi is the energy of the ith spin in state n. Unlike the Metropolis

method, the Glauber rate is antisymmetric about 0.5 for Ei ! �Ei. Müller-

Krumbhaar and Binder (1973) showed that both Glauber and Metropolis

algorithms are just special cases of a more general transition rate form. In

most situations the choice between Glauber and Metropolis dynamics is
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somewhat arbitrary; but in at least one instance there is a quite important

difference. At very high temperatures the Metropolis algorithm will flip a

spin on every attempt because the transition probability approaches 1 for

�E > 0. Thus, in one sweep through the lattice every spin overturns, and in

the next sweep every spin overturns again. The process has thus become

non-ergodic (see Section 2.1.3) and the system just oscillates between the two

states. With the Glauber algorithm, however, the transition probability

approaches 1/2 in this instance and the process remains ergodic.

Simplifications are possible for the Ising model which greatly reduce the

amount of computer resources needed. For each spin there are only a small

number of different environments which are possible, e.g. for a square lattice

with nearest neighbor interactions, each spin may have 4, 3, 2 , 1 or 0 nearest

neighbors which are parallel to it. Thus, there are only 5 different energy

changes associated with a successful spin-flip and the probability can be

computed for each possibility and stored in a table. Since the exponential

then need not be computed for each spin-flip trial, a tremendous saving in

cpu time results. Although the rapid increase in available computer memory

has largely alleviated the problem with storage, large Ising systems may be

compressed into a relatively small number of words by packing different

spins into a single word. Each bit then describes the state of a spin so that

e.g. only a single 32 bit word is needed to describe a 32-spin system. For

models with more degrees of freedom available at each site, these simplifica-

tions are not possible and the simulations are consequently more resource

consumptive.

The Ising model as originally formulated and discussed above may be

viewed as a spin-S model with S ¼ 1=2, but the definition can be extended

to the case of higher spin without difficulty. For spin S ¼ 1=2 there are only

two states possible at each site, whereas for S ¼ 1 there are three possible

states, 1, 0, and �1. This means that a nearest neighbor pair can have three

possible states with different energies and the total space of possible lattice

configurations is similarly enlarged. (For higher values of S there will, of

course, be still more states.) The spin-S Ising model can be simulated using

the method just described with the modification that the ‘new’ state to which

a given spin attempts to flip must be chosen from among multiple choices

using another random number. After this is done, one proceeds as before.

One feature of a Monte Carlo algorithm which is important if the method

is to be vectorized (these techniques will be discussed in the next chapter) is

that the lattice needs to be subdivided into non-interacting, interpenetrating

sublattices, i.e. so that the spins on a single sublattice do not interact with

each other. This method, known as the ‘checkerboard decomposition’, can be

used without difficulty on scalar computers as well as on vector platforms. If

one wishes to proceed through the lattice in order using the checkerboard

decomposition, one simply examines each site in turn in a single sublattice

before proceeding to the second sublattice. (We mention this approach here

simply because the checkerboard decomposition is referred to quite often in

the literature.)
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4.2.2 Boundary conditions

4.2.2.1 Periodic boundary conditions

Since simulations are performed on finite systems, one important question

which arises is how to treat the ‘edges’ or boundaries of the lattice. These

boundaries can be effectively eliminated by wrapping the d-dimensional lat-

tice on a ðd þ 1Þ-dimensional torus. This boundary condition is termed a

‘periodic boundary condition’ (pbc) so that the first spin in a row ‘sees’ the

last spin in the row as a nearest neighbor and vice versa. The same is true for

spins at the top and bottom of a column. Figure 4.3 shows this procedure for

a square lattice. This procedure effectively eliminates boundary effects, but

the system is still characterized by the finite lattice size L since the maximum

value of the correlation length is limited to L=2, and the resultant properties

of the system differ from those of the corresponding infinite lattice. (These

effects will be discussed at length in the next section.) The periodic boundary

condition must be used with care, since if the ordered state of the system has

spins which alternate in sign from site to site, a ‘misfit seam’ can be intro-

duced if the edge length is not chosen correctly. Of course, for off-lattice

problems periodic boundary conditions are also easily introduced and equally

useful for the elimination of edge effects.

4.2.2.2 Screw periodic boundary conditions

The actual implementation of a ‘wraparound’ boundary condition is easiest

by representing the spins on the lattice as entries in a one-dimensional vector

which is wrapped around the system. Hence the last spin in a row sees the

first spin in the next row as a nearest neighbor (see Fig. 4.3). In addition to

limiting the maximum possible correlation length, a result of this form of

periodic boundary is that a ‘seam’ is introduced. This means that the proper-

ties of the system will not be completely homogeneous. In the limit of infinite

lattice size this effect becomes negligible, but for finite systems there will be a

systematic difference with respect to fully periodic boundary conditions

which may not be negligible!
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4.2.2.3 Antiperiodic boundary conditions

If periodic boundary conditions are imposed with the modification that the

sign of the coupling is reversed at the boundary, an interface is introduced

into the system. This procedure, known as antiperiodic boundary conditions,

is not useful for making the system seem more infinite, but has the salutory

effect of allowing us to work with a single interface in the system. (With

periodic boundary conditions interfaces could only exist in pairs.) In this

situation the interface is not fixed at one particular location and may wander

back and forth across the boundary. By choosing a coordinate frame centered

in the local interface center one can nevertheless study the interfacial profile

undisturbed by any free edge effects (Schmid and Binder, 1992). Of course,

one chooses this antiperiodic boundary condition in only one (lattice) direc-

tion, normal to the interface that one wishes to study, and retains periodic

boundary conditions in the other direction(s).

In the above example the interface was parallel to one of the surfaces,

whereas in a more general situation the interface may be inclined with respect

to the surface. This presents no problem for simulations since a tilted inter-

face can be produced by simply taking one of the periodic boundaries and

replacing it by a skew boundary. Thus, spins on one side of the lattice see

nearest neighbors on the other side which are one or more rows below,

depending on the tilt angle of the interface. We then have the interesting

situation that the boundary conditions are different in each Cartesian direc-

tion and are themselves responsible for the change in the nature of the

problem being studied by a simple Monte Carlo algorithm. This is but one

example of the clever use of boundary conditions to simplify a particular

problem; the reader should consider the choice of the boundary conditions

before beginning a new study.

4.2.2.4 Antisymmetric boundary conditions

This type of periodic boundary condition was introduced explicitly for L� L

systems with vortices. (Vortices are topological excitations that occur most

notably in the two-dimensional XY-model, see e.g. Section 5.3.9. A vortex

looks very much like a whirlpool in two-dimensional space.) By connecting

the last spin in row n antiferromagnetically with the first spin in row ðL� nÞ,
one produces a geometry in which a single vortex can exist; in contrast with

pbc only vortex–antivortex pairs can exist (Kawamura and Kikuchi, 1993) on

a lattice. This is a quite specialized boundary condition which is only useful

for a limited number of cases, but it is an example of how specialized bound-

aries can be used for the study of unusual excitations.

4.2.2.5 Free edge boundary conditions

Another type of boundary does not involve any kind of connection between

the end of a row and any other row on the lattice. Instead the spins at the end

of a row see no neighbor in that direction (see Fig. 4.3). This free edge
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boundary not only introduces finite size smearing but also surface and corner

effects due to the ‘dangling bonds’ at the edges. (Very strong changes may

occur near the surfaces and the behavior of the system is not homogeneous.)

In some cases, however, the surface and corner behavior themselves become

the subjects of study. In some situations free edge boundaries may be more

realistic, e.g. in modeling the behavior of superparamagnetic particles or

grains, but the properties of systems with free edge boundaries usually differ

from those of the corresponding infinite system by a much greater amount

than if some sort of periodic boundary is used. In order to model thin films,

one uses pbc in the directions parallel to the film and free edge boundary

conditions in the direction normal to the film. In such cases, where the free

edge boundary condition is thought to model a physical free surface of a

system, it may be appropriate to also include surface fields, modified surface

layer interactions, etc. (Landau and Binder, 1990). In this way, one can study

phenomena such as wetting, interface localization–delocalization transitions,

surface induced ordering and disordering, etc. This free edge boundary

condition is also very common for off-lattice problems (Binder, 1983;

Landau, 1996).

4.2.2.6 Mean-field boundary conditions

Another way to reduce finite size effects is to introduce an effective field

which acts only on the boundary spins and which is adjusted to keep the

magnetization at the boundary equal to the mean magnetization in the bulk.

The resultant critical behavior is quite sharp, although sufficiently close to Tc

the properties are mean-field-like. Such boundary conditions have been

applied only sparingly, e.g. for Heisenberg magnets in the bulk (Binder

and Müller-Krumbhaar, 1973) and with one free surface (Binder and

Hohenberg, 1974).

4.2.2.7 Hyperspherical boundary conditions

In the case of long range interactions, periodic boundary conditions may

become cumbersome to apply because each degree of freedom interacts

with all its periodic images. In order to sum up the interactions with all

periodic images, one has to resort to the Ewald summation method (see

Chapter 6). An elegant alternative for off-lattice problems is to put the

degrees of freedom on the d-dimensional surface of a ðd þ 1Þ-dimensional

sphere (Caillol, 1993).

Problem 4.2 Perform a Metropolis Monte Carlo simulation for a 10 � 10
Ising model with periodic boundary conditions. Plot the specific heat (calcu-
lated from the fluctuations of the internal energy, see Chapter 2) and the
order parameter (estimated as the absolute value of the magnetization) as a
function of temperature.
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Problem 4.3 Perform a Metropolis Monte Carlo simulation for a 10 � 10
Ising model with free edge boundary conditions. Plot the specific heat and
the order parameter as a function of temperature.

4.2.3 Finite size effects

4.2.3.1 Order of the transition

In the above discussion we have briefly alluded to the fact that the effects of

the finiteness of the system could be dramatic. (The reader who has actually

worked out Problems 4.1 and 4.2 will have noted that in a 10 � 10 lattice the

transition is completely smeared out!) Since our primary interest is often in

determining the properties of the corresponding infinite system, it is impor-

tant that we have some sound, theoretically based methods for extracting

such behavior for the results obtained on the finite system. One fundamental

difficulty which arises in interpreting simulational data, is that the equili-

brium, thermodynamic behavior of a finite system is smooth as it passes

through a phase transition for both first order and second order transitions.

The question then becomes, ‘How do we distinguish the order of the transi-

tion?’ In the following sections we shall show how this is possible using finite

size scaling.

4.2.3.2 Finite size scaling and critical exponents

At a second order phase change the critical behavior of a system in the

thermodynamic limit can be extracted from the size dependence of the sin-

gular part of the free energy which, according to finite size scaling theory

(Fisher, 1971; Privman, 1990; Binder, 1992), is described by a scaling ansatz

similar to the scaling of the free energy with thermodynamic variables T, H

(see Chapter 2). Assuming homogeneity and using L and T as variables, we

find that

FðL;TÞ ¼ L�ð2��Þ=�Fð"L1=�Þ; ð4:9Þ
where " ¼ ðT � TcÞ=Tc. It is important to note that the critical exponents �
and � assume their infinite lattice values. The choice of the scaling variable

x ¼ "L1=� is motivated by the observation that the correlation length, which

diverges as "�� as the transition is approached, is limited by the lattice size L.

( L ‘scales’ with �; but rather than L=� / "�L, one may also choose "L1=� as

the argument of the function F . This choice has the advantage that F is

analytic since F is analytic in T for finite L.) Appropriate differentiation of the

free energy yields the various thermodynamic properties which have corre-

sponding scaling forms, e.g.

M ¼ L��=�Moð"L1=�Þ; ð4:10aÞ
� ¼ L	=��oð"L1=�Þ; ð4:10bÞ
C ¼ L�=�Coð"L1=�Þ; ð4:10cÞ
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where MoðxÞ, �oðxÞ, and CoðxÞ are scaling functions. In deriving these rela-

tions, Eqns. (4.10a–c), one actually uses a second argument HLð	þ�Þ=� in the

scaling function F in Eqn. (4.9), where H is the field conjugate to the order

parameter. After the appropriate differentiation has been completed H is then

set to zero. Scaling relations such as 2 � � ¼ 	 þ � are also used. Note that

the finite size scaling ansatz is valid only for sufficiently large L and tem-

peratures close to Tc. Corrections to scaling and finite size scaling must be

taken into account for smaller systems and temperatures away from Tc.

Because of the complexity of the origins of these corrections they are not

discussed in detail here; readers are directed elsewhere (Liu and Fisher, 1990;

Ferrenberg and Landau, 1991) for a detailed discussion of these corrections

and techniques for including them in the analysis of MC data. As an example

of finite size behavior, in Fig. 4.4 we show data for the spontaneous magne-

tization of L� L Ising square lattices with pbc. The raw data are shown in

the left-hand portion of the figure, and a finite size scaling plot, made with the

exact values of the critical temperature and critical exponents is shown in the

right-hand portion of the figure. Note that the large scatter of data points in

this plot is characteristic of early Monte Carlo work – the computational

effort entailed in producing these data from Landau (1976) is easily within

the capability of everyone’s PC today, and with any moderately fast work-

station today one can do far better. Exactly at the transition the thermody-

namic properties then all exhibit power law behavior, since the scaling

functions Moð0Þ, �oð0Þ, Coð0Þ just reduce to proportionality constants, i.e.

M / L��=�; ð4:11aÞ
� / L	=�; ð4:11bÞ
C / L�=�; ð4:11cÞ

which can be used to extract estimates for the ratio of certain critical expo-

nents. The power law behavior for the order parameter is verified in Fig. 4.4

(right) directly noting that for small x all data approach a constant, which is

then an estimate of Moð0Þ. Note that the scaling functions that appear in

Eqn. (4.10) are universal, apart from scale factors for their arguments. The

prefactors in Eqn. (4.11) are thus also of interest for the estimation of uni-

versal amplitude ratios (Privman et al., 1991).

In addition to these quantities, which are basically just first or second order

moments of the probability distribution of order parameter or energy, we may

obtain important, additional information by examining higher order moments

of the finite size lattice probability distribution. This can be done quite

effectively by considering the reduced fourth order cumulant of the order

parameter (Binder, 1981). For an Ising model in zero field, for which all odd

moments disappear by symmetry, the fourth order cumulant simplifies to

U4 ¼ 1 � hm4i
3hm2i2 : ð4:12Þ
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From Landau (1976).



As the system size L ! 1, U4 ! 0 for T > Tc and U4 ! 2=3 for T < Tc.

For large enough lattice size, curves for U4 cross as a function of temperature

at a ‘fixed point’ value U� (our terminology here is used in a renormalization

group sense, where the rescaling transformation L 0 ¼ bL with a scale factor

b > 1 is iterated) and the location of the crossing ‘fixed point’ is the critical

point. Hence, by making such plots for different size lattices one can make a

preliminary identification of the universality class from the value of U�
4 and

obtain an estimate for Tc from the location of the crossing point. Of course, if

the sizes used are too small, there will be correction terms present which

prevent all the curves from having a common intersection. Nonetheless there

should then be a systematic variation with increasing lattice size towards a

common intersection. (The same kind of behavior will also be seen for other

models, although the locations of the crossings and values of U4 will

obviously be different.) An example of the behavior which can be expected

is shown in Fig. 4.5 for the Ising square lattice in zero field.

Another technique which can be used to determine the transition tem-

perature very accurately, relies on the location of peaks in thermodynamic

derivatives, for example the specific heat. For many purposes it is easier to

deal with inverse temperature so we define the quantity K ¼ J=kBT and use

K for much of the remainder of this discussion. The location of the peak

defines a finite-lattice (or effective) transition temperature TcðLÞ, or equiva-
lently KcðLÞ, which, taking into account a correction term of the form L�w,
varies with system size like

TcðLÞ ¼ Tc þ �L�1=�ð1 þ bL�wÞ; ð4:13aÞ
KcðLÞ ¼ Kc þ � 0L�1=�ð1 þ b 0L�wÞ; ð4:13bÞ

where �, b, or � 0, b 0 are some (model dependent) constants, and where the

exponents will be the same in the two formulations but the prefactors will

differ. Because each thermodynamic quantity has its own scaling function,

the peaks in different thermodynamic derivatives occur at different tempera-
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tures for finite systems, some with positive �, some with negative �. To use

Eqn. (4.13) to determine the location of the infinite lattice transition it is

necessary to have both an accurate estimate for � and accurate values for finite

lattice ‘transitions’ KcðLÞ. In a case where neither Kc, �, nor w are known

beforehand, a fit using Eqn. (4.13) involves 5 adjustable parameters. Hence, a

reliable answer is only obtained if data with very good statistical accuracy are

used and several quantities are analyzed simulataneously since they must all

have the same Kc, �, and w (see e.g. Ferrenberg and Landau (1991) for an

example).

It has been notoriously difficult to determine � from MC simulation data

because of the lack of quantities which provide a direct measurement. We

now understand that it is useful to examine several thermodynamic deriva-

tives including that of the fourth order magnetization cumulant U4 (Binder,

1981). In the finite size scaling region, the derivative varies with L like

@U4

@K
¼ aL1=�ð1 þ bL�wÞ: ð4:14Þ

Additional estimates for � can be obtained by considering less traditional

quantities which should nonetheless possess the same critical properties.

For example, the logarithmic derivative of the nth power of the magnetization

is

@ lnhmni
@K

¼ ðhmnEi=hmniÞ � hEi ð4:15Þ

and has the same scaling properties as the cumulant slope (Ferrenberg and

Landau, 1991). The location of the maxima in these quantities also provides

us with estimates for KcðLÞ which can be used in Eqn. (4.13) to extrapolate to

Kc. For the three-dimensional Ising model consideration of the logarithmic

derivatives of |m| and m2, and the derivative of the cumulant to determine �
proved to be particularly effective.

Estimates for other critical exponents, as well as additional values for

KcðLÞ, can be determined by considering other thermodynamic quantities

such as the specific heat C and the finite-lattice susceptibility

� 0 ¼ KLd hm2i � hjmji2� �
: ð4:16Þ

Note that the ‘true’ susceptibility calculated from the variance of m,

� ¼ KLdðhm2i � hmi2Þ, cannot be used to determine KcðLÞ because it has

no peak. For sufficiently long runs at any temperature hmi ¼ 0 for H ¼ 0 so

that any peak in � is merely due to the finite statistics of the simulation. For

runs of modest length, hmi may thus have quite different values, depending

on whether or not the system overturned completely many times during the

course of the run. Thus, repetition of the run with different random number

sequences may yield a true susceptibility � which varies wildly from run to

run below Tc. While for T > Tc the ‘true’ susceptibility must be used if one

wishes to estimate not only the critical exponent of � but also the prefactor,

for T < Tc it is �
0 and not � that converges smoothly to the susceptibility of
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a state that has a spontaneous magnetization in the thermodynamic limit. For

T > Tc it is then better to use the result hmi ¼ 0 for H ¼ 0 and estimate �
from � ¼ KLdhm2i.

4.2.3.3 Finite size scaling and first order transitions

If the phase transition is first order, so that the correlation length does not

diverge, a different approach to finite size scaling must be used. We first

consider what happens if we fix the temperature T < Tc of the Ising square

lattice ferromagnet and cross the phase boundary by sweeping the magnetic

field H. The subsequent magnetization curves are shown schematically in

Fig. 4.6. The simplest, intuitive description of the behavior of the probability

distribution of states in the system is plotted in the lower part of the figure. In

the infinite system, in equilibrium, the magnetization changes discontinu-

ously at H ¼ 0 from a value þMsp to a value �Msp. If, however, L is finite,

the system may jump back and forth between two states (see Fig. 4.2) whose

most probable values are �ML, and the resultant equilibrium behavior is

given by the continuous, solid curve. We start the analysis of the finite size
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From Binder and
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behavior by approximating this distribution by two Gaussian curves, one

centered on þML and one at �ML. In this (symmetric) case, the probability

distribution PLðsÞ for the magnetization s then becomes

PLðsÞ ¼ 1
2
Ld=2ð2pkBT�ðLÞÞ�1=2 � exp �ðs�MLÞ2Ld=ð2kBT�ðLÞÞ

� ��
þ exp �ðsþMLÞ2Ld=ð2kBT�ðLÞÞ

� ��
:

ð4:17Þ
If a magnetic field H is now applied then

PLðsÞ ¼ A exp � ðs�MspÞ2 � 2�sH
� �

Ld=2kBT�
� ��

þ exp � ðsþMspÞ2 � 2�sH
� �

Ld=2kBT�
� ��

;

ð4:18Þ

where � is the susceptibility if the system stays in a single phase. The

transition is located at the field for which the weights of the two Gaussians

are equal; in the Ising square lattice this is, of course, at H ¼ 0. It is now

straightforward to calculate the moments of the distribution and thus obtain

estimates for various quantities of interest. Thus,

hsiL � �H þMsp tanh
HMspL

d

kBT

" #
ð4:19Þ

and the susceptibility is ð�L ¼ KLdðhs2iL � hsi2LÞ is defined in analogy with

the ‘true’ susceptibility)

�L ¼ � þM2
spL

d

�
kBT cosh2 HMspL

d

kBT

� !" #
: ð4:20Þ

This expression shows that length enters only via the lattice volume, and

hence it is the dimensionality d which now plays the essential role rather than

a (variable) critical exponent as is the case with a second order transition. In

Fig. 4.7 we show finite size scaling plots for the susceptibility below Tc and at

Tc for comparison. The scaling is quite good for sufficiently large lattices and

demonstrates that this ‘thermodynamic’ approach to finite size scaling for a

first order transition works quite well. Note that the approach of �L to the

thermodynamic limit is quite subtle, because the result depends on the order

in which limits are taken: lim
H!0

lim
L!1

�L ¼ � (as required for the ‘true’ sus-

ceptibility) but lim
L!1

lim
H!0

�L=L
d ¼ M2

sp=kBT .

In other cases the first order transition may involve states which are not

related by any particular symmetry (Binder, 1987). An example is the two-

dimensional q-state Potts model (see Eqn. (2.38)) for q > 4 in which there is a

temperature driven first order transition. At the transition the disordered

state has the same free energy as the q-fold degenerate ordered state. Again

one can describe the distribution of states by the sum of two Gaussians,
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but these two functions will now typically have rather different parameters.

(Challa et al., 1986). The probability distribution function for the internal

energy E per lattice site is (Eþ, Cþ, and E�, C� are energy and specific heat

in the high temperature phase or low temperature phase right at the transi-

tion temperature Tc, respectively, and �T ¼ T � TcÞ

PLðEÞ ¼ A

"
aþffiffiffiffiffiffi
Cþ

p exp
�½E� ðEþ þ Cþ�TÞ�2Ld

2kBT
2Cþ

" #

þ a�ffiffiffiffiffiffi
C�

p exp
�½E� ðE� þ C��TÞ�2Ld

2kBT
2C�

" ##
:

ð4:21Þ

Here A is a normalizing constant and the weights aþ, a� are given by

aþ ¼ ex; a� ¼ qe�x ð4:22Þ
where x ¼ ðT � Tcð1ÞÞðEþ � E�ÞLd=ð2kBTTcÞ. Originally, Challa et al.

(1986) had assumed that at the transition temperature Tcð1Þ of the infinite

system each peak of the q ordered domains and the disordered phase has

equal height, but now we know that they have equal weight (Borgs and

Kotecký, 1990). From Eqns. (4.21), (4.22) we find that the specific heat

maximum occurs at

TcðLÞ � Tc

Tc

¼ kBTc ln½q�
ðEþ � E�ÞLd ð4:23Þ

and the value of the peak is given by

CL

�����
max

� Cþ þ C�
2

þ ðEþ � E�Þ2Ld
4kBT

2
c

: ð4:24Þ
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model along paths of

constant temperature:

(a) kBT=J ¼ 2:1; (b)

kBT=J ¼ 2:269 ¼ Tc.

From Binder and
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Challa et al. (1986) also proposed that a reduced fourth order cumulant of the

energy, i.e.

VL ¼ 1 � hE4iL
3hE2i2L

ð4:25Þ

has a minimum at an effective transition temperature which also approaches

the infinite lattice value as the inverse volume of the system. The behavior of

VL for the q ¼ 10 Potts model in two dimensions is shown in Fig. 4.8. Thus,

even in the asymmetric case it is the volume Ld which is important for finite

size scaling. Effective transition temperatures defined by extrema of certain

quantities in general differ from the true transition temperature by correc-

tions of order 1=Ld , and the specific heat maximum scales proportional to Ld

(the prefactor being related to the latent heat E� �E� at the transition. see

Eqn. (4.24)).

This discussion was included to demonstrate that we understand, in prin-

ciple, how to analyze finite size effects at first order transitions. In practice,

however, this kind of finite size analysis is not always useful, and the use of

free energy integrations may be more effective in locating the transition with

modest effort. Other methods for studying first order transitions will be

presented in later sections.
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4.2.3.4 Finite size subsystem scaling

A theoretical approach to the understanding of the behavior of different

systems in statistical physics has been to divide the system into sub-blocks

and coarse-grain the free energy to derive scaling laws. We shall see this

approach carried out explicitly in Chapter 9 where we discuss Monte Carlo

renormalization group methods. The behavior of a sub-block of length scale

L 0=b in a system of size L 0 will be different from that of a system of size L 0=b
because the correlation length can be substantially bigger than the size of the

system sub-block. In this case it has been shown (Binder, 1981) that the

susceptiblity at the transition actually has an energy-like singularity

hs2iL / L2�=� f2ð1Þ � g2ð�=LÞ�ð1��Þ=�
h i

: ð4:26Þ

The block distribution function for the two-dimensional Ising model, shown

in Fig. 4.9, has a quite different behavior below and above the critical point.

For T < Tc the distribution function can be well described in terms of Msp,

�, and the interface tension Fs, while for T > Tc the distribution becomes

Gaussian with a width determined by �. In addition, the advantage of study-

ing subsystems is that in a single run one can obtain information on size

effects on many length scales (smaller than the total size of the simulated

system, of course).

4.2.3.5 Field mixing

Up to this point our examples for finite size scaling at critical points have

involved the Ising model which is a particularly ‘symmetric’ model. When

viewed as a lattice gas this model has particle–hole symmetry. In more rea-

listic models of fluids, however, this symmetry is lost. Such models consider

particles which may move freely in space and which interact via the well

known Lennard-Jones form

�ðrÞ ¼ 4w½ð�=rÞ12 � ð�=rÞ6�; ð4:27Þ
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(right) T < Tc. From

Binder (1981).



where r is the distance between particles, � gives the characteristic range of

the interaction and w gives the potential well depth. The critical point of the

Lennard-Jones system is described by two non-trivial parameter values, the

critical chemical potential �c and the critical well depth wc. In general, then,

the scaling fields which are appropriate for describing the critical behavior of

the system contain linear combinations of the deviations from these critical

values:

� ¼ wc � wþ sð� � �cÞ; ð4:28aÞ
h ¼ � � �c þ rðwc � wÞ; ð4:28bÞ

where r and s depend upon the system (Wilding and Bruce, 1992). (For the

Ising model r ¼ s ¼ 0.) We can now define two relevant densities which are

conjugate to these scaling fields

hEi ¼ L�d@ lnZL=@� ¼ ½u� r��=ð1 � srÞ; ð4:29aÞ
hMi ¼ L�d@ lnZL=@h ¼ ½� � su�=ð1 � srÞ; ð4:29bÞ

which are linear combinations of the usual energy density and particle den-

sity. Thus, a generalized finite size scaling hypothesis may be formulated in

terms of these generalized quantities, i.e.

pLðM; EÞ � �þ
M�þ

E ~ppM;Eð�þ
M�M;�þ

E �E;�Mh;�E�Þ ð4:30Þ
where

�E ¼ aEL
1=�; �M ¼ aML

d��=�; �þ
M�M ¼ �þ

E �E ¼ Ld ð4:31Þ
and

�M ¼ M � hMic; �E ¼ E � hEic: ð4:32Þ
Note that precisely at criticality Eqn. (4.30) simplifies to

pLðM; EÞ � �þ
M�þ

E ~pp
�
M;Eð�þ

M�M;�þ
E �EÞ; ð4:33Þ

so that by taking appropriate derivatives one may recapture power law beha-

vior for the size dependence of various quantities. Surprises occur, however,

and because of the field mixing contributions one finds that for critical fluids

the specific heat

CV ¼ Ldðhu2i � hui2Þ=kBT2 
 L	=� ð4:34Þ
which is quite different from that found in the symmetric case. In Fig. 4.10 we

show the parameter distribution at criticality as a function of the scaling

variables.

4.2.3.6 Finite size effects in simulations of interfaces

As has been discussed in Section 4.2.2, one can deliberately stabilize inter-

faces in the system by suitable choice of boundary conditions. Such simula-

tions are done with the intention to characterize the interfacial profile

between coexisting phases, for instance. Figure 4.11 summarizes some of
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the standard simulation geometries that have been used for such a purpose,

taking the Ising model again as simple example. Since directions parallel and

perpendicular to an interface clearly are not equivalent, it also is no longer

natural to choose the same value for the linear dimensions of the simulation

box in the parallel and perpendicular directions. Thus, Fig. 4.11 assumes a

linear dimension D in the direction across the interface, and another linear

dimension L parallel to it. In case (a), the system has periodic boundary

conditions in the parallel direction, but free boundaries in the perpendicular

directions, with surface magnetic fields (negative ones on the left boundary,

positive ones on the right boundary) to stabilize the respective domains, with

an interface between them that on average is localized in the center of the film

and runs parallel to the boundaries where the surface fields act. We disregard

here the possibility that the interface may become ‘bound’ to one of the walls,

and assume high enough temperature so the interface is a ‘rough’, fluctuating

object, not locally localized at a lattice plane (in d ¼ 3 dimensions where the

interface is two-dimensional). In case (b), an analogous situation with a simple

interface is stabilized by an antiperiodic boundary condition, while in case (c),

where fully periodic boundary conditions are used, only an even number of

interfaces can exist in the system. (In order to avoid the problem that one

kind of domain, say the þ domain, completely disappears because the inter-

faces meet and annihilate each other, we require a simulation at constant

magnetization, see Section 4.4.1 below.)

The pictures in Fig. 4.11 are rather schematic, on a coarse-grained level,

where both magnetization fluctuations in the bulk of the domains and small-

scale roughness of the interface are ignored. But we emphasize the long

wavelength fluctuations in the local position of the interface, because these

fluctuations give rise to important finite size effects. It turns out that inter-

faces in a sense are soft objects, with a correlation length of fluctuations
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parallel to the interface (�k) that diverges if L and D tend to infinity: thus the

interface is like a system at a critical point!

These fluctuations can be qualitatively accounted for by the concept of

‘capillary wave’ excitations, i.e. harmonic distortions of the local interface

position z away from the average. For D ! 1, one finds that the mean

square width of the interface scales with the parallel linear dimension L

(Jasnow, 1984)

w2 � hz2i � hzi2 / L d ¼ 2 dimensions
ln L d ¼ 3 dimensions;

�
ð4:35Þ

while in the opposite limit where L is infinite and D is varied one finds that �n
is finite (Parry and Evans, 1992)

�k / D2; d ¼ 2

expð�DÞ; d ¼ 3; � ¼ constant:

�
ð4:36Þ
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Then w2 also becomes independent of L for large L, but rather depends on

the perpendicular linear dimension D,

w2 /
D2; d ¼ 2;

D; d ¼ 3;

8<
: D ! 1: ð4:37Þ

Of course, all these relations for the interfacial width make sense only for

rather large linear dimensions L and D, such that w in Eqns. (4.35) and (4.37)

is much larger than the ‘intrinsic width’ of the interface. If D is not very large,

it is possible that the intrinsic width itself is squeezed down, and one then

encounters a regime where w / D in d ¼ 3 dimensions.

Thus, simulations of interfaces are plagued by various finite size effects.

More details and an example (interfaces in binary polymer mixtures) can be

found in Werner et al. (1997).

4.2.3.7 Final thoughts

In many cases it is possible to perform a direct enumeration of states for a

sufficiently small system. Generally this is possible only for systems which are

so small that corrections to finite size scaling are important. The results

should nonetheless lie on a smooth curve delineating the finite size behavior

and can be useful in attempting to extract correction terms. Small lattices play

another important role. Since exact results may be obtained for small systems,

very useful checks of the correctness of the program may be made.

Experience has shown that it is quite easy to make small errors in implement-

ing the different boundary conditions discussed above, particularly at the

corners. For large lattices such errors produce quite small imperfections in

the data, but for small lattices the boundary spins make up a substantial

fraction of the total system and errors in the data become larger. Thus

programming mistakes and other subtle errors are often most visible for

small systems.

4.2.4 Finite sampling time effects

When one plans a computer simulation study of a given model using a fixed

‘budget’ of computer resources, one must make a choice between performing

long simulations of small systems or shorter simulations of larger systems. In

order to use the available computer time as efficiently as possible, it is impor-

tant to know the sources of both systematic and statistical errors. One source

of systematic errors, finite size effects, was treated in the previous section;

here we consider how such errors depend on the number of updates per-

formed, i.e. the length of the run.
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4.2.4.1 Statistical error

Suppose N successive observations A�, with � ¼ 1; . . . ;N of a quantity A

have been stored in a simulation, with N � 1. We consider the expectation

value of the square of the statistical error

ð�AÞ2� � ¼ 1

N
XN
�¼1

ðA� � hAiÞ
" #2* +

¼ 1

N 2

XN
�¼1

ðA� � hAiÞ2� �þ 2

N 2

XN
�1¼1

XN
�2¼�1þ1

hA�1
A�2

i � hAi2� �
:

ð4:38Þ
In order to further explain what this means we now invoke the ‘dynamic

interpretation’ of Monte Carlo sampling in terms of the master equation

(Müller-Krumbhaar and Binder, 1973). The index � which labels each suc-

cessive configuration then plays the role of a ‘time’ variable (which may or

may not be related to physical time, as discussed elsewhere in this book (see

e.g. Sections 2.2.3, 2.3, 4.4, 5.2, etc.). If the states fX�g of the system from

which the observations fA�g are taken are distributed according to a

Boltzmann equilibrium distribution, the origin of this ‘time’ is indistinguish-

able from any other instant of this ‘time’, i.e. there is translational invariance

with respect to this ‘time’ variable so that hA�1
A�2

i ¼ hA0A�2��1
i. Of course,

this invariance would not hold in the first part of the Monte Carlo run (see

Fig. 4.2), where the system starts from some arbitrary initial state which is

not generally characteristic for the desired equilibrium – this early part of the

run (describing the ‘relaxation towards equilibrium’) is hence not considered

here and is omitted from the estimation of the average hAi. The state � ¼ 1

in Eqn. (4.38) refers to the first state that is actually included in the computa-

tion of the average, and not the first state that is generated in the Monte Carlo

run.

Using this invariance with respect to the origin of ‘time’, we can change

the summation index �2 to �1 þ � where � � �2 � �1, and hence

ð�AÞ2� � ¼ 1

N hA2i � hAi2 þ 2
XN
�¼1

1 � �

N
� �

hA0A�i � hAi2� �" #
: ð4:39Þ

Now we explicitly introduce the ‘time’ t ¼ ��t associated with the Monte

Carlo process where �t is the time interval between two successive observa-

tions A�, A�þ1. It is possible to take �t ¼ �s=N, where N is the number of

degrees of freedom, and �s is a time constant used to convert the transition

probability of the Metropolis method to a transition probability per unit time:

this would mean that every Monte Carlo ‘microstate’ is included in the

averaging. Since subsequent microstates are often highly correlated with

each other (e.g. for a single spin-flip Ising simulation they differ at most

by the orientation of one spin in the lattice), it typically is much more efficient

to take �t much larger than �s=N, i.e. �t ¼ �s. (This time unit then is called ‘1
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Monte Carlo step/spin (MCS)’, which is useful since it has a sensible ther-

modynamic limit.) But often, in particular near critical points where ‘critical

slowing down’ (Hohenberg and Halperin, 1977) becomes pronounced, even

subsequent states fX�g separated by �t ¼ 1 MCS are highly correlated, and it

may then be preferable to take �t ¼ 10 MCS or �t ¼ 100 MCS, for instance,

to save unnecessary computation. (When we discuss reweighting techniques

in Chapter 7 we shall see that this is not always the case.)

Assuming, however, that the ‘correlation time’ between subsequent states

is much larger than �t, we may transform the summation over the discrete

‘times’ t ¼ �t� to an integration, t ¼ �t N,

ð�AÞ2� � ¼ 1

N hA2i � hAi2 þ 2

�t

ðt
0

1 � t 0

t

� �
hAð0ÞAðt 0Þi � hAi2� �

dt 0
� �

¼ 1

N hA2i � hAi2� �
1 þ 2

�t

ðt
0

1 � t 0

t

� �
�Aðt 0Þ dt 0

� �
;

ð4:40Þ
where we define the normalized time autocorrelation function (also called

‘linear relaxation function’) �A(t) as

�AðtÞ ¼ hAð0ÞAðtÞi � hAi2� �
hA2i � hAi2� � : ð4:41Þ

For the magnetization M of an Ising model, this function has already

been discussed in Eqns. (2.106) and (2.107). Note that �Aðt ¼ 0Þ ¼ 1,

�Aðt ! 1Þ ¼ 0, and �AðtÞ decays monotonically with increasing time t.

We assume that the time integral of �AðtÞ exists, i.e.

�A �
ð1

0

�AðtÞ dt; ð4:42Þ

and �A then can be interpreted as the ‘relaxation time’ of the quantity A (cf.

Eqn. (2.109)).

Let us now assume that the simulation can be carried out to times t � �A.
Since �AðtÞ is essentially non-zero only for t 0 " �A, the term t 0=t in Eqn.

(4.40) then can be replaced by infinity. This yields (Müller-Krumbhaar and

Binder, 1973)

ð�AÞ2� � ¼ 1

N hA2i � hAi2� �
1 þ 2

�A
�t

 !
: ð4:43Þ

We see that hð�AÞ2i is in general not given by the simple sampling result

½hA2i � hAi2�=N , but is rather enhanced by the factor ð1 þ 2�A=�tÞ. This

factor is called the ‘statistical inefficiency’ of the Monte Carlo method and

may become quite large, particularly near a phase transition. Obviously, by

calculating hAi and hA2i, as well as hð�AÞ2i we can estimate the relaxation

time �A. Kikuchi and Ito (1993) demonstrated that for kinetic Ising model

simulations such an approach is competitive in accuracy to the standard

method where one records �AðtÞ (Eqn. (4.41)) and obtains �A by numerical
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integration (see Eqn. (4.42)). Of course, if �A � �t, then Eqn. (4.43) may be

further simplified by neglecting the unity in the bracket and, using N�t ¼ t,

hð�AÞ2i ¼ ½hA2i � hAi2�ð2�A=tÞ: ð4:44Þ
This means that the statistical error is independent of the choice of the time

interval �t, it only depends on the ratio of relaxation time ð�AÞ to observation

time ðtÞ. Conversely, if �t is chosen to be so large that subsequent states are

uncorrelated, we may put hA0A�i � hAi2 in Eqn. (4.39) to get

hð�AÞ2i ¼ ½hA2i � hAi2�=N . For many Monte Carlo algorithms �A diverges

at second order phase transitions (‘critical slowing down’, see Sections 2.3.3

and 5.2.3), and then it becomes very hard to obtain sufficiently high accuracy,

as is obvious from Eqn. (4.44). Therefore the construction of algorithms that

reduce (or completely eliminate) critical slowing down by proper choice of

global moves (rather than single spin-flips) is of great significance. Such

algorithms, which are not effective in all cases, will be discussed in Section

5.1.

Problem 4.4 From a Monte Carlo simulation of an L ¼ 10 Ising square lat-
tice, determine the order parameter correlation time at T ¼ 3:0 J=kB and
at T ¼ 2:27 J=kB.

Problem 4.5 Perform a Metropolis Monte Carlo simulation for a 10 � 10
Ising model with periodic boundary conditions. Include the magnetic field
H in the simulation and plot both hMi and hjMji as a function of field for
kBT=J ¼ 2:1. Choose the range from H ¼ 0 to H ¼ 0:05 J. Do you observe
the behavior which is sketched in Fig. 2.10? Interpret your results!

4.2.4.2 Biased sampling error: Ising criticality as an example

The finite sampling time is not only the source of the statistical error, as

described above, but can also lead to systematic errors (Ferrenberg et al.,

1991). For example, in the Monte Carlo sampling of response functions the

latter are systematically underestimated. This effect comes simply from the

basic result of elementary probability theory (see Section 2.2) that in estimat-

ing the variance s2 of a probability distribution using n independent samples,

the expectation value Eðs2Þ of the variance thus obtained is systematically

lower than the true variance �2 of the distribution, by a factor ð1 � 1=nÞ:
Eðs2Þ ¼ �2ð1 � 1=nÞ: ð4:45Þ

Since we may conclude from Eqn. (4.43) that for t � �A we have n ¼ N =
ð1 þ 2�A=�tÞ independent ‘measurements’, we may relate the calculated sus-

ceptibility �N of a spin system to that which we would obtain from a run of

infinite length �1 by

�N ¼ �1 1 � 1 þ 2�M=�t

N
� �

; ð4:46Þ
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�M being the relaxation time of the magnetization, i.e. A ¼ M in Eqns. (4.34–

4.43).

This effect becomes particularly important at Tc, where one uses the

values of � from different system sizes (N ¼ Ld in d dimensions, where L

is the linear dimension and the lattice spacing is taken to be unity) to estimate

the critical exponent ratio 	=� (see Section 4.2.3). The systematic error

resulting from Eqn. (4.46) will generally vary with L, since the relaxation

time �M may depend on the system size quite dramatically (�M / Lz, z being

the ‘dynamic exponent’, see Section 2.3.3).

While finite size scaling analyses are now a standard tool, the estimation

of errors resulting from Eqn. (4.46) is generally given inadequate attention.

To emphasize that neglect of this biased sampling error is not always

warranted, we briefly review here some results of Ferrenberg et al.

(1991) who performed calculations for the nearest neighbor ferromagnetic

Ising model. The Monte Carlo simulations were carried out right at the

‘best estimate’ critical temperature Tc of the infinite lattice model

(T�1
c ¼ 0:221 654 kB=J) for system sizes ranging from 16 " L " 96. Well

over 106 MCS were performed, taking data at intervals �t ¼ 10MCS, and

dividing the total number of observations N tot into g bins of ‘bin length’

N , N tot ¼ gN , and calculating �N from the fluctuation relation. Of

course, in order to obtain reasonable statistics they had to average the result

over all g41 bins. Figure 4.12 shows the expected strong dependence of

�N on both N and L: while for L ¼ 16 the data have settled down to an

N -dependent plateau value for N # 103, for L ¼ 48 even the point for N
¼ 104 still falls slightly below the plateau, and for L ¼ 96 the asymptotic

behavior is only reached for N # 105. (Note that in this calculation a very

fast vectorizing multispin coding (Section 5.2.2) single spin flip algorithm

was used.) Thus with a constant number N as large as N ¼ 104 for a finite

size scaling analysis, one would systematically underestimate the true finite

system susceptibility for large L, and an incorrect value of 	=� in the

relation ln�N ðLÞ ¼ ð	=�Þ lnL would result. However, if we measure �M
for the different values of L and use Eqn. (4.46), we can correct for this
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effect. In the present example, the appropriate correlation time �M is

�M ¼ 395, 1640, 3745, 6935 and 15 480, for L ¼ 16, 32, 48, 64 and 96,

respectively. Using these values we can rewrite Eqn. (4.46) as

�N ¼ �1ð1 � 1=nÞ, computing n as n ¼ N =ð1 þ 2�M=�tÞ. Figure 4.13

shows that when �NL
�	=� is plotted vs. n, all the data collapse on a

universal function, which for n # 5 is compatible with the simple result

ð1 � 1=nÞ.

Problem 4.6 Carry outMonteCarlo simulations for an L ¼ 10 Ising square
lattice with different run lengths for T ¼ 2:8 J=kB. Calculate the susceptibil-
ity and plot it vs. run length. Extract an estimate for the infinite lattice sus-
ceptibility.

4.2.4.3 Relaxation effects

When one starts a simulation run, typically equilibrium states for the system

are not yet known. The Metropolis algorithm requires some initial state of the

system, however, this choice will probably not be characteristic for the equi-

librium that one wishes to study. For example, one may intend to study the

critical region of an Ising ferromagnet but one starts the system for example

in a state where all spins are perfectly aligned, or in a random spin config-

uration. Then it is necessary to omit the first N 0 configurations from the

averages, since they are not yet characteristic for equilibrium states of the

system (see Fig. 4.2): Therefore any Monte Carlo estimate A of an average

hAi actually reads

A ¼ 1

N � N 0

XN
�¼N 0þ1

AðX�Þ ¼ 1

t � t0

ðt
t0

Aðt 0Þ dt 0; ð4:47Þ
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where t0 ¼ N 0 �t. Time-displaced correlation functions hAðtÞBð0Þi as they

appear in Eqn. (4.40) are actually estimated as

Aðt 0ÞBð0Þ ¼ 1

t � t 0 � t0

ðt�t 0
t0

Aðt 0 þ t 00ÞBðt 00Þ dt 00; t � t 0 > t0: ð4:48Þ

As emphasized above, times t0 must be chosen which are large enough that

thermal equilibrium has been achieved, and therefore time averages along the

Monte Carlo ‘trajectory’ in phase space, as defined in Eqns. (4.47) and (4.48),

make sense.

However, it is also interesting to study the non-equilibrium relaxation

process by which equilibrium is approached, starting from a non-equilibrium

initial state In this process, Aðt 0Þ � A depends on the observation time t 0

systematically, and an ensemble average hAðt 0Þi � hAð1Þi ð lim
t!1A ¼ hAi ¼

hAð1Þi if the system is ergodic) is non-zero. Hence we define

hAðtÞi ¼
X
fXg

PðX; tÞAðXÞ ¼
X
fXg

PðX; 0ÞAfXðtÞg: ð4:49Þ

In the second step of this equation we have used the fact that the ensemble

average involved is actually an average weighted by the probability distribu-

tion PðX; 0Þ of an ensemble of initial states fXðt ¼ 0Þg which then evolve as

described by the master equation of the associate Monte Carlo process. In

practice, Eqn. (4.49) means an average over m � 1 independent runs

AðtÞ ¼ 1

m

Xm
l¼1

AðlÞðtÞ; ð4:50Þ

with AðlÞðtÞ being the observable A observed at time t in the lth run of this

non-equilibrium Monte Carlo averaging (these runs also differ in practice by

use of different random numbers for each realization (l) of the time evolu-

tion).

Using Eqn. (4.49) we can define a non-linear relaxation function which

was already considered in Eqn. (2.110)

�nlA ðtÞ ¼ hAðtÞi � hAð1Þi½ �= hAð0Þi � hAð1Þi½ � ð4:51Þ
and its associated relaxation time

�ðnlÞ
A ¼

ð1
0

�ðnlÞ
A ðtÞ dt: ð4:52Þ

The condition that the system is well equilibrated then simply reads

t0 � �ðnlÞ
A : ð4:53Þ

This inequality must hold for all physical observables A, and hence it is

important to focus on the slowest relaxing quantity (for which �ðnlÞ
A is largest)

in order to estimate a suitable choice of t0. Near second order phase transi-
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tions, the slowest relaxing quantity is usually the order parameter M of the

transition, and not the internal energy. Hence the ‘rule-of-thumb’ published

in some Monte Carlo investigations that the equilibration of the system is

established by monitoring the time evolution of the internal energy is clearly

not a reliable procedure. This effect can readily be realized by examining the

finite size behavior of the times �ðnlÞ
M , �ðnlÞ

E , at criticality, cf. Eqns. (2.111) and

(2.112)

�ðnlÞ
M / Lz��=�; �ðnlÞ

E / Lz�ð1��Þ=�; ð4:54Þ
where the exponent of the order parameter is �, of the critical part of the

energy is 1 � �; and of the correlation length is �. Typically �=� is much less

than ð1 � �Þ=� and the correlation time associated with the magnetization

diverges much faster than that of the internal energy.

We also wish to emphasize that starting the system in an arbitrary state,

switching on the full interaction parameters instantly, and then waiting for

the system to relax to equilibrium is not always a very useful procedure.

Often this approach would actually mean an unnecessary waste of computing

time. For example, in systems where one wishes to study ordered phases at

low temperature, it may be hard to use fully disordered states as initial

configurations since one may freeze in long-lived multidomain configurations

before the system relaxes to the final monodomain sample. In glass-like

systems (spin glass models, etc.) it is advisable to produce low temperature

states by procedures resembling slow cooling rather than fast quenching.

Sometimes it may be preferable to relax some constraints (e.g. self-avoiding

walk condition for polymers) first and then to switch them on gradually.

There are many ‘tricks of the trade’ for overcoming barriers in phase space

by suitably relaxing the system by gradual biased changes in its state, gra-

dually switching on certain terms in the Hamiltonian, etc., which will be

mentioned from time to time later.

4.2.4.4 Back to finite size effects again: self-averaging

Suppose we observe a quantity A in n statistically independent observations

made while the system is in equilibrium, and calculate its error

�Aðn;LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i � hAi2� �

=n
q

; n � 1: ð4:55Þ

We now ask, does this error go to zero if L ! 1? If it does, A is called ‘self-

averaging’, while if it yields an L-independent non-zero limit, we say A

exhibits ‘lack of self-averaging’. In pure phases away from phase boundaries,

extensive quantities (energy per site E, magnetization per site M, etc.) have a

Gaussian distribution whose variance scales inversely with the volume Ld ,

PLðAÞ ¼ Ld=2ð2pCAÞ�1=2 exp �ðA� hAi½ Þ2Ld=2CA�: ð4:56Þ
If, for example, A ¼ M then CA ¼ kBT�; and if A ¼ E; then CE ¼ kBT

2C

with C being the specific heat, etc. For these quantities, we hence see that
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errors scale as �Aðn;LÞ / ðnLdÞ�1=2 . This property is called ‘strong self-

averaging’ (Milchev et al., 1986), in contrast to the behavior at critical points

where the exponent governing the power law for the size dependence is

smaller, �Aðn;LÞ / ðnLxA1 Þ�1=2 ðxM1 ¼ 2�=�; xE1 ¼ 2ð1 � �Þ=�; this situation

is termed ‘weak self-averaging’).

The situation differs drastically if we consider quantities that are sampled

from fluctuation relations (such as C, �, . . .), rather than quantities that are

spatial averages of a simple density (such as E,M, . . .). We still can formally

use Eqn. (4.55), but we have to replace A by CA ¼ ð�AÞ2Ld in this case,

�CA
ðn;LÞ ¼ Ldn�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�AÞ4� �� ð�AÞ2� �2q

; �A ¼ A� hAi: ð4:57Þ
Since for the Gaussian distribution, Eqn. (4.55), hð�AÞ4i ¼ 3hð�AÞ2i2, Eqn.
(4.56) reduces to ðCA ¼ Ldhð�AÞ2iÞ

�CA
ðn;LÞ ¼ Ldn�1=2 ð�AÞ2� � ffiffiffi

2
p

¼ CA
ffiffiffiffiffiffiffi
2=n

p
: ð4:58Þ

Consequently, the size Ld cancels out precisely, and the relative error �CA

ðn;LÞ=CA ¼ ffiffiffiffiffiffiffi
2=n

p
is completely universal. It only depends on the number n

of statistically independent observations. Thus, increasing L at fixed n will

strongly improve the accuracy of quantities such as E and M, but nothing is

gained with respect to the accuracy of �, C, etc. Thus, it is more economical

to choose the smallest size which is still consistent with the condition L � �
and to increase n rather than L to improve the accuracy. For those research-

ers who feel that the best approach is to study the largest system size possible,

we believe that an analysis of fluctuation relations in subsystems (Section

4.2.3.4) is mandatory!

4.2.5 Critical relaxation

The study of critical slowing down in spin models has formed an extremely

active area of research, and Monte Carlo simulations have played an impor-

tant role in developing an understanding of critical relaxation. The basic

features of the underlying theory were presented in Section 2.3.3 and we

now wish to examine the implementation of these ideas within the context of

computer simulation. As we shall see below, the interest in this problem

extends well beyond the determination of the dynamic critical exponent for

a particular sampling algorithm since in any simulation there are multiple

time scales for different quantities which must be understood even if the

topic of interest is the static behavior.

Critical relaxation has been studied for many years for a number of dif-

ferent spin models but with uncertain results. Thus, in spite of the fact that

the static behavior of the two-dimensional Ising model is known exactly, the

determination of the critical relaxation has remained a rather elusive goal. As

shown in Fig. 4.14, there have been estimates made for the dynamic critical

exponent z over a period of more than 30 years using a number of different

theoretical and numerical methods, and we may only just be coming to an
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accurate knowledge of the exponent for a few models (Landau et al., 1988;

Wansleben and Landau, 1991; Ito, 1993). In the following sub-sections we

shall briefly examine the different features associated with critical relaxation

and the different ways that Monte Carlo data can be used to extract an

estimate for z.

4.2.5.1 Non-linear relaxation

As we have already seen, the approach of a thermodynamic property A to its

equilibrium behavior occurs in a characteristic fashion and is described by a

simple, non-linear relaxation function, �AðtÞ; given by Eqn. (2.110). The

accurate determination of this relaxation function is non-trivial since knowl-

edge of the equilibrium value of the quantity being studied is needed. This

necessitates performing simulations which are long compared to the non-

linear relaxation time to insure that an equilibrium value can be measured;

however, to guarantee that the statistical errors are small for the non-linear

relaxation function it is also necessary to make many equivalent runs with

different random number sequences and average the data together. As a

result some balance between the number and length of the runs must be

achieved. Finally, the long time behavior of the non-linear relaxation function

can be fitted by an exponential function to determine the asymptotic relaxa-

tion time � / �z (Eqn. (2.108)) while the integral of �A can be used to

estimate the non-linear relaxation time �nl . The variation of �nlwith tempera-

ture as the critical point is approached may then be used to estimate the

dynamic exponent, although finite size effects will become important quite

close to Tc. From Eqns.(2.111) and (2.112) we recall that �nl / �z
A
nl with an

exponent that is always smaller than z but is related to z by a scaling law,

zAnl ¼ z� �A=�, �A being the exponent of the ‘critical part’ of the quantity A.

(�A ¼ � if A is the order parameter and �A ¼ 1 � � if A is the energy, etc.)

How is it possible that zAnl < z although the asymptotic decay of �AðtÞ occurs
with the ‘linear’ relaxation time � which is governed by the exponent z? The

solution to this puzzle is that the asymptotic decay sets in only when �AðtÞ
has decayed down to values of the order of the static critical part of A, i.e. is
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of the order of ���A=� 
 "�A . Near Tc these values are small and accuracy is

hard to obtain. Alternatively, if the critical temperature is well known, the

critical exponent can be determined from the finite size behavior at Tc.

For an infinite system at Tc the magnetization will decay to zero (since this

is the equilibrium value) as a power law

mðtÞ / t��=z�; ð4:59Þ
where � and � are the static critical exponents which are known exactly for

the two-dimensional Ising model. Eventually, for a finite lattice the decay will

become exponential, but for sufficiently large lattices and sufficiently short

times, a good estimate for z can be determined straightforwardly using Eqn.

(4.59). (The study of multiple lattice sizes to insure that finite size effects are

not becoming a problem is essential!) Several different studies have been

successfully carried out using this technique. For example, Ito (1993) used

multilattice sampling and carefully analyzed his Monte Carlo data, using Eqn.

(4.59), for systems as large as L ¼ 1500 to insure that finite size effects were

not beginning to appear. (A skew periodic boundary was used in one direc-

tion and this could also complicate the finite size effects.) From this study he

estimated that z ¼ 2:165ð10Þ: Stauffer (1997) examined substantially larger

lattices, L ¼ 496 640, for times up to t ¼ 140 MCS/site using this same

method and concluded that z ¼ 2:18. Although these more recent values

appear to be well converged, earlier estimates varied considerably. For a

review of the problems of non-linear relaxation in the Ising model see

Wang and Gan (1998). We also note that there exists yet another exponent

which appears in non-equilibrium relaxation at criticality when we start the

system at Tc in a random configuration. The magnetization then has a value

of 
N�1=2, and increases initially like MðtÞ / t� with a new exponent �
(Janssen et al., 1989; Li et al., 1994).

More recent studies of non-linear, short time relaxation have produced

rather impressive results for both dynamic and static exponents of several

well-known models (see, e.g., Li et al., 1996; Zheng, et al., 2003). They used

the dynamic finite size scaling of the moments of the magnetization, MðkÞ, to
extract exponent estimates. For zero initial magnetization

MðkÞðt; ";LÞ ¼ bk�=�MðkÞðbzt; b�1=�"; bLÞ ð4:60Þ
where " ¼ ðT � TcÞ=Tc, and b gives the scale factor between two different

lattice sizes. (As the lattice size approaches the thermodynamic limit, we

recover Eqn. (4.59) for long time decay at Tc. The values of z that were

obtained (Li et al., 1996), however, were slightly below other estimates with

this same method. Recent large scale Monte Carlo simulations that examined

the short time non-linear relaxation (Zheng et al., 2003) were even able to

extract corrections to scaling for the two-dimensional XY-model and the two-

dimensional fully frustrated XY-model. They found different behavior

depending upon whether or not they began with an ordered or disordered

state. (For the initially ordered state, the scaling form in Eqn. (4.60) requires
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modification.) Data were averaged over more than 104 runs so statistical error

bars were small.

4.2.5.2 Linear relaxation

Once a system is in equilibrium the decay of the time-displaced correlation

function is described by a linear relaxation function (cf. Eqn. (2.106)). The

generation of the data for studying the linear relaxation can be carried out

quite differently than for the non-linear relaxation since it is possible to make

a single long run, first discarding the initial approach to equilibrium, and then

treating many different points in the time sequence as the starting point for

the calculation of the time-displaced correlation function. Therefore, for a

Monte Carlo run with N successive configurations the linear correlation

function at time t can be computed from

�AAðtÞ ¼ �
1

N � t

XN�t

t 0
Aðt 0ÞAðt 0 þ tÞ � 1

ðN � tÞ2
XN�t

t 0
Aðt 0Þ

XN�t

t 00
Aðt 00Þ

� !
;

ð4:61Þ
where � ¼ ðhA2i � hAi2Þ�1. From this expression we see that there will

indeed be many different estimates for short time displacements, but the

number of values decreases with increasing time displacement until there is

only a single value for the longest time displacement. The characteristic

behavior of the time-displaced correlation function shown in Fig. 4.15 indi-

cates that there are three basic regions of different behavior. In the early

stages of the decay (Region I) the behavior is the sum of a series of expo-

nential decays. Actually it is possible to show that the initial slope of �AAðtÞ,
ðd�AAðtÞÞ=dtÞt¼0 ¼ ��1

I , defines a time �I which scales as the static fluctua-

tion, �I / ðhA2i � hAi2Þ: Since �AAðtÞ is non-negative, this result implies that

� > �I, and hence the inequality z > 	=� results when we choose A ¼ M, i.e.
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the order parameter. If instead A ¼ E, i.e. the energy, the initial decay is

rather rapid since �I / C / "��, where � is the specific heat exponent.

Nevertheless, the asymptotic decay of �EEðtÞ is governed by an exponential

relaxation e�t=� where � diverges with the same exponent z as the order

parameter relaxation time. For a more detailed discussion see Stoll et al.

(1973). In Region II the time dependence of the relaxation function can be

fitted by a single exponential described by a correlation time � which diverges

as the critical point is approached. Finally, in Region III the statistical errors

become so large that it becomes impossible to perform a meaningful fit. The

difficulty, of course, is that it is never completely obvious when the data have

entered the regime where they are described by a single exponential, so any

analysis must be performed carefully. Generally speaking, the early time

regime is much more pronounced for the internal energy as compared to

the order parameter. This is clear from the above remark that the initial

relaxation time for the energy scales like the specific heat. In order to compare

the decay of different quantities, in Fig. 4.16 we show a semi-logarithmic plot

for the three-dimensional Ising model. From this figure we can see that the

magnetization decay is quite slow and is almost perfectly linear over the entire

range. In contrast, the internal energy shows quite pronounced contributions

from multiple decay modes at short times and has a much shorter relaxation

time in the asymptotic regime. Note that both m2 and E2 have time reversal

symmetry (but m does not) and have the same asymptotic relaxation time as

does E. For time displacements greater than about 250 MCS/site the statis-

tical fluctuations begin to grow quite quickly and it becomes difficult to

analyze the data in the asymptotic regime.

Although the general approach is straightforward, there are nonetheless

considerable subtleties in this kind of analysis. The use of skew periodic

boundary conditions simplifies the computer code but introduces a ‘seam’

into the model which provides a correction for small lattices. The relaxation

function is a biased estimator so the length of the individual runs must also be

quite long to eliminate another source of small corrections. (In fact, for finite
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length runs the relaxation function will oscillate about a small negative value

at very long times.) Lastly, it is often necessary to perform least squares fits

over different ranges of time to ascertain where noise is becoming a problem

at long times.

A completely different approach to the analysis of the correlations in

equilibrium which does not require the computation of the relaxation func-

tion is through the determination of the ‘statistical inefficiency’ described for

example by Eqn. (4.43). A ‘statistical dependence time’ �dep is calculated by

binning the measurements in time and calculating the variance of the mean of

the binned values; as the size of the bins diverges, the estimate �dep
approaches the correlation time. Kikuchi and Ito (1993) used this approach

to study the three-dimensional Ising model and found that z ¼ 2:03 ð4Þ:

4.2.5.3 Integrated vs. asymptotic relaxation time

As we saw earlier in this chapter, an integrated correlation time may be

extracted by integrating the relaxation function; and it is this correlation

time, given in Eqn. (4.42), which enters into the calculation of the true

statistical error. The resulting integrated correlation time also diverges as

the critical point is approached, but the numerical value may be different

in magnitude from the asymptotic correlation time if there is more than one

exponential that contributes significantly to the relaxation function. This is

relatively easy to see if we look at the behavior of the internal energy E with

time shown in Fig. 4.16: from this figure we can see that both E and m2 have

the same asymptotic relaxation time, but m2 will have a much larger inte-

grated relaxation time. When one examines all of the response functions it

becomes clear that there are a number of different correlation times in the

system, and the practice of only measuring quantities at well separated inter-

vals to avoid wasting time on correlated data may actually be harmful to the

statistical quality of the results for some quantities.

4.2.5.4 Dynamic finite size scaling

The presence of finite size effects on the dynamic (relaxational) behavior can

be used to estimate the dynamic critical exponent. Dynamic finite size scaling

for the correlation time � can be written

� ¼ LzFð"L1=�Þ; ð4:62Þ
so at the critical point the correlation time diverges with increasing lattice size

as

� / Lz: ð4:63Þ
As in the case of statics, this finite size scaling relation is valid only as long as

the lattice size L is sufficiently large that corrections to finite size scaling do

not become important. The behavior of the correlation time for the order

parameter and the internal energy may be quite different. For example, in
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Fig. 4.17 we show the finite size behavior of both correlation times for the

three-dimensional Ising model. As a result we see that the asymptotic

dynamic exponents for both quantities are consistent, but the amplitudes

of the divergencies are almost an order of magnitude different.

Of course, it is also possible to extract an estimate for z using finite size

data and Eqn. 4.61. In this approach a finite size scaling plot is made in the

same manner as for static quantities with the same requirement that data for

different sizes and temperatures fall upon a single curve. Here too, when the

data are too far from Tc, scaling breaks down and the data no longer fall upon

the same curve. In addition, when one tries to apply dynamic finite size

scaling, it is important to be aware of the fact that �MMðtÞ does not decay

with a single relaxation time but rather with an entire spectrum, i.e.

�MMðt ! 1Þ ¼ c1e
�t=�1 þ c3e

�t=�3 þ $ $ $ ; �1 > �3 > $ $ $ ð4:64Þ

where c1; c3, . . . are amplitudes, and all times �1 / �3 / . . .Lz: Only the

amplitudes �̂�nð�n ¼ �̂�nL
zÞ decrease with increasing n. Note that we have

used odd indices here because M is an ‘odd operator’, i.e. it changes sign

under spin reversal. The second largest relaxation time �2 actually appears for

the leading asymptotic decay of the ‘even operators’ such as E or M2 which

are invariant under spin reversal.
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All of these relaxation times, �n, have a scaling behavior as written in Eqn.

(4.62); however, it is important to note that �1 is distinct from all other

relaxation times because it increases monotonically as the temperature is

lowered through Tc, while all other �n have their maximum somewhere in

the critical region (Koch and Dohm, 1998; Koch et al., 1996). The reason for

this uninterupted increase of �1, is that below Tc it develops into the ergodic

time �e which describes how long it takes for the system to tunnel between

regions of phase space with positive and negative magnetizations. This pro-

cess must occur through a high energy barrier �F between the two regions

and �e / Lz expð�F=kBTÞ. Actually, �F can be estimated for an Ising

system (for a simulation geometry of an Ld system with periodic boundary

conditions) as 2�Ld�1, where � is the interfacial free energy of the system.

This corresponds to the creation of a domain with two walls running through

the entire simulation box to reverse the sign of the spontaneous magnetiza-

tion. Thus, we obtain the estimate

�1 ¼ �e / Lz expð2Ld�1�=kBTÞ: ð4:65Þ
This monotonic increase of �1 with decreasing T corresponds to the increase

in the fluctuation hM2i � hMi2 (¼ hM2i for H ¼ 0). Remember, however,

that below Tc we have to use hM2i � hjMji2 to take into account the sym-

metry breaking; and in the same vein, below Tc it is the next relaxtion time �3
which characterizes the decay of magnetization fluctuations in a state with

non-zero spontaneous magnetization.

4.2.5.5 Final remarks

In spite of the extensive simulational work done on critical relaxation, the

quality of the estimates of the dynamic exponent z is not nearly as high as that

of the estimates for static exponents. The diverse techniques described above

are simple in concept but complicated in their implementation. Nonetheless a

reasonably good consensus is beginning to emerge for the two-dimensional

Ising model between the ‘best’ estimates from Monte Carlo simulation, series

expansion, and a recent, novel analysis based on variational approximations of

the eigenstates of the Markov matrix describing heat-bath single spin-flip

dynamics (Nightingale and Blöte, 1998).

4.3 OTHER DISCRETE VARIABLE MODELS

4.3.1 Ising models with competing interactions

The Ising model with nearest neighbor interactions has already been dis-

cussed several times in this book; it has long served as a testing ground for

both new theoretical methods as well as new simulational techniques. When

additional couplings are added the Ising model exhibits a rich variety of

behavior which depends on the nature of the added interactions as well as
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the specific lattice structure. Perhaps the simplest complexity can be intro-

duced by the addition of next-nearest neighbor interactions, Jnnn, which are

of variable strength and sign so that the Hamiltonian becomes

H ¼ �Jnn
X
i;j

�i�j � Jnnn
X
i;k

�i�k �H
X
i

�i; ð4:66Þ

where the first sum is over nearest neighbor pairs and the second sum over

next-nearest pairs. It is straightforward to extend the single spin-flip

Metropolis method to include Jnnn: the table of flipping probabilities becomes

a two-dimensional array and one must sum separately over nearest and next-

nearest neighbor sites in determining the flipping energy. In specialized cases

where the magnitudes of the couplings are the same, one can continue to use

a one-dimensional flipping probability array and simply include the contri-

bution of the next-nearest neighbor site to the ‘sum’ of neighbors using the

appropriate sign. If the checkerboard algorithm is being used, the next-near-

est neighbor interaction will generally connect the sublattices; in this situation

the system need merely be decomposed into a greater number of sublattices

so that the spins on these new sublattices do not interact. An example is given

below for the Ising square lattice.

Example

For the Ising square lattice with nearest neighbor coupling the simplest checker-

board decomposition is shown on the left. If next-nearest neighbor coupling is

added the simplest possible checkerboard decomposition is shown on the right.

1 2 1 2

2 1 2 1

1 2 1 2

2 1 2 1

1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4

If both nearest and next-nearest neighbor interactions are ferromagnetic, the

system will only undergo a transition to a ferromagnetic state and there are

seldom complexities. (One simple case which may lead to difficulties is when

there are only nearest neighbor interactions which are quite different in

magnitude in different directions. This may then lead to a situation in

which well ordered chains form at some relatively high temperature, and

long range order sets in only at a much lower temperature. In this case it

becomes very difficult for chains to overturn to reach the ground state

because each individual spin in the chain is effectively ‘held in place’ by its

neighbors. (Graim and Landau, 1981)) If, however, the couplings are both

antiferromagnetic, or of opposite sign, there may be multiple configurations

of quite similar free energy which are separated from each other by a sig-

nificant free energy barrier. The resultant sequence of states may then also

have a complicated time dependence. For the simple case of nearest neighbor,

antiferromagnetic interactions only, below the transition temperature the

system may alternate between two different states, one in which sublattice
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1 is up and sublattice 2 is down, and one in which all spins are reversed. If a

strong, antiferromagnetic next-nearest neighbor interaction is added it will be

necessary to decompose the system into four interpenetrating, next-nearest

neighbor sublattices, and there will be four different ordered states as shown

below:

state s.1.1 s.1.2 s:1:3 s:1:4
1 þ þ � �
2 � � þ þ
3 þ � þ �
4 � þ � þ

One important consequence of this behavior is that the relevant order para-

meter changes! For some range of couplings it is not immediately clear which

kind of order will actually result and multiple order parameters (and their

finite size behavior) must then be determined. Even if the simple antiferro-

magnetic states are lowest in free energy, the states shown above may be close

in free energy and may appear due to fluctuations. The net result is that one

must pay close attention to the symmetry of the states which are produced

and to the resultant time dependence.

With the inclusion of third nearest neighbor interactions the number of

different states which appear becomes larger still. Other, metastable domain

states, also become prevalent. In Fig. 4.18 we show a number of different

possible spin configurations for the Ising square lattice with competing inter-

actions. In the bottom part of this figure we then show phase diagrams,

deduced from Monte Carlo studies, for three different values of nnn-neigh-

bor coupling as the 3nn-interaction is varied. For different regions of cou-

plings, different states become lowest in free energy, and unit cells as large as

4 � 4 are needed to index them. When the interactions become complex, it

may well be possible that entropic effects play a substantial role in determin-

ing which states actually appear. It may then be helpful to calculate multiple

order parameters in order to determine which states are actually realized.

Interesting new physics may arise from competing interactions. In one of

the simplest such examples, the addition of antiferromagnetic nnn-coupling

to an nn-Ising square lattice antiferromagnet produces the degenerate ‘super-

antiferromagnetic’ state described earlier with non-universal critical expo-

nents (those of the XY-model with fourth order anisotropy). The order

parameter must then be redefined to take into account the degeneracy of

the ordered state, but the finite size analyses which were described in Section

4.2.3 of this chapter can still be applied. For example, the crossing of the

fourth order cumulant still occurs but at a different value than for the simple

Ising model. Monte Carlo data were used to determine the variation of the

critical temperature as well as the change in critical exponents with coupling.

In Fig. 4.19 we show the comparison between the Monte Carlo estimates for

Tc, as well as for �, obtained from an analysis of the fourth order cumulant.

For comparison, results obtained from a number of other methods are shown.

Finite size scaling of the fourth order cumulant (block spin scaling) data
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showed quite clearly that the critical behavior was non-universal. This study

is now rather old and higher resolution could be easily obtained with modern

computing equipment; but even these data suffice to show the variation with

coupling and to test other theoretical predictions. For a detailed study of the

critical behavior of this model, see Landau and Binder (1985).
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A very interesting case occurs when a competing antiferromagnetic inter-

action is added in only one lattice direction to an Ising ferromagnet to

produce the so-called ANNNI model (Selke, 1992). For sufficiently strong

antiferromagnetic interaction, the model exhibits a phase transition from the

disordered phase to a ‘modulated’ phase in which the wavelength of the

ordering is incommensurate with the lattice spacing! In d ¼ 2 dimensions

this phase is a ‘floating phase’ with zero order parameter and a power law

decay of the correlation function; in d ¼ 3 the ordered region contains a

multitude of transitions to high-order commensurate phases, i.e. phases

with order which has periods which are much larger than the lattice spacing.

The detailed behavior of this model to date is still incompletely understood.

4.3.2 q-state Potts models

Another very important lattice model in statistical mechanics in which there

are a discrete number of states at each site is the q-state Potts model (Potts,

1952) with Hamiltonian

H ¼ �J
X
i;j

��i�j ð4:67Þ

4.3 Other discrete variable models 109

Fig. 4.19 Critical

behavior for the

superantiferromagnetic

state in the Ising

square lattice. (*)

Results of the Monte

Carlo block

distribution analysis;

(~) Monte Carlo

results using finite size

scaling; (�) MCRG

results; (*) series

expansion estimates;

(&) finite strip width

RG; (r) real space

RG results. From

Landau and Binder

(1985).



where �i ¼ 1; 2; . . . ; q. Thus a bond is formed between nearest neighbors

only if they are in the same state. From the simulations perspective this model

is also quite easy to simulate; the only complication is that now there are

multiple choices for the new orientation to which the spin may ‘flip’. The

easiest way to proceed with a Monte Carlo simulation is to randomly choose

one of the q� 1 other states using a random number generator and then to

continue just as one did for the Ising model. Once again one can build a table

of flipping probabilities, so the algorithm can be made quite efficient. Simple

q-state Potts models on periodic lattices are known to have first order transi-

tions for q > 4 in two dimensions and for q > 2 in three dimensions. For q

close to the ‘critical’ values, however, the transitions become very weakly first

order and it becomes quite difficult to distinguish the order of the transition

without prior knowledge of the correct result. These difficulties are typical of

those which arise at other weakly first order transitions; hence, Potts models

serve as very useful testing grounds for new techniques.

Problem 4.7 Perform a Monte Carlo simulation of a q ¼ 3 Potts model on
a square lattice. Plot the internal energy as a function of temperature.
Estimate the transition temperature.

Problem 4.8 Perform aMonteCarlo simulation of a q ¼ 10 Pottsmodel on
a square lattice. Plot the internal energy as a function of temperature.
Estimate the transition temperature. How do these results compare with
those in Problem 4.7?

4.3.3 Baxter and Baxter^Wu models

Another class of simple lattice models with discrete states at each site involves

multispin couplings between neighbors. One of the simplest examples is the

Baxter model (1972) which involves Ising spins on two interpenetrating

(next-nearest neighbor) sublattices on a square lattice; the two sublattices

are coupled by a (nearest neighbor) four spin interaction so that the total

Hamiltonian reads:

H ¼ �Jnnn
X
i;k

�i�k � Jnnn
X
j;l

�j�l � Jnn
X
i;j;k;l

�i�j�k�l; ð4:68Þ

where the first two sums are over nnn-pairs and the last sum is over nn-

plaquettes. Once again, there are only a discrete number of possible states

involving each site, i.e. the number of ‘satisfied’ next-nearest neighbor pairs

and the number of four spin plaquettes, so that tables of flipping probabilities

can be constructed. There are obviously multiple degenerate states because of

the different possible orientations of each of the sublattices, so the order

parameter must be carefully constructed. The critical behavior of the

Baxter model is non-universal, i.e. it depends explicitly on the values of

the coupling constants.
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Another simple, discrete state lattice model with somewhat subtle micro-

scopic behavior considers Ising spins on a triangular lattice with nearest

neighbor three-spin coupling; the model, first proposed by Baxter and Wu

(1973), has the Hamiltonian

H ¼ �Jnn
X
i;j;k

�i�j�k: ð4:69Þ

Even though the model is extremely simple, in a Monte Carlo simulation it

has surprisingly complex behavior because different fluctuations occur at

different time scales. The groundstate for this system is four-fold degenerate

as shown in Fig. 4.20. This also means that the order parameter is compli-

cated and that regions of the system may be in states which look quite

different. If clusters of different ordered states ‘touch’ each other, a domain

wall-like structure may be created with the result that the energy of the

system is increased by an amount which depends upon the size of the overlap.

The energy fluctuations then contain multiple kinds of excitations with dif-

ferent time scales, and care must be taken to insure that all characteristic

fluctuations are sampled. The correlation between the time dependence of the

energy and the microscopic behavior is shown in Fig. 4.21 which clearly

underscores the utility of even simple scientific visualization techniques to

guide our understanding of numerical results. (These data are also rather old

and using modern computers it is easy to make much longer runs; they

nonetheless represent an example of complexity which may also occur in

other systems.) This behavior also demonstrates the advantages of making

occasional very long runs to test for unexpected behavior.

4.3.4. Clock models

Models with spins which may assume a continuous range of directions will be

discussed in the next chapter, but a set of models which may be thought of as

limiting cases of such continuous spin models with anisotropy in two dimen-

sions are the so-called ‘clock’ models. In the q-state clock model the spins can

4.3 Other discrete variable models 111

Fig. 4.20. Degenerate

groundstates for the

Baxter–Wu model: (a)

ordered ferrimagnetic

groundstate (solid lines

connect nearest

neighbors, dashed

lines are between

next-nearest

neighbors); (b)

elementary (nearest

neighbor) plaquettes

showing the four

different degenerate

groundstates.



only point in one of the q possible directions on a clock with q hours on it.

The Hamiltonian then looks very much like that of a continuous spin model,

but we must remember that the spins may only point in a discrete number of

positions:

H ¼ �J
X
i;j

Si $ Sj: ð4:70Þ

As q ! 1 the model becomes a continuous spin model. Just as in the case of

a high spin Ising model, the number of possible nearest neighbor states can

become quite large and the flip probability table can become big. Nonetheless

the Monte Carlo algorithm proceeds as before, first using a random number

to select a possible new state and then calculating the energy change which a

‘flip’ would produce. It can also be shown that for q ¼ 4, the clock model

becomes exactly identical to an Ising model with interaction J=2, so the

program can be tested by comparing with the known behavior for finite

Ising models. For q > 4, the clock model becomes a limiting case for the

XY-model with q-fold anisotropy. This model has two Kosterlitz–Thouless

transitions and the interpretation of the data, and location of the transitions,

becomes a quite subtle matter (Challa and Landau, 1986). It is possible to use

a very large value of q to approximate a continuous spin XY-model and thus

take advantage of the tricks that one can employ when dealing with a model
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with discrete states. One must not forget, however, that asymptotically near

to the transition the difference between the two models becomes evident.

4.3.5 Ising spin glass models

The field of spin glasses has a voluminous literature and the reader is directed

elsewhere for in-depth coverage (see e.g. Binder and Young, 1986; Marinari

et al., 2000; Crisanti and Ritort, 2003). Spin glasses are magnetic systems with

competing interactions which result in frozen-in disorder reminiscent of that

which occurs in ordinary glass. Thus, although there is no long range order,

there will be short range order with a resultant cusp in the magnetic suscept-

ibility. Below the spin glass temperature Tf there is hysteresis and a pro-

nounced frequency dependence when a small field is applied. These effects

arise because the geometry and/or interactions give rise to ‘frustration’, i.e.

the inability of the system to find an ordered state which satisfies all inter-

acting neighbors. One of the simplest spin glass models (with short range

interactions) employs Ising spins �i with Hamiltonian

H ¼ �
X
i;j

Jij�i�j �H
X
i

�i; ð4:71Þ

where the distribution PðJijÞ of ‘exchange constants’ Jij is of the Edwards–

Anderson form

PðJijÞ ¼ 2p½ ðð�JijÞ2Þ��1=2 exp �ð Jij � �JJijÞ2=2ð�JijÞ2
� � ð4:72Þ

or the �J form

PðJijÞ ¼ p1�ð Jij � JÞ þ p2�ð Jij þ JÞ: ð4:73Þ
Explicit distributions of bonds are placed on the system and Monte Carlo

simulations can be performed using techniques outlined earlier; however,

near the spin glass freezing temperature Tf and below the time scales become

very long since there is a very complicated energy landscape and the process

of moving between different ‘local’ minima becomes difficult. Of course, the

final properties of the system must be computed as an average over multiple

distributions of bonds. One complication which arises from spin glass beha-

vior is that the spontaneous magnetization of the system is no longer a good

order parameter. One alternative choice is the Edwards–Anderson parameter

q ¼ h�ii2 ð4:74Þ
where h$ $ $i denotes the expectation value for a single distribution of bonds

and the $ $ $ indicates an average over all bond distributions. Another choice is

the local parameter

q ¼ 1

N

X
i

�i’
l
i ð4:75Þ

where �li represents the spin state of site i in the lth groundstate. The Monte

Carlo simulations reveal extremely long relaxation times, and the data are

4.3 Other discrete variable models 113



often difficult to interpret. (For a review of the ‘state of the art’ see Young

and Kawashima (1996).) In the next chapter we shall discuss improved

methods for the study of spin glasses.

4.3.6 Complex fluid models

In this section we discuss briefly the application of Monte Carlo techniques to

the study of microemulsions, which are examples of complex fluids.

Microemulsions consist of mixtures of water, oil, and amphiphilic molecules

and for varying concentrations of the constituents can form a large number of

structures. These structures result because the amphiphilic molecules tend to

spontaneous formation of water–oil interfaces (the hydrophilic part of the

molecule being on the water-rich side and the hydrophobic part on the oil-

rich side of the interface). These interfaces may then be arranged regularly

(lamellar phases) or randomly (sponge phases), and other structures (e.g.

vesicles) may form as well. Although real complex fluids are best treated

using sophisticated off-lattice models, simplified, discrete state lattice models

have been used quite successfully to study oil–water–amphiphilic systems

(see, e.g. Gompper and Goos (1995)). Models studied include the Ising

model with nn- and nnn-interaction and multispin interactions and the

Blume–Emery–Griffiths (BEG) model with three spin coupling. These mod-

els can be easily studied using the methods described earlier in this chapter,

although because of the complicated structures which form, relaxation may

be slow and the system may remain in metastable states. These systems have

also been studied using a Ginzburg–Landau functional and spatial discretiza-

tion. Thus the free energy functional

Ff	g ¼
ð
d3r cðr2	Þ2 þ gð	Þðr	Þ2 þ f ð	Þ � �	

� � ð4:76Þ

for a scalar order parameter 	 becomes

Fð	ðrijÞÞ ¼ c
X
i

X3
k¼1

�ð �XXi þ êekÞ � 2�ð �XXiÞ þ �ð �XXi � êekÞ
a2o

� !2

þ
X
ij

g 1
2
½�ðXiÞ þ �ðXjÞ�

� � �ðXiÞ � �ðXjÞ
ao

� �2
þf ð�Þ � ��

ð4:77Þ
where ao is the lattice constant and the êeks are the lattice vectors. Monte

Carlo moves are made by considering changes in the local order parameter,

i.e.

	 ! 	 þ �	 ð4:78Þ
with the usual Metropolis criterion applied to determine if the move is

accepted or not. Monte Carlo simulations have been used to determine

phase diagrams for this model as well as to calculate scattering intensities

for neutron scattering experiments.
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4.4 SPIN-EXCHANGE SAMPLING

4.4.1 Constant magnetization simulations

For the single spin-flipping simulations described above, there were no con-

served quantities since both energy and order parameter could change at each

flip. A modification of this approach in which the magnetization of the system

remains constant may be easily implemented in the following fashion. Instead

of considering a single spin which may change its orientation, one chooses a

pair of spins and allows them to attempt to exchange positions. This ‘spin-

exchange’ or Kawasaki method (Kawasaki, 1972) is almost as easy to imple-

ment as is spin-flipping. In its simplest form, spin-exchange involves nearest

neighbor pairs, but this constraint is not compulsory. (If one is not interested

in simulating the time dependence of a model for a physical system, it may

even be advantageous to allow more distant neighbor interchanges.) For

instance, such an algorithm was already implemented by Binder and

Stauffer (1972) for the simulation of the surface area of ‘liquid droplets’ of

down spins surrounded by a ‘gas’ of up spins, with the additional constraint

that the number of down spins in the ‘droplet’ remains constant. One exam-

ines the interacting near neighbors of both spins in the pair and determines

the change in energy if the spins are interchanged. This energy difference is

then used in the acceptance procedure described above. Obviously, a pair of

spins has a greater number of near neighbors than does a single spin, and

even with nearest-neighbor coupling only a checkerboard decomposition

requires more than two sublattices. Nonetheless, spin-exchange is straight-

forward to implement using table building and other tricks which can be used

for spin-flip Monte Carlo. The behavior which results when this method is

used is quite different from that which results using spin-flipping and will be

discussed in the next several sections.

Problem 4.9 Simulate an L ¼ 10 Ising square lattice using Kawasaki
dynamics. Choose an initially random state and quench the system to
T ¼ 2:0 J=kB. Plot the internal energy as a function of time.Make a ‘snapshot’
of the initial configuration and of the last configuration generated.

4.4.2 Phase separation

At a first order transition the system separates into two distinct regions, each

of which is typical of one of the two co-existing phases. (The basic ideas have

been introduced in Section 2.3.) If, for example, a disordered system is

quenched from some high temperature to below the critical temperature,

the disordered state becomes unstable. If this is done in an AB binary alloy

in which the number of each kind of atom is fixed, phase separation will occur

(Gunton et al., 1983). Because of the Ising-lattice gas-binary alloy equiva-

lence, a Monte Carlo simulation can be carried out on an Ising model at fixed

magnetization using spin-exchange dynamics. The structure factor Sðk; tÞ
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can be extracted from the Fourier transform of the resultant spin configura-

tions and used to extract information about the nature of the phase separa-

tion. As a specific example we consider the physical situation described by

Fig. 2.9 in which a binary alloy containing vacancies may evolve in time by

the diffusion of atoms and vacancies. A vacancy site is chosen at random and

it attempts to exchange position with one of its nearest neighbors. The

probability of a jump which involves an energy change �H in which the

vacancy exchanges site with an A-atom (B-atom) is denoted WA(WB) and

is given by

WA ¼ �A

�A expð��H=kBTÞ

�
if �H < 0

if �H > 0
ð4:79Þ

WB ¼ �B

�B expð��H=kBTÞ

�
if �H < 0

if �H > 0:
ð4:80Þ

As an example of the results which are obtained from this Monte Carlo

procedure we show characteristic results which are obtained for the structure

factor for four different jump rates in Fig. 4.22. Data are shown for five

different times following the quench and show the evolution of the system.

For wavevectors that are small enough (k < kc) the equal-time structure

factor grows with time: this is the hallmark of spinodal decomposition (see

Section 2.3.2). Another important property of the developing system which

needs to be understood is the development of the mean cluster size �ll as a

function of time where

�llðtÞ ¼
X
l#10

l nlðtÞ
�X

l#10

nlðtÞ ð4:81Þ
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and nl is the number of clusters of size l. In Fig. 4.23 we show the mean

cluster size against the scaled time for five different values of the jump rate.

The scaling time �ð�Þ not only describes the behavior of the mean cluster size

but is also appropriate to describe the scaling of the internal energy.

Of course, the example discussed above only refers to a simple model in

order to illustrate the type of questions that can be asked. It is possible to

combine kinetic Monte Carlo methods to model the vacancy mechanism of

atomic hopping processes in alloys with a quantitatively accurate description

of effective interactions appropriate for real materials (Müller et al., 2000,

2001, 2002). Extracting these effective interactions from ‘first principles’

electronic structure calculations, one derives the appropriate transition prob-

abilities to be used in the Monte Carlo simulation.

4.4.3 Diffusion

In this section we consider lattice gas models which contain two species A

and B, as well as vacancies which we denote by the symbol V. The sum of the

concentrations of each species cA, cB, cV is held fixed and the total of all the

components is unity, i.e. cA þ cB þ cV ¼ 1. In the simulations particles are

allowed to change positions under various conditions and several different

types of behavior result. (See Fig. 2.9 for a schematic representation of

interdiffusion in this model.)

First we consider non-interacting systems. In the simplest case there is

only one kind of particle in addition to vacancies, and the particles undergo

random exchanges with the vacancies. Some particles are tagged, i.e. they are

followed explicitly, and the resultant diffusion constant is given by

Dt ¼ fcVDsp; ð4:82Þ
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where Dsp is the single particle diffusion constant in an empty lattice, V is the

probability that a site adjacent to an occupied site is vacant, and fc is the

(backwards) correlation factor which describes the tendency of a particle

which has exchanged with a vacancy to exchange again and return to its

original position. This correlation can, of course, be measured directly by

simulation. The process of interdiffusion of two species is a very common

process and has been studied in both alloys and polymer mixtures. By

expressing the free energy density f of the system in terms of three non-

trivial chemical potentials �A, �B, �V, i.e.

f ¼ �AcA þ �BcB þ �VcV; ð4:83Þ
we can write a Gibbs–Duhem relation, valid for an isothermal process:

cAd�A þ cBd�B þ cVd�V ¼ 0: ð4:84Þ
The conservation of species leads to continuity equations

@cA=@t þ �rr $ �jjA ¼ 0; @cB=@t þ �rr $ �jjB ¼ 0;
@cV
@t

þ �rr $ �jjV ¼ 0: ð4:85Þ

The constitutive linear equations relating the current densities to the gradi-

ents of the chemical potentials are (� ¼ 1=kBT)

jA ¼ ���AAr�A � ��ABr�B � ��AVr�V;

jB ¼ ���BAr�A � ��BBr�B � ��BVr�V;

jV ¼ ���VAr�A � ��VBr�B � ��VVr�V;

ð4:86Þ

where the �ij are known as Onsager coefficients. The Onsager symmetry

relations reduce the number of independent parameters since

�AB ¼ �BA, . . . and the conservation of the total number of ‘particles’ allows

us to eliminate the Onsager coefficients connected to the vacancies. The

remaining Onsager coefficients can be estimated from Monte Carlo simula-

tions of their mobilities when forces acted on one of the species. In Fig. 4.24

we show a schematic view of how to set up a model. A combination of a

chemical potential gradient and judicious choice of boundary conditions

allows us to measure currents and thus extract estimates for Onsager coeffi-

cients. (Note that a linear increase in the chemical potential with position is

inconsistent with a static equilibrium in a box, because of the periodic bound-

ary condition: particles leaving the box through the right wall reenter through

the left wall.) For small enough �� there is a linear relationship between

chemical potential and the currents. Using the continuity equations together

with the constitutive current expressions, we can extract coupled diffusion

equations whose solutions yield decays which are governed by the Onsager

coefficients. All three Onsager coefficients were successfully estimated for the

non-interacting alloy (Kehr et al., 1989). While the phenomenological

description of diffusion in alloys as outlined above involves many unknown

parameters, the obvious advantage of the simulation is that these parameters

can be ‘measured’ in the simulation from their definition. Other scenarios

may be studied by simulation. If a periodic variation of the chemical potential
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is created instead (see Fig. 4.24b), a concentration wave develops. Following

the ideas of linear response theory, we ‘shut off’ this perturbation at t ¼ 0,

and simply watch the decay of the concentration with time. A decay propor-

tional to exp ð�Dintk
2tÞ where k ¼ 2p=� allows us to determine the inter-

diffusion constant Dint.

Monte Carlo simulations were also used to study tracer diffusion in the

binary alloy and no simple relationship was found to interdiffusion.

Diffusion can also be considered in interacting systems. Within the context

of the Ising lattice gas model a particle can jump to a nn-vacancy site with

probability

Pði ! liÞ ¼ expð��E=kBTÞ; ð4:87Þ

where

�E ¼ "ðl � zþ 1Þ for repulsion ð" < 0Þ
"l for attraction ð" > 0Þ

�
ð4:88Þ

where z is the coordination number and l is the number of nn-particles in the

initial state. Monte Carlo simulations were used to study both self-diffusion

and collective diffusion as a function of the concentration of vacancies

and of the state of order in the alloy (Kehr and Binder, 1984). Similarly,
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two-dimensional models of adsorbed monolayers can be considered and the

self-diffusion and collective diffusion can be studied.

Sadiq and Binder, 1983; Ala-Nissila et al., 2002). Again, it is possible to

combine such modelling (see also Fichthorn and Weinberg, 1991; Kang and

Weinberg, 1989) of adatom hopping processes with an atomistically realistic

description of the energy minima of the adsorption sites and the energy

barriers separating them, using ‘first principles’ electronic structure calcula-

tions to predict the corresponding hopping rates and transition probabilities

for the resulting ‘kinetic Monte Carlo’ modelling.

This approach (also sometimes termed ‘ab initio atomistic thermody-

namics’, e.g. Reuter and Scheffler (2002, 2003) can also be extended to

model kinetic processes far from thermal equilibrium, such as the kinetics

of heterogeneous catalysis (Reuter et al., 2004a, b).

4.4.4 Hydrodynamic slowing down

The conservation of the concentration (or magnetization) during a simulation

also has important consequences for the kinetics of fluctuations involving

long length scales. If we consider some quantity A which has density �A
the appropriate continuity equation is

@�Aðx; tÞ
@t

þ rjAðx; tÞ ¼ 0 ð4:89Þ

where jA is a current density. Near equilibrium and for local changes of A, we

may approximate the current by

jAðx; tÞ ¼ DAAraðx; tÞ: ð4:90Þ
Taking the Fourier transform of Eqn. (4.89) and integrating we find

Aðk; tÞ ¼ Aðk;1Þ þ ½Aðk; 0Þ � Aðk;1Þ�e�DAAk2t: ð4:91Þ
This equation exhibits ‘hydrodynamic slowing down’ with characteristic time

�AAðkÞ ¼ ðDAAk2Þ�1. This argument justifies the result already discussed in

Section 2.3.4. Thus, equilibrium will be approached quite slowly for all

properties which describe long wavelength (i.e. small k) properties of the

system.

4.5 MICROCANONICAL METHODS

4.5.1 Demon algorithm

In principle, a microcanonical method must work at perfectly constant

energy. The demon algorithm first proposed by Creutz (1983) is not strictly

microcanonical, but for large systems the difference becomes quite small. The

procedure is quite simple. One begins by choosing some initial state. A

‘demon’ then proceeds through the lattice, attempting to flip each spin in

turn and either collecting energy given off by a spin-flip or providing the
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energy needed to enable a spin-flip. The demon has a bag which can contain a

maximum amount of energy, so that if the capacity of the bag is reached no

spin-flip is allowed which gives off energy. On the other hand, if the bag is

empty, no flip is possible that requires energy input. Thus, the energy in the

bag ED will vary with time, and the mean value of the energy stored in the

bag can be used to estimate the mean value of the temperature during the

course of the simulation,

K ¼ 1
4
lnð1 þ 4J=hEDiÞ: ð4:92Þ

If the bag is too big, the simulation deviates substantially from the micro-

canonical condition; if the bag is too small, it becomes unduly difficult to

produce spin-flips. Note that once the initial state is chosen, the method

becomes deterministic!

Problem 4.10 Simulate an L ¼ 10 Ising square lattice using themicrocano-
nical ‘demon’ method at two different values of energy E and estimate the
temperatures. Carry out canonical ensemble simulations at these tempera-
tures and compare the values of energy with your initial choices of E.

4.5.2 Dynamic ensemble

This method uses a standard Monte Carlo method for a system coupled to a

suitably chosen finite bath (Hüller, 1993). We consider an N-particle system

with energy E coupled to a finite reservoir which is an ideal gas with M

degrees of freedom and kinetic energy k. One then studies the microcanonical

ensemble of the total, coupled system with fixed total energy G. An analysis

of detailed balance shows that the ratio of the transition probabilities between

two states is then

Wb!a

Wa!b

¼ ðG� EaÞ
N�2
N =ðG� EbÞ

N�2
N � e��ðEb�EaÞ ð4:93Þ

where � ¼ ðN � 2Þ=2Nkb where kb ¼ ðG� EbÞ=N is the mean kinetic energy

per particle in the bath. The only difference in the Monte Carlo method is

that the effective temperature � is adjusted dynamically during the course of

the simulation. Data are then obtained by computing the mean value of the

energy on the spin system hEi and the mean value of the temperature from

hkbi: This method becomes accurate in the limit of large system size. Plots of

E vs. T then trace out the complete ‘van der Waals loop’ at a first order phase

transition.

4.5.3 Q2R

The Q2R cellular automaton has been proposed as an alternative, micro-

canonical method for studying the Ising model. In a cellular automaton

model the state of each spin in the system at each time step is determined

completely by consideration of its near neighbors at the previous time step.
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The Q2R rule states that a spin is flipped if and only if half of its nearest

neighbors are up and half down. Thus, the local (and global) energy change is

zero. A starting spin configuration of a given energy must first be chosen and

then the Q2R rule applied to all spins; this method is thus also deterministic

after the initial state is chosen. Thermodynamic properties are generally well

reproduced although the susceptibility below Tc is too low. (Other cellular

automata will be discussed in Chapter 8.)

Problem 4.11 Simulate an L ¼ 10, q ¼ 10 Potts model square lattice using
a microcanonical method and estimate the transition temperature. How
does your answer compare with that obtained in Problem 4.8?

4.6 GENERAL REMARKS, CHOICE OF ENSEMBLE

We have already indicated how models may be studied in different ensembles

by different methods. There are sometimes advantages in using one ensemble

over the other. In some cases there may be computational advantages to

choosing a particular ensemble, in other situations there may be a symmetry

which can be exploited in one ensemble as opposed to the other. One of the

simplest cases is the study of a phase diagram of a system with a tricritical

point. Here there are both first order and second order transitions. As shown

in Fig. 4.25 the phase boundaries look quite different when shown in the

canonical and grand-canonical ensembles. Thus, for low ‘density’ (or mag-

netization in magnetic language) two phase transitions are encountered as the

temperature is increased whereas if the ‘field’ is kept fixed as the temperature

is swept only a single transition is found. Of course, to trace out the energy–

field relation in the region where it is double valued, it is preferable to use a

microcanonical ensemble (as was described in the previous section) or even

other ensembles, e.g. a Gaussian ensemble (Challa and Hetherington, 1988).

4.7 STATICS AND DYNAMICS OF POLYMER
MODELS ON LATTICES

4.7.1 Background

Real polymers are quite complex and their simulation is a daunting task

(Binder, 1995). There are a number of physically realistic approximations

which can be made, however, and these enable us to construct far simpler

models which (hopefully) have fundamentally the same behavior. First we

recognize that the bond lengths of polymers tend to be rather fixed as do

bond angles. Thus, as a more computationally friendly model we may con-

struct a ‘polymer’ which is made up of bonds which connect nearest neighbor

sites (monomers) on a lattice and which obey an excluded volume constraint.

The sites and bonds on the lattice do not represent individual atoms and
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molecular bonds but are rather the building blocks for a coarse-grained

model. Even within this simplified view of the physical situation simulations

can become quite complicated since the chains may wind up in very

entangled states in which further movement is almost impossible.

4.7.2 Fixed bond length methods

The polymer model just described may be viewed as basically a form of self-

avoiding-walk (SAW) which can be treated using Monte Carlo growth algo-

rithms which have already been discussed (see Section 3.8.3). Another class

of algorithms are dynamic in nature and allow random moves of parts of the

polymer which do not allow any change in the length of a bond connecting

two monomers. The range of possible configurations for a given polymer

model can be explored using a variety of different ‘dynamic’ Monte Carlo

algorithms which involve different kinds of move, three examples of which

are shown in Fig. 4.26. In the generalized ‘kink-jump’ method single sites

may be moved, obeying the restriction that no bond length changes. In the

‘slithering snake’ (reptation) method, a bond is removed from one end and

then glued to the other end of the polymer in a randomly chosen orientation.

In Fig. 4.26c we show the pivot (‘wiggle’) move in which a large part of the

chain is rotated about a single site in the chain. (Obviously, not all moves
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reflect real, physical time development.) Different kinds of moves are useful

for avoiding different kinds of ‘trapped’ configurations, and an intelligent

choice of trial moves is essential in many cases. There are a large number

of off-lattice models which are useful for studying more complex behavior,

but these are beyond the scope of consideration here. More details about the

methods shown in Fig. 4.26 can be found in Kremer and Binder (1988) and

additional methods are discussed by Sokal (1995).

Of course, for dense systems of long polymers, simple methods of simula-

tion become quite inefficient. One very successful innovative algorithm builds

upon old ideas from the early days of Monte Carlo simulations (Rosenbluth

and Rosenbluth, 1955; Wall and Erpenbeck, 1959) by combining the biasing

of the weights of new configurations with enrichment. The resulting algo-

rithm (Grassberger, 1997), known as PERM (‘pruned and enriched

Rosenbluth method’, sometimes also termed the ‘go with the winners’ algo-

rithm), has greatly extended the size of systems that may be studied with a

reasonable amount of effort. In the application to the simplest case of self-

avoiding walks, chains do not die when an attempt is made to form a bond to

an already occupied site. Instead, such attempts are avoided completely, but a

bias is introduced by giving different weights to the chains that are actually

produced by the addition of ‘acceptable’ bonds. In a systematic fashion,

chains with too low a weight are eliminated, i.e. ‘pruned’, and chains

whose weight exceeds a certain value are copied, i.e. ‘enriched’. As a result,

all chains contributed with approximately the same weight and the exponen-

tial attrition of the simple methods is avoided. PERM has been used to

simulate chains of lengths up to 106 in the investigation of three-dimensional

�-polymers (see Sec. 4.7.6). More recently, two new, improved implementa-

tions of PERM have been proposed (Hsu et al., 2003).

4.7.3 Bond fluctuation method

A very powerful ‘dynamic’ method which relaxes the rigid bond constraint

slightly employs the ‘bond fluctuation’ model (Carmesin and Kremer, 1988).

In this approach a monomer now occupies a nearest neighbor plaquette and

attempts to move randomly by an amount which does not stretch or compress

the bonds to its neighbors too much, and in the process to expand the range

of configuration space which can be explored. Note that these moves may also

allow some change in the bond angle as well as bond length. The excluded
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volume constraint is obeyed by not allowing overlap of monomer plaquettes.

Examples of possible moves are shown in Fig. 4.27. At each step a randomly

chosen monomer moves to a randomly chosen plaquette subject to excluded

volume constraints as well as the limitations on bond length mentioned above.

The bond fluctuation method can be effective in getting the system out of

‘blocking’ configurations and, as shown in Fig. 4.27, can also be applied to

lattice model branched polymers.

The PERM algorithm described in Section 4.7.2 has also been successfully

applied to the bond fluctuation model (Grassberger, 1997) using a stochastic

version of the algorithm described in the preceding section.

4.7.4 Enhanced sampling using a fourth dimension

For densely packed systems, such as collapsed polymers, the relaxation times

can become exceedingly long. This problem arises because the combination
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of the high density and excluded volume requires cooperative rearrangements

of atoms in order for substantial changes to occur. A novel and general

approach to the reduction of the characteristic time scales in dense systems

(Paul and Müller, 2001) allows the particles of a three-dimensional system to

move in four spatial dimensions. Every state of the system with all particles

having the same coordinate in the fourth direction is then a valid configura-

tion of the three-dimensional system of interest. The Hamiltonian of this

expanded system is given by

H ¼ Ho þ
XN
i¼1

hx4ðiÞ ð4:94Þ

where Ho is the Hamiltonian of the physical (i.e. three-dimensional) system

and x4ðiÞ is the coordinate of the ith particle in the fourth dimension. The

effective applied field h determines how the particles are distributed in the

fourth dimension. The partition function of the expanded ensemble is then

Z ¼
X
h

1

W ðhÞ
X
fcg

exp � Ho þ
XN
i¼1

hx4ðiÞ
� !( ,

kBT

)
: ð4:95Þ

This approach has been implemented for simulations using the bond fluctua-

tion method to study the coil-globule transition of a system of homopolymers

on a simple cubic lattice. The linear dimension in the fourth dimension was

only L4 ¼ 2, so the system is composed of two three-dimensional lattices.

Figure 4.28 shows data for the distribution of the number of contacts for

different values of h when the system is deep in the collapsed state. For

h ¼ 0, both three-dimensional sublattices are equally occupied and only a

single peak appears in the distribution. For h ¼ 15, however, a double peak is

clearly evident with the two maxima corresponding to a liquid state and to a

solid state.
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4.7.5 The ‘wormhole algorithm’ ^ another method to
equilibrate dense polymeric systems

For dilute polymer solutions simulations sampling difficulties arise only

when the chain lengths are very large, and then methods such as the ‘pivot

algorithm’ (Sokal, 1995; Madras and Sokal, 1988) or the PERM method

(Grassberger 1997) described in Section 4.7.2, are very useful. In fact,

with the latter method one can reach chain lengths of N ¼ 106 monomers,

at least for favorable cases such as self-avoiding walks with attractive nearest

neighbor interaction on the simple cubic lattice near the �-point.
Unfortunately, none of these powerful methods works for very dense poly-

meric systems.

A new algorithm that is suitable for dense systems of both homopolymers

and heteropolymers was recently invented by Houdayer (2002) and applied

by Houdayer and Müller (2002) to elucidate the phase behavior of random

copolymer melts. This so-called ‘wormhole algorithm’ is a generalization of

the reptation algorithm (also known as the ‘slithering snake’ algorithm, see

Fig. 4.26(b), and is able to completely displace a polymer in a time that scales

proportional to N2. The algorithm consists of the following steps: (i)

‘Wormhole drilling step’ – one attempts to move one randomly chosen

end-monomer to a new, random position. The old bond is broken and a

virtual one appended to the other end of the polymer. (This may be a

bond of arbitrarily large length!); (ii) Standard reptation step: randomly

choose one end-monomer and try to move it to the other end of the polymer

by connecting it with a randomly chosen bond (drawn from the standard set

of bonds of the particular model that is being simulated). For this move one

considers the virtual bond as if it were a normal one so that the polymer has

only two ends; (iii) End test: if the polymer is in two pieces, proceed to step

(ii). Otherwise, the trial move is complete and is accepted with probability

one, while steps (i) and (ii) are accepted only according to the standard

Metropolis probability PMð�EÞ ¼ min½1; expð��E=kBTÞ�; where �E is

the energy difference generated by the trial move.

For a proof that this algorithm satisfies detailed balance see Houdayer

(2002). Obviously, the nature of the monomers and their order along the

chain are preserved so this algorithm can be used for heteropolymers.

4.7.6 Polymers in solutions of variable quality: �-point,
collapse transition, unmixing

So far the only interaction between monomers that are not nearest neighbors

along the chain, is the (infinitely strong) repulsive excluded volume interac-

tion. Obviously, this is an extremely simplified view of the actual interactions

between the effective monomers that form a real macromolecule. Physically,

this corresponds to the ‘athermal’ limit of a polymer chain in a good solvent:

the solvent molecules do not show up explicitly in the simulation, they are

just represented by the vacant sites of the lattice.

4.7 Statics and dynamics of polymer models on lattices 127



Given the fact that interactions between real molecules or atoms in fluids

can be modeled rather well by the Lennard-Jones interaction, which is

strongly repulsive at short distances and weakly attractive at somewhat longer

distances, it is tempting to associate the above excluded volume interaction

(incorporated both in the SAW and the bond fluctuation model) with the

repulsive part of the Lennard-Jones interaction, and add an attractive energy

which acts at somewhat longer distances, to represent the attractive part of

the Lennard-Jones interaction. The simplest choice for the SAW model is to

allow for an energy, ", if a pair of monomers (which are not nearest neighbors

along the chain) occupy nearest neighbor sites on the lattice. In fact, such

models can be (and have been!) studied by simple sampling Monte Carlo

methods as described in Chapter 3. To do this one simply has to weigh each

generated SAW configuration with a weight proportional to the Boltzmann

factor expðn"=kBTÞ; n being the number of such nearest neighbor contacts in

each configuration. However, the problem of generating a sufficiently large

statistical sample for long chains is now even worse than in the athermal case:

we have seen that the success rate to construct a SAW from unbiased growth

scales as exp(�const.N), for chains of N steps, and actually a very small

fraction of these successfully generated walks will have a large Boltzmann

weight. Therefore, for such problems, the ‘dynamic’ Monte Carlo methods

treated in the present chapter are clearly preferred.

While in the case of the pure excluded volume interaction the acceptance

probability is either one (if the excluded volume constraint is satisfied for the

trial move) or zero (if it is not), we now have to compute for every trial move

the change in energy �E ¼ �n" due to the change �n in the number of

nearest neighbor contacts due to the move. This energy change has to be

used in the acceptance probability according to the Metropolis method in the

usual way, for all trial moves that satisfy the excluded volume constraint. This

is completely analogous to the Monte Carlo simulation of the Ising model or

other lattice models discussed in this book.

Of course, it is possible to choose interaction energies that are more

complicated than just nearest neighbor. In fact, for the bond fluctuation

model discussed above it is quite natural to choose an attractive interaction

of somewhat longer range, since the length of an effective bond (remember

that this length is in between 2 and
ffiffiffiffiffi
10

p
lattice spacings in d ¼ 3 dimensions)

already creates an intermediate length scale. One then wishes to define the

range of the attractive interaction such that in a dense melt (where 50% or

more of the available lattice sites are taken by the corners of the cubes

representing the effective monomers) an effective monomer interacts with

all nearest neighbor effective monomers that surround it. This consideration

leads to the choice (e.g. Wilding et al., 1996) that effective monomers experi-

ence an energy " if their distance r is in the range 2 " r " ffiffiffi
6

p
and zero else.

In the bond fluctuation algorithm quoted above, the presence of some energy

parameters such as " was already assumed.

What physical problems can one describe with these models? Remember

that one typically does not have in mind to simulate a macromolecule in
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vacuum but rather in dilute solution, so the vacant sites of the lattice repre-

sent the small solvent molecules, and hence " really represents a difference in

interactions ð"mm þ "ssÞ=2 � "ms where "mm, "ss, "ms stand for interactions

between pairs of monomers (mm), solvent (ss) and monomer–solvent (ms),

respectively. In this sense, the model is really a generalization of the ordinary

lattice model for binary alloys (A, B), where one species (A) is now a much

more complicated object, taking many lattice sites and exhibiting internal

configurational degrees of freedom. Thus already the dilute limit is non-

trivial, unlike the atomic binary mixture where both species (A, B) take a

lattice site and only the concentrated mixture is of interest. Changing the

parameter "=kBT then amounts to changing the quality of the solvent: the

larger "=kBT the more the polymer coil contracts, and thus the mean square

radius of gyration hR2
gyriN;T is a monotonically decreasing function when

"=kBT increases. Although this function is smooth and non-singular for

any finite N, a singularity develops when the chain length N diverges: for

all temperatures T exceeding the so-called ‘theta temperature’, �, we then

have the same scaling law as for the SAW, hR2
gyriN;T ¼ AðTÞN2� with

� � 0:588, only the amplitude factor AðTÞ depends on temperature, while

the exponent does not. However, for T ¼ � the macromolecule behaves like a

simple random walk, hR2
gyriN;T ¼ A 0ð�ÞN (ignoring logarithmic corrections),

and for T < � the chain configurations are compact, hR2
gyriN;T ¼ A 00ð�ÞN2=3.

This singular behavior of a single chain is called the ‘collapse transition’

(generalizations of this simple model also are devised for biopolymers,

where one typically has a sequence formed from different kinds of monomers,

such as proteins where the sequence carries the information about the genetic

code).

Now we have to add a warning to the reader: just as power laws near a

critical point are only observed sufficiently close, also the power laws quoted

above are only seen for N ! 1; in particularly close to � one has to deal

with ‘crossover’ problems: for a wide range of N for T slightly above � the

chain already behaves classically, hR2
gyri / N, and only for very large N does

one have a chance to detect the correct asymptotic exponent. In fact, the �-
point can be related to tricritical points in ferromagnetic systems (de Gennes,

1979). Thus the Monte Carlo study of this problem is quite difficult and has a

long history. Now it is possible to simulate chains typically for N of the order

of 104, or even longer, and the behavior quoted above has been nicely ver-

ified, both for linear polymers and for star polymers (Zifferer, 1999). A

combination of all three algorithms shown in Fig. 4.26 is used there.

The simulation of single chains is appropriate for polymer solutions only

when the solution is so dilute that the probability that different chains inter-

act is negligible. However, a very interesting problem results when only the

concentration of monomers is very small (so most lattice sites are still vacant)

but typically the different polymer coils already strongly penetrate each other.

This case is called the ‘semidilute’ concentration regime (DeGennes, 1979).

For good solvent conditions, excluded volume interactions are screened at

large distances, and the gyration radius again scales classically,

4.7 Statics and dynamics of polymer models on lattices 129



hR2
gyriN;T ¼ AðT; �ÞN, where � is the volume fraction of occupied lattice

sites. While the moves of types (a) and (b) in Fig. 4.26 are still applicable, the

acceptance probability of pivot moves (type c) is extremely small, and hence

this algorithm is no longer useful. In fact, the study of this problem is far less

well developed than that of single polymer chains, and the development of

better algorithms is still an active area of research (see e.g. the discussion of

the configurational bias Monte Carlo algorithm in Chapter 6 below). Thus,

only chain lengths up to a few hundred are accessible in such many-chain

simulations.

When the solvent quality deteriorates, one encounters a critical point

TcðNÞ such that for T < TcðNÞ the polymer solution separates into two

phases: a very dilute phase (�IðTÞ ! 0) of collapsed chains, and a semidilute

phase (�IIðTÞ ! 1 as T ! 0) of chains that obey Gaussian statistics at larger

distances. It has been a longstanding problem to understand how the critical

concentration �cðNÞ ð¼ �IðTcÞ ¼ �IIðTcÞ) scales with chain length N, as well

as how TcðNÞ merges with � as N ! 1, �cðNÞ / N�x, � � TcðNÞ / N�y,
where x, y are some exponents (Wilding et al., 1996). A study of this problem

is carried out best in the grand-canonical ensemble (see Chapter 6), and near

TcðNÞ one has to deal with finite size rounding of the transition, very similar

to the finite size effects that we have encountered for the Ising model!

This problem of phase separation in polymer solutions is just one problem

out of a whole class of many-chain problems, where the ‘technology’ of an

efficient simulation of configurations of lattice models for polymer chains and

the finite size scaling ‘technology’ to analyze critical phenomena and phase

coexistence need to be combined in order to obtain most useful results. One

other example, the phase diagram of ‘equilibrium polymers’, will now be

described in more detail below.

4.7.7 Equilibrium polymers: a case study

Systems in which polymerization is believed to take place under conditions of

chemical equilibrium between the polymers and their respective monomers

are termed ‘living polymers’. These are long linear-chain macromolecules

that can break and recombine, e.g. liquid and polymer-like micelles. (In

fact, in the chemistry community the phrase ‘living polymers’ is applied to

radical initiated growth, or scission, that can occur only at one end of the

polymer. In the model presented here, these processes can occur any place

along the polymer chain. These systems are sometimes now referred to as

‘equilibrium polymers’.) In order to study living polymers in solutions, one

should model the system using the dilute n ! 0 magnet model (Wheeler and

Pfeuty, 1981); however, theoretical solution presently exists only within the

mean field approximation (Flory, 1953). For semiflexible chains Flory’s

model predicts a first order phase transition between a low temperature

ordered state of stiff parallel rods and a high temperature disordered state

due to disorientation of the chains.
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Simulating the behavior of a system of living polymers is extremely diffi-

cult using a description which retains the integrity of chains as they move

because the dynamics becomes quite slow except in very dilute solutions. An

alternative model for living polymers, which is described in more detail else-

where (Milchev, 1993), maps the system onto a model which can be treated

more easily. Consider regular Ld hypercubic lattices with periodic boundary

conditions and lattice sites which may either be empty or occupied by a

(bifunctional) monomer with two strong (covalent) ’dangling’ bonds, pointing

along separate lattice directions. Monomers fuse when dangling bonds of

nearest-neighbor monomers point toward one another, releasing energy v >
0 and forming the backbone of self-avoiding polymer chains (no crossing at

vertices). Right-angle bends, which ensure the semiflexibility of such chains,

are assigned an additional activation energy � > 0 in order to include the

inequivalence between rotational isomeric states (e.g. trans and gauche) found

in real polymers. The third energetic parameter, w, from weak (van der

Waals) inter chain interactions, is responsible for the phase separation of

the system into dense and sparse phases when T and/or � are changed. w

is thus the work for creation of empty lattice sites (holes) in the system. One

can define q ¼ 7 possible states, Si, of a monomer i on a two-dimensional

lattice (two straight ‘stiff’ junctions, Si ¼ 1; 2, four bends, Si ¼ 3; . . . ; 6, and
a hole Si ¼ 7), and q ¼ 16 monomer states in a simple cubic lattice. The

advantage of this model is that it can be mapped onto an unusual q-state Potts

model and the simulation can then be carried out using standard single spin-

flip methods in this representation! The Hamiltonian for the model can be

written:

H ¼
X
i<j

F ijnðSiÞnðSjÞ �
X
i

ð� þ "ÞnðSiÞ; ð4:96Þ

where nðSiÞ ¼ 1 for i ¼ 1; 2; . . . ; 6, and nðSiÞ ¼ 0 (a hole) for i ¼ 7 in two

dimensions. Note that the interaction constant depends on the mutual posi-

tion of the nearest neighbor monomer states, F ij 6¼ F ji. Thus, for example,

F 13 ¼ �w whereas F 31 ¼ �v. The local energies "i ¼ � for the bends, and

"i ¼ 0 for the trans segments. The mapping to the different Potts states is

shown in Fig. 4.29. The ground states of this model depend on the relative

strengths of v, w and �; long chains at low temperature are energetically

favored only if v=w > 1. This model may then be simulated using single

‘spin flip’ methods which have already been discussed; thus the polymers

may break apart or combine quite easily. (The resultant behavior will also
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give the correct static properties of a polydisperse solution of ‘normal’ poly-

mers, but the time development will obviously be incorrect.) Even using the

Potts model mapping, equilibration can be a problem for large systems so

studies have been restricted to modest size lattices. An orientational order

parameter must be computed: in two dimensions � ¼ hc1 � c2i (ci is the

concentration of segments in the ith state) where c1 and c2 are the fractions

of stiff trans segments pointing horizontally and vertically on the square

lattice. In d ¼ 3 there are many more states than are shown in the figure,

which is only for d ¼ 2, and we do not list these explicitly here.

In d ¼ 3 then, the order parameter is defined as � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 � c2Þ2 þ ðc1 � c8Þ2 þ ðc2 � c8Þ2

q
, and c1, c2, c8 are the fractions of trans

bonds pointing in the x, y and z directions.

For two dimensions at T ¼ 0; the lattice is completely empty below �c ¼
�ðvþ wÞ: Finite temperature phase transitions were found from the simula-

tion data and, as an example, the resultant phase diagram for v ¼ 2:0, w ¼
0:1 is shown in Fig. 4.30 for two different values of �. In both cases the

transition is first order at low temperatures, but above a tricritical point

T t ¼ 0:3, it becomes second order. While for � > �c the density is quite

high in both the ordered phase as well as the high temperature disordered

phase, for � < �c the lattice is virtually empty below a temperature (the

Lifshitz line) at which a rather steep (but finite) increase in � is accompanied

by pronounced maxima in the second derivatives of the thermodynamic

potentials. A finite size scaling analysis along the second order portion of

the boundary indicates critical behavior consistent with that of the two-

dimensional Ising model. Fig. 4.30 shows the phase diagram in ��T space;

the first order portion of the phase boundary has opened up into a large

coexistence region leaving only a relatively small area of the pure ordered

phase. Figure 4.30c shows that as the chains become stiffer, Tc rises mono-

tonically.
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asecond order phase transition, the double line denotes a first order transition, and dots mark the

Lifshitz line. (b) Tc as a function of coverage � for � ¼ 0:5. (c) Variation of Tc with � for

� ¼ �1:4. From Milchev and Landau (1995).



On a simple cubic lattice the groundstate is triply degenerate with parallel

rods pointing along any of the three Cartesian axes. Moreover, a sort of a

smectic ordered state with planes of differently oriented parallel rigid chains

will be formed at low temperature if the inter chain interaction, w, between

nearest neighbor monomers does not differentiate between pairs of rods

which are parallel (in plane) or which cross at right angles when they belong

to neighboring planes. Viewing these bonds as rough substitutes for the

integral effect of longer range interactions, one could assume that the ws in

both cases would differ so that in the former case (parallel rods) wk is some-

what stronger than the latter one, w?. Such an assumption leads to a ground-

state consisting only of stiff chains, parallel to one of the three axes, whereby

the order parameter in three dimensions attains a value of unity in the

ordered state. A finite size scaling analysis of data for both w? 6¼ wk and w?
¼ wk showed that the transition was first order.

4.8 SOME ADVICE

We end this chapter by summarizing a few procedures which in our experi-

ence can be useful for reducing errors and making simulations studies more

effective. These thoughts are quite general and widely applicable. While these

‘rules’ provide no ‘money-back’ guarantee that the results will be correct,

they do provide a prudent guideline of steps to follow.

(1) In the very beginning, think!

What problem do you really want to solve and what method and

strategy is best suited to the study. You may not always choose the

best approach to begin with, but a little thought may reduce the

number of false starts.

(2) In the beginning think small!

Work with small lattices and short runs. This is useful for obtain-

ing rapid turnaround of results and for checking the correctness of

a program. This also allows us to search rather rapidly through a

wide range of parameter space to determine ranges with physically

interesting behavior.

(3) Test the random number generator!

Find some limiting cases where accurate, or exact values of certain

properties can be calculated, and compare your results of your

algorithm with different random number sequences and/or differ-

ent random number generators.

(4) Look at systematic variations with system size and run length!

Use a wide range of sizes and run lengths and then use scaling

forms to analyze data.

(5) Calculate error bars!

Search for and estimate both statistical and systematic errors. This
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enables both you and other researchers to evaluate the correctness

of the conclusions which are drawn from the data.

(6) Make a few very long runs!

Do this to ensure that there is not some hidden time scale which is

much longer than anticipated.
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Stat. Phys. 61, 79.

Caillol, J. M. (1993), J. Chem. Phys. 99,

8953.

Carmesin, I. and Kremer, K. (1988),

Macromolecules 21, 2878.

Challa, M. S. S. and Hetherington, J. H.

(1988), in Computer Simulation Studies

in Condensed Matter Physics I, eds. D.

P. Landau, K. K. Mon and H.-B.
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5 More on importance sampling Monte

Carlo methods for lattice systems

5.1 CLUSTER FLIPPING METHODS

5.1.1 Fortuin^Kasteleyn theorem

Advances in simulational methods sometimes have their origin in unusual

places; such is the case with an entire class of methods which attempt to beat

critical slowing down in spin models on lattices by flipping correlated clusters

of spins in an intelligent way instead of simply attempting single spin-flips.

The first steps were taken by Fortuin and Kasteleyn (Kasteleyn and Fortuin,

1969; Fortuin and Kasteleyn, 1972) who showed that it was possible to map a

ferromagnetic Potts model onto a corresponding percolation model. The

reason that this observation is so important is that in the percolation problem

states are produced by throwing down particles, or bonds, in an uncorrelated

fashion; hence there is no critical slowing down. In contrast, as we have already

mentioned, the q-state Potts model when treated using standard Monte Carlo

methods suffers from slowing down. (Even for large q where the transition is

first order, the time scales can become quite long.) The Fortuin–Kasteleyn

transformation thus allows us to map a problem with slow critical relaxation

into one where such effects are largely absent. (As we shall see, not all slowing

down is eliminated, but the problem is reduced quite dramatically!)

The partition function of the q-state Potts model (see Eqn. (2.38)) is

Z ¼
X
f�ig

e
K
P

i;j

ð��i�j
�1Þ

; ð5:1Þ

where K ¼ J=kBT and the sum over f�ig is over all states of the system. The

transformation replaces each pair of interacting Potts spins on the lattice by a

bond on an equivalent lattice with probability

p ¼ 1� e
�K��i�j : ð5:2Þ

This means, of course, that there is only a non-zero probability of bonds

being drawn if the pair of spins on the original lattice is in the same state.

This process must be carried out for all pairs of spins, leaving behind a lattice

with bonds which connect some sites and forming a set of clusters with

different sizes and shapes. Note that all spins in each cluster must have the

same value. The spins may then be integrated out (leaving a factor of q
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behind for each cluster) and for the Nc clusters which remain (including

single site clusters) the resultant partition function is

Z ¼
X
bonds

pbð1� pÞðNb�bÞqNc ; ð5:3Þ

where b is the number of bonds and Nb is the total number of possible bonds.

The quantity ð1� pÞ is simply the probability that no bond exists between a

pair of sites. Thus, the Potts and percolation problems are equivalent. This

equivalence was first exploited by Sweeny (1983) who generated graph con-

figurations directly for the weighted percolation problem and showed that

this was a more efficient approach than using the Metropolis method. In the

following two sub-sections we shall demonstrate two particularly simple,

different ways in which this equivalence may be exploited to devise new

Monte Carlo methods which work ‘directly’ with the spin systems.

5.1.2 Swendsen^Wangmethod

The first use of the Fortuin–Kasteleyn transformation in Monte Carlo simu-

lations was by Swendsen and Wang (1987); and although this is seldom the

most efficient method, it remains an important tool. Just as in the Metropolis

method, we may begin with any sort of an initial spin configuration. We then

proceed through the lattice, placing bonds between each pair of spins with

the probability given by Eqn. (5.2). A Hoshen–Kopelman method (see

Section 3.6) is used to identify all clusters of sites which are produced by a

connected network of bonds. Each cluster is then randomly assigned a new

spin value, using a random number, i.e. each site in a cluster must have the

same new spin value. The bonds are ‘erased’ and a new spin configuration is

produced. See Fig. 5.1 for a schematic representation of the implementation

of this algorithm. Since the probability of placing a bond between pairs of

sites depends on temperature, it is clear that the resultant cluster distribu-

tions will vary dramatically with temperature. At very high temperature the

clusters will tend to be quite small. At very low temperature virtually all sites

with nearest neighbors in the same state will wind up in the same cluster and

there will be a tendency for the system to oscillate back and forth between

quite similar structures. Near a critical point, however, a quite rich array of

clusters is produced and the net result is that each configuration differs

substantially from its predecessor; hence, critical slowing down is reduced!

In addition to the above intuitive argument, the reduction in characteristic

time scales has been measured directly. It is thus known that the dynamic

critical exponent z is reduced from a value of just over 2 for Metropolis

single-site spin-flipping to a value of about 0 (i.e. log) in two dimensions and

� 0:5 in three dimensions (Wang, 1990). Please don’t forget, however, that

the overall performance of the algorithm also depends strongly on the com-

plexity of the code which is usually much greater than for single spin-flip

methods. Hence, for small lattices the Swendsen–Wang technique may not
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offer much advantage, or may actually be slower in real time!, but for suffi-

ciently large lattices it will eventually become more efficient.

This method may be extended to more complicated systems if one gives a

little thought to modification. Magnetic fields can be included using two

equivalent methods: either a ‘ghost spin’ is added which interacts with

every spin in the system with a coupling equal to the magnetic field, or

each cluster is treated as a single spin in a magnetic field whose strength is

equal to the product of the field times the size of the cluster. If the interac-

tions in an Ising model are antiferromagnetic instead of ferromagnetic, one

simply places ‘antibonds’ between antiparallel spins with probability

p ¼ 1� e�jKj ð5:4Þ
and proceeds as before. A further extension is to antiferromagnetic q-state

Potts models for which the groundstate is multiply degenerate (see Wang,

1989). Two different spin values are randomly chosen and all spins which

have different values are frozen. The spins which are still free are then

simulated with the Swendsen–Wang algorithm with the frozen spins playing
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(a) (b) (c)
Fig. 5.1 Schematic view of the Swendsen–Wang algorithm for an Ising model: (a) original spin configuration; (b) clusters

formed; (c) ‘decorated’ clusters.

Swendsen^Wang algorithm for a q-state Potts model

(1) Choose a spin

(2) Calculate p ¼ 1� e
�K��i�j for each nearest neighbor

(3) If p < 1, generate a random number 0 < rng < 1;

If rng < p place a bond between sites i and j

(4) Choose the next spin and go to (2) until all bonds have been

considered

(5) Apply the Hoshen–Kopelman algorithm to identify all clusters

(6) Choose a cluster

(7) Generate a random integer 1 	 Ri 	 q

(8) Assign �i ¼ Ri to all spins in the cluster

(9) Choose another cluster and go to (7)

(10) When all clusters have been considered, go to (1)



the role of quenched, non-interacting impurities. Two new spin values are

chosen and the process is repeated. This method can also be applied to spin

glass models but does not bring an improvement in performance due to the

strong frustration.

The connection between cluster configurations and spin configuration

raises a number of interesting issues which have been studied in detail by

De Meo et al. (1990) for the Ising ferromagnet. In spite of the initial belief

that the ‘geometric clusters’ formed by simply connecting all like spins in a

given configuration could describe the Ising transition, it is clear that the

actual ‘physical clusters’ which can be used for theoretical descriptions in

terms of cluster theories are different. The Swendsen–Wang algorithm quite

naturally selects only portions of a geometric cluster in creating new config-

urations. It is possible, however, to describe the thermal properties of a

system in terms of the cluster properties, so one question becomes: just

how well do the two agree? For the order parameter M the estimate in

terms of clusters is given by the sum over all clusters of like spin direction.

In contrast, the percolation probability P1 is determined only by the largest

cluster. In a finite system the two may thus be expected to be different and

indeed, as Fig. 5.2 shows, the finite size behaviors of the order parameter M

and the percolation probability P1 are not the same. They also showed that

for large lattices and p < pc in d-dimensions

hMi / L�d=2; L ! 1; ð5:5aÞ
hP1i / L�d logL; L ! 1: ð5:5bÞ

Related differences are present for the fluctuation quantities such as specific

heat and susceptibility for which one has to separate out contributions from

the clusters other than the largest one and those in the size of the largest

cluster.
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Problem 5.1 Perform a Swendsen^Wang simulation of a 32 � 32 Ising
square lattice with periodic boundary conditions at T ¼ 2:27 J=kB and
T ¼ 3:0 J=kB. Determine the correlation times for the internal energy and
compare the answers with the corresponding results for a Metropolis simu-
lation at these temperatures. Comment on your findings.

5.1.3 Wolff method

One obvious shortcoming of the Swendsen–Wang approach is that significant

effort is expended in dealing with small clusters as well as large ones. These

small clusters do not contribute to the critical slowing down, so their con-

sideration does not accelerate the algorithm. In order to partially eliminate

this constraint, Wolff (Wolff, 1989a) proposed an alternative algorithm based

on the Fortuin–Kasteleyn theorem in which single clusters are grown and

flipped sequentially; the resultant performance generally exceeds that of the

Swendsen–Wang method. The algorithm begins with the (random) choice of

a single site. Bonds are then drawn to all nearest neighbors which are in the

same state with probability

p ¼ 1� e�K : ð5:6Þ
One then moves to all sites in turn which have been connected to the initial

site and places bonds between them and any of their nearest neighbors which

are in the same state with probability given by Eqn. (5.6). The process

continues until no new bonds are formed and the entire cluster of connected

sites is then flipped. Another initial site is chosen and the process is then

repeated. The Wolff dynamics has a smaller prefactor and smaller dynamic

exponent than does the Swendsen–Wang method. Of course the measure-

ment of Monte Carlo time is more complicated since a different number of

spins is altered by each cluster flip. The generally accepted method of con-

verting to MCS/site is to normalize the number of cluster flips by the mean

fraction of sites hci flipped at each step. The Monte Carlo time then becomes
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Wolff cluster flippingmethod for the Ising model

(1) Randomly choose a site

(2) Draw bonds to all nearest neighbors with probability

p ¼ 1� e
�K��i�j

(3) If bonds have been drawn to any nearest neighbor site j, draw

bonds to all nearest neighbors k of site j with probability p ¼ 1�
e
�K��j�k

(4) Repeat step (3) until no more new bonds are created

(5) Flip all spins in the cluster

(6) Go to (1)



well-defined only after enough flips have occurred so that hci is well defined.
Later in this chapter we shall see just how important the Wolff algorithm can

be for testing random number generators.

Problem 5.2 Perform a Wolff simulation of a 32 � 32 Ising square lattice
with periodic boundary conditions at T ¼ 2:27 J=kB and T ¼ 3:0 J=kB.
Determine the correlation times for the internal energy and compare the
answers with the corresponding results for a Metropolis simulation at
these temperatures. Comment on your findings.

5.1.4 ‘Improved estimators’

In general, it may be possible to find multiple ways to calculate the same

physical property of the system, and it may also turn out that the fluctuations

in one estimator cancel more than for another estimator. (In earlier chapters

we saw that the specific heat could be determined as a numerical derivative of

the internal energy or from the fluctuations. The zero field susceptibility can

be computed from the fluctuation of the order parameter or from the sum of

the site–site correlation functions.) Since individual clusters are independent

for the cluster flipping methods just discussed, for some quantities which can

be calculated using cluster properties, ‘noise reduction’ occurs. It is then

convenient to express various quantities in terms of clusters and use these

expressions to answer the thermodynamic questions of interest (Sweeny,

1983; Wolff, 1988, 1990). Thus, for example, the susceptibility for OðNÞ
models is given by the mean cluster size, i.e.

� ¼ �hjCji ð5:7Þ
where jCj is the size of a cluster. The statistical error in the cluster definition

of the suceptibility is smaller than that obtained using the fluctuations in the

order parameter since the fluctuations due to the very small clusters cancel

out. As discussed in the first section, however, for finite systems the behavior

is not exactly the same as the true susceptibility, but in the thermodynamic

limit it yields the same behavior. An improved estimator for the correlation

function of the non-linear sigma model also yields substantial reduction in

statistical error (Hasenbusch, 1995) and this property can be used for the

classical spin systems that will be discussed shortly. The conclusion to which

one might reasonably come is that not only the simulation method but also

the method of analyzing the data needs careful consideration. We shall see in

Chapter 7 just how important this consideration can be.

5.1.5 Invaded cluster algorithm

The cluster algorithms that have just been described represent a general

approach to the simulational study of phase transitions with critical slowing

down that is fundamentally different than the single spin flip methods

described in Chapter 4. The success of these cluster algorithms led to new
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variations that allow the method to ‘sample’ the critical region without a priori

knowledge of Tc. (These methods should be generally effective so long as the

bond percolation process has a percolation threshold that coincides with the

phase transition.) One of these modified techniques, the invaded cluster

algorithm (Machta et al., 1995), combines features of invasion percolation

(see Sec. 3.6.3) and cluster flipping to produce a method that has the prop-

erty of ‘self-organized criticality’. For the Ising model the algorithm proceeds

as follows. Some initial spin configuration is chosen and all bonds connecting

spins of the same type are assigned (independently) random numbers drawn

uniformly in the interval between 0 and 1. Cluster growth proceeds by the

systematic addition of the bond with the smallest random number, where

every site is a ‘seed’, and terminates when the largest cluster ‘spans’ the

system. Clusters of spins are then flipped with probability 1
2
, and the process

begins anew. The fraction of the bonds accepted during the growth process

approaches the percolation threshold pc as the lattice size approaches infinity

and the critical temperature can then be extracted by inverting Eqn. (5.2). A

cluster may be considered to span the lattice either when the maximum

separation in one direction is equal to the lattice size L (extension rule) or

when the topological condition that the cluster has wound around the system

in some direction (topological rule) applies. Relaxation times for this method

are quite short, and it can be adapted for the study of both first order and

second order phase transitions. The invaded cluster algorithm has also been

successfully applied to systems with continuous degrees of freedom

(Dukovski et al., 2002).

5.1.6 Probability changing cluster algorithm

Tomita and Okabe (2001) have proposed a very clever algorithm which is

based upon ideas of cluster flipping. The method extends the Swendsen-

Wang method and uses a negative feedback mechanism to ‘find’ the critical

temperature. The first stage of the algorithm is to use Swendsen-Wang

sampling at some initial temperature to construct clusters by connecting

spins of the same type with probability p ¼ 1� expð�J=kBTÞ (see Eqn.

5.2) and to ‘flip’ clusters accordingly. If the system is percolating, the prob-

ability p is decreased by some small amount �p, and if the system is not

percolating, p is increased by a small amount �p. The new value of p is used

to construct new clusters and the process continues. The progress of the

system is monitored and �p is decreased; as �p ! 0 the estimate of pc, and

thus Tc, should become quite accurate. In Fig. 5.3 we show the results of the

application of this approach to the two-dimensional Ising model (Tomita and

Okabe, 2001). The finite size scaling behavior of the estimates for finite lattice

Tc extrapolates quite accurately to the exact value. The algorithm has also

been successfully applied to a number of other systems including those with

classical spins.
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5.2 SPECIALIZED COMPUTATIONAL
TECHNIQUES

5.2.1 Expanded ensemble methods

In many cases it is preferable to work in other ensembles, e.g. to include the

temperature T in the set of dynamic variables (i.e. in the Markov process a

random walk is also carried out over a range of temperatures). These methods

will be treated in some detail in the next chapter. In the remainder of this

section we shall concentrate on specialized techniques that apply primarily to

spin systems.

5.2.2 Multispin coding

Multispin coding is a name given to a variety of very closely related algo-

rithms which pack multiple spins into a single computer word, and then,

through the use of a control word, carry out the spin-flip acceptance or non-

acceptance for all spins in the word simultaneously (Zorn et al. (1981);

Wansleben (1987)). The goal is to reduce both storage and cpu times, and

the performance of multispin coding is very strongly machine dependent!

Since all spins in a word will be considered in a single step, it is essential that

they do not interact with each other. The checkerboard decomposition,

described in Section 4.2.1, was developed explicitly for the purpose of imple-

menting Monte Carlo on vector computers, and the use of a checkerboard

decomposition is necessary for multispin coding on any computer. First,

spins on a single sublattice are packed into ‘multispin storage words’ is.

For an Ising model ‘n’ spins may be packed into a single word, where the

word length is ‘n’ bits. For a q-state Potts model or other discrete state

models, fewer spins may be packed into each word, depending on the number

of bits needed to represent the possible spin states. The flipping probabilities
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are computed for each spin and compared with a random number creating a

‘multispin flip word’ iscr and spin flipping is then carried out by the exclusive

or operation is ¼ iscr.XOR.is. Sublattices are alternated in turn, and the

resultant algorithm may yield substantial enhancement of performance.

In a variation of this method, which we refer to as ‘multilattice coding’, the

same site from multiple, independent lattices is packed into a single word.

Thus, for an Ising model ‘n’ lattices may be packed into a word of ‘n’ bits.

Each lattice may be for instance at a different temperature. The advantage of

this technique is that it offers the possibility of rapid production of data for ‘n’

different, independent systems and hence the possibility of calculating error

bars based upon ‘n’ different runs. Since there is only one spin per system per

word, there is no saving in memory.

5.2.3 N-fold way and extensions

The algorithms which we have discussed so far have been time-step driven

methods, i.e. they were based on following the development of the system at

each tick of some fictitious clock. At very low temperatures the flipping

probability becomes quite small and virtually nothing happens for a long

time. In order to avoid this wasteful procedure Bortz et al. (1975) introduced

an event driven algorithm (the ‘N-fold way’) in which a flip occurs at each

step of the algorithm and one then calculates how many ticks of the clock

would have elapsed if one had done it the ‘old way’. They applied their

method to the two-dimensional Ising model and we shall describe it now

in terms of this system even though it can be applied to other discrete spin

systems as well. In the literature this method has occasionally been termed

‘kinetic Monte Carlo’, but we will retain the usage of ‘kinetic Monte Carlo’

(KMC) to refer to sampling in which attempted moves must first overcome a

thermal barrier and the resultant time dependence of the system differs from

that in which only the initial and final states matter. This topic will be

considered in more detail in Section 10.7.

We begin by recognizing that there are only a small number of possible

local environments which a spin can possibly have and consequently a limited

number of different flipping probabilities. One thus collects all spins in the

system into lists, in which each member has the identical energetic local

environment. For an Ising S ¼ 1=2 square lattice, for a spin with � ¼ þ1

there are only 5 possible arrangements of nearest neighbors with different

energies, i.e. the number of neighbors which also have � ¼ 1 may only be

4; 3; 2; 1, or 0. The same number of possibilities exist for a spin � ¼ �1, so

every spin in the system can belong to one of only 10 classes. (If next-nearest

neighbor interactions are present or the system is three-dimensional the

number of classes will be different, but in all cases it will be some modest

size integer N. Hence the name N-fold way.) The total probability of any

spin of class l being flipped in a given step is

pl ¼ nle
��El=kBT ; ð5:8Þ
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where nl is the number of spins which are in class l. The integrated prob-

ability of ‘some’ event occurring in a given step for the first M classes is

simply

QM ¼
X
l	M

pl : ð5:9Þ

Then QN is the total probability for all N classes. The procedure is then to

generate a random number 0 < rn < QN to determine the class from which

the next spin to be overturned will come, i.e. class M is chosen if

QM�1 < rn < QM. Once the class has been chosen, another random number

must be chosen to pick a spin from among those in the class. Finally, a third

random number will be used to determine how much time has elapsed before

this event has taken place, and we will discuss this part of the algorithm in a

minute. First, we want to say a few words about bookkeeping. Each time a

spin is flipped, it changes class. The site must then be removed from the list

belonging to its original class and added to the new list corresponding to its

new class. In addition, all of its (interacting) near neighbors change class. The

key to an efficient N-fold way algorithm is thus an effective way of main-

taining and updating the lists.

In order to determine the ‘lifetime’ of a state we first consider the prob-

ability that the system is in state f�g at time t and then undergoes a transition

between time t and time t þ�t:

�PðtÞ ¼ �PðtÞQl

	
�t; ð5:10Þ

where 	 is the time needed to execute a flip. The probability of a flip of a spin

in any class is then

Pð�tÞ ¼ exp �Ql

	
�t

� �
: ð5:11Þ

Treating this as a stochastic process, we can generate a random number R

between 0 and 1, and inverting Eqn. (5.11), we find that the ‘lifetime’ of the

state before flipping occurs becomes

�t ¼ � 	

QN

lnR: ð5:12Þ

The thermodynamic averages of properties of the system are then calculated

by taking the lifetime weighted average over the different states which are

generated. The N-fold way is rather complicated to implement and each

spin-flip takes a considerable amount of cpu time; however, at low tempera-

tures, the net gain in performance can be orders of magnitude.

A generalization of the N-fold way algorithm is the technique of ‘absorb-

ing Markov chains’, or MCAMC, (Novotny, 1995a) which offers substantial

additional advantage in looking at magnetization switching in nanoscale ferro-

magnets and related problems. At low temperatures a strongly magnetized

ferromagnet will not immediately reverse when a magnetic field is applied in

the opposite direction because the nucleation barrier to the formation of a
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cluster of overturned spins is large. In a Monte Carlo simulation the same

problem occurs and very long times are needed to follow the magnetization

reversal process using standard techniques. The MCAMC approach extends

the N-fold way algorithm to allow the simultaneous flipping of more than one

spin to enhance the speed at which a nucleation cluster is formed; the ‘level’

of the method determines how many spins may be overturned in a single

step. The level 1 MCAMC is essentially a discrete time version of the N-fold

way (Novotny, 1995b) and is best used for an initial state in which all spins

are up, i.e. for class 1 spins. A random number R is picked and then the

lifetime m of the state is determined from pm
o < R < pm�1

o where po ¼ 1� p1.

A spin is then randomly chosen and overturned. Level 2 MCAMC offers a

decided advantage in the case that the nucleation cluster size is at least two,

since it avoids the tendency to flip back those spins that have just been

overturned. The level 2 MCMAC begins with a fully magnetized state and

overturns two spins; these may either be nearest neighbors of each other or

may be more distant neighbors which do not interact. Then one must define a

transient submatrix T which describes the single time step transition prob-

abilities, i.e. for overturning one spin to reach a transient (intermediate) state,

and the recurrent submatrix R which gives the transition probabilities from

the transient to the absorbing (final) states. Again a random number R is

chosen and the lifetime of the state is determined by vTTme < R < vTTm�1e

where v is the vector describing the initial state and e is the vector with all

elements equal to one. Another random number is then generated to decide

which spins will actually flip. Following generation of the ‘initial cluster’ as

just described, the N-fold way may then be used to continue. This method

may be systematically extended to higher order when the size of the nuclea-

tion cluster is larger so that the process of overturning a cluster is ‘seeded’. It

is also possible to use the concept of spin classes to devise another algorithm

that can bridge the disparate time and length scales desired in Monte Carlo

simulations (Kolesik et al., 1998).

An interesting, adaptive algorithm proposed by Adam et al. (1999) inter-

polates between a kinetic Metropolis algorithm and the N-fold way method.

In their kinetic Metropolis method the time steps are not constant but have

an exponential dependence upon random numbers. Nonetheless, there is still

a rejection probability. The adaptive algorithm begins with the kinetic

Metropolis algorithm but stores the transition probabilities of rejected transi-

tions in order to use them later. If the transition is accepted, another kinetic

Metropolis transition is attempted. Otherwise, a new attempt configuration is

selected randomly from the other available choices and the process is

repeated. The advantage of this approach is that only a single transition

probability is needed for each attempt, and if the rejection probability is

low the method is efficient. If the rejection rate is high, however, the algo-

rithm begins to resemble the N-fold way.

Problem 5.3 Perform an N-fold way of a 32 � 32 Ising square lattice with
periodic boundary conditions at T ¼ 1:5 J=kB. Determine the results for the
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internal energy and the correlation time for the internal energy and com-
pare the answers with the corresponding results for a Metropolis simulation
at this temperature. Repeat this comparison for T ¼ 0:5 J=kB.

5.2.4 Hybrid algorithms

In this section we consider methods which employ a combination of different

algorithms. The goal of this approach is to take advantage of the character-

istics of each component algorithm to produce a method which is superior to

each individually. Microcanonical algorithms generate new states very

rapidly, but all states are confined to a constant energy surface (see e.g.

Creutz, 1980). By mixing Metropolis and microcanonical algorithms, one

produces a technique which is ergodic and canonical. Also the mixing of

Monte Carlo and molecular dynamics algorithms goes under the name

‘hybrid Monte Carlo’ but this will be discussed in Chapter 12, Section 12.2.4.

5.2.5 Multigrid algorithms

Multigrid methods are an alternative approach to the reduction of critical

slowing down. ‘Blocks’ of spins of various sizes are considered at different

time steps and all the spins within a given block are either flipped or not in a

sort of coarse-graining procedure. The change in block size is done in a

systematic fashion, and examples are shown in Fig. 5.4. While multigrid

MC (Kandel et al., 1988; 1989) can be shown to eliminate critical slowing

down perfectly for continuous spin models where the single-site probability is

a Gaussian, the method is already less successful for cases where the single

site probability is a 
4 model (Goodman and Sokal, 1986) or for models with

discrete spins. Thus we do not describe this method further here.

5.2.6 Monte Carlo on vector computers

The use of vector computers for Monte Carlo calculations has been immen-

sely successful; and even though everyone anticipates the dominance of

parallel computing in the future, in many cases vector computing is still

the most efficient and user friendly computing tool. Compilers on vector

computers tend to be quite mature and rather efficient code can thus be

produced without enormous user effort. The basic idea of vector computing
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is to speed up computation by arranging the problem so that essentially the

same operation can be performed on an entire vector of variables which is

loaded into the ‘vector pipe’ at the start. This necessitates program construc-

tion which insures that all elements of the vector are independent and that the

change of one does not affect any other. For a Monte Carlo calculation on a

simple lattice model, the checkerboard decomposition discussed in Chapter 4

achieves this goal. For more details on implementation of Monte Carlo pro-

grams and application examples we refer to a separate review (Landau, 1992).

Certainly a familiarity with vector computing provides, at the very least, a

better understanding of the issues raised in over a decade of the literature.

In the early 1990s, vector computing began to fall out of favor (at least

machines for which the user would explicitly write code in vector format) in

the United States because of the perception that parallel computers would

offer substantial performance-cost ratio improvement. The appearance of the

‘Earth Simulator’ in Japan suggested that vector computing might still have a

significant role to play in scientific computing. This machine is a parallel-

vector supercomputer jointly built by the Earth Simulator Research and

Development Center (ESRDC, predecessor of ESC) and NEC (costing

$350-400 million). This unique system architecture produces enough

power to solve the complex scientific calculations used in climate and crustal

modeling and reaches approximately 40 Tflops peak performance. At the

time of the writing of this edition (2004), Cray was developing a vector

machine (Cray X1) that was intended to be substantially superior to any

other commercial machine.

5.2.7 Monte Carlo on parallel computers

One of the most effective uses of parallel architectures is to simply perform

independent Monte Carlo simulations of a system under different conditions

on different processors. This approach, called ‘trivial parallelism’, is

obviously not the goal of designers of these machines, but is often the

most effective from the user point of view. For very large problems, parallel

architectures offer the hope of speeding up the simulation dramatically so

that data are produced within a reasonable turnaround time. Broadly speak-

ing, parallel algorithms may be of two different types. The work to be done

on a system may be spread among multiple processors, or the system may be

decomposed into different parts and each processor may be assigned to work

on a different part of the system. This latter approach is almost always more

effective if a substantial number of processors is available. Simple lattice

systems may be split up into squares or strips. For systems with continuous

positional degrees of freedom, one may either assign a fixed region of space to

a processor or a fixed set of particles. The determination of which approach is

more efficient depends on the characteristics of the problem at hand. For

example, for systems with very strong density fluctuations, a rigid spatial

decomposition of the problem may result in some processors having the

responsibility for many particles and others have no work to do within a
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given time interval. One particularly important consideration in the develop-

ment of any type of parallel program is the relative importance of commu-

nication time and computation time. In the case of geometric parallelization,

i.e. decomposition of a system into strips, if the size of the individual regions

is too small, the time used to communicate information between processors

may not be small compared to the time needed on each processor for com-

putation. In such a case, the performance may actually get worse as processors

are added (Heermann and Burkitt, 1990). For systems with long range inter-

actions (e.g. spin systems with exchange constants which decay with distance

according to a power law) most of the computational effort goes into the

calculation of energy changes, and then the communication overhead is much

less of a problem.

The clever use of parallel algorithms continues to enhance the perfor-

mance of Monte Carlo simulations and this tendency is unlikely to abate

soon. Although more detailed descriptions of parallel implementation are

beyond the scope of this text, additional information is becoming abundant;

see, e.g., Heffelfinger (2000) and Uhlherr (2003).

5.3 CLASSICAL SPIN MODELS

5.3.1 Introduction

There are many important lattice models in statistical mechanics which do

not have discrete degrees of freedom but rather variables which vary con-

tinuously. Just as the Ising model is the ‘standard’ example of a discrete

model, the classical Heisenberg model is the most common prototype of a

model with continuous degrees of freedom. A more general model which

includes the Heisenberg system as a special case involves classical spin vectors

Si of unit length which interact via a Hamiltonian given by

H ¼ �J
X
i;j

Si � Sj � D
X

i

S2
i ; jSij ¼ 1; ð5:13Þ

where the first term is the Heisenberg exchange interaction and the second

term represents single ion anisotropy. This Hamiltonian describes many

physically interesting magnetic systems, and even examples of D ¼ 0 have

been experimentally verified for magnetic ions with large effective spin

values, e.g. RbMnF3. We must remember, of course, that at sufficiently

low temperatures the classical Hamiltonian cannot be correct since it neglects

quantum mechanical effects (see Chapter 8). In the remaining parts of this

section we shall consider methods which can be used to simulate the

Heisenberg model and its anisotropic variants.

In the systems with discrete degrees of freedom that have been discussed

earlier, the elementary excitations cost a finite amount of energy and the

thermodynamic properties tend to be dominated by exponential decays at

low temperature. In contrast, systems described by Hamiltonians with clas-
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sical spins, e.g. Eqn. (5.13), will have excited states that cost an infinitesimal

amount of energy. Thus, elementary excitations generally can be described

by simple harmonic oscillators at quite low temperatures and the equiparti-

tion theorem can be used to determine low temperature properties. For a

system with three-dimensional spins, i.e. S ¼ ðSx;Sy;SzÞ with fixed length

spins jSj ¼ 1, the low temperature specific heat will be given by

C=N ¼ 2� 1
2
� kB. If one of the spin components is completely quenched,

the specific heat would be suitably reduced, i.e. C=N ¼ 1� 1
2
� kB. Since

Monte Carlo methods tend to have difficulties at low temperatures because of

‘thermal sluggishness’, a comparison with the predicted equipartition value is

a good way to check on whether or not the system has reached equilibrium.

5.3.2 Simple spin-flip method

The Metropolis method can be used for Monte Carlo simulations of classical

spin vectors if we allow a spin to ‘tilt’ towards some new direction instead of

simply flipping as in an Ising model. In the simplest approach, some new,

random direction is chosen and the energy change which would result if this

new spin orientation is kept is then calculated. The usual Metropolis pre-

scription is then used to determine, by comparison with a random number

generated uniformly in the interval ½0; 1�; whether or not this new direction is

accepted, i.e. the transition rate is

Wn!m ¼ 	�1
o expð��E=kBTÞ; �E > 0 ð5:14aÞ

¼ 	�1
o ; �E < 0 ð5:14bÞ

where �E is simply the difference between the initial and trial state. When

beginning such a simulation one must first make a decision about whether

information about the spins will be kept by keeping track of Cartesian spin

components or by keeping track of angles in spherical coordinates. The

manipulation of spins in angular coordinates is usually quite time consuming,

and it is generally more efficient to use Cartesian coordinates. (One price

which one must then pay is that the spin length is no longer fixed to remain

exactly equal to unity.) A new spin direction can then be chosen by randomly

choosing new spin components and normalizing the total spin length to unity.

The simplest way to accomplish this is to generate a new random number in

the interval ½0; 1� for each component and then subtract 0:5 to produce

components such that �0:5 < S� < 0:5; by normalizing by the length of

the spin one obtains a new spin of length unity. If this procedure is used,

however, the spins are not part of a uniform distribution of directions since

they are more likely to point towards the corners of a unit cube than in other

directions. Instead, one must first discard any new spin which has a length

greater than 0:5 before renormalization, but if this is done, the new spins will

be uniformly distributed on the unit sphere. An interesting alternative

procedure was suggested by Marsaglia (1972). Two random numbers r1
and r2 are chosen from a uniform distribution to produce a vector with
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two components 
1 ¼ 1� 2r1 and 
2 ¼ 1� 2r2: The length of the vector is

determined by 
2 ¼ 
21 þ 
22 and if 
2 < 1 a new spin vector is then computed

with components

Sx ¼ 2
1ð1� 
2Þ1=2; Sy ¼ 2
2ð1� 
2Þ1=2; Sz ¼ 1� 2
2: ð5:15Þ
Note that this procedure is not simply the generation of points randomly in

the unit circle and then projecting them onto the unit sphere since this would

not produce a uniform distribution. Any of the methods for producing new

trial spin configurations require multiple random numbers, moreover the

continuous variation of possible energies eliminates the possibility of building

a table of probabilities. Thus, continuous spin models are much more time

consuming to simulate. (A trick which can be used is to approximate the

possible spin directions by a discrete distribution, e.g. for a two-dimensional

XY-model one could use an n-state clock model with the spins confined to

point in one of n different equally spaced directions. The discreteness which

results would then allow table building, however, it may also modify the

behavior. At low temperatures, for example, the effective anisotropy intro-

duces a gap into the excitation spectrum which is not present in the original

model. In two-dimensional models the nature of the phase transitions is also

modified. Thus, even though such approaches may improve performance,

they must be treated with caution.)

One additional feature that needs to be discussed is the choice of an order

parameter. These systems now have order parameters with multiple compo-

nents, and the nature of the Hamiltonian determines just which components

are important. In the case of single ion anisotropy ordering will occur only

along the z-direction so this component must be kept track of separately from

the other components. In the fully isotropic case, all components are equiva-

lent. The order parameter is then invariant under global rotation so it is the

magnitude of the order parameter which matters, i.e.

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þ M2
y þ M2

z

q
; where M� ¼ 1

N

X
i

Si�: ð5:16Þ

In this case the order parameter can never be zero, even above Tc so finite

size effects are always quite pronounced. The usual fluctuation definition of

the susceptibility is also no longer valid although it can be used as an ‘effec-

tive’ susceptibility. Above Tc the best estimate for the true susceptibility is

simply

� ¼ N

kBT
hm2i ð5:17Þ

since hmi will be zero in the thermodynamic limit.

Problem 5.4 Perform a Metropolis simulation of a 4 � 4 � 4 classical
Heisenberg model on a simple cubic lattice with periodic boundary condi-
tions at T ¼ 2:0 J=kB and T ¼ 4:0 J=kB. Determine the internal energy and
order parameter. Comment on your findings.
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5.3.3 Heatbath method

A variation of this method which was first suggested for application to lattice

gauge theories (see Chapter 11) corresponds to touching each spin in turn

(selected either in order or randomly) to a ‘heat bath’ (Creutz, 1980). Instead

of allowing the change in energy to determine the ‘new’ spin configuration,

one can simply randomly select a new spin direction and then compare a

random number rn with the Boltzmann probability of the trial configuration,

i.e. accept the new configuration if rn < expð�E 0=kBTÞ where E 0 is the

energy of the trial state. This method is most useful in circumstances

where the Metropolis-like approach described above has a very low accep-

tance rate. In simulations of lattice gauge models the determination of the

energy of a given state may be very time consuming so one may repeat the

heatbath process many times, with the same new trial state, and use the

collection of configurations which result for the statistical averaging. The

entire process must be repeated many times, and after equilibration has

occurred, many Monte Carlo steps must be made to obtain good statistical

averaging. The heatbath method may also be used for Ising model simula-

tions for which there are only two different states for each spin. Here the spin

may be set equal to +1 with probability pi and equal to –1 with probability

1� pi where

pi ¼
e2�

P
nn
�j

1þ e2�
P

nn
�j :

ð5:18Þ

This may be easily implemented by generating a random number rn and

setting

� 0
i ¼ signðpi � rnÞ: ð5:19Þ

Note that the probability of a spin being up or down is the same for Glauber

dynamics, however the implementation is different since

� 0
i ¼ signðrn � ð1� piÞÞ if � ¼ þ1; ð5:20aÞ

� 0
i ¼ signðpi � rnÞ if �i ¼ �1: ð5:20bÞ

This means that the random numbers are used differently and the actual

sequence of states will be different (Herrmann, 1990).

5.3.4 Low temperature techniques

5.3.4.1 Sampling

In classical spin systems there is no gap in the excitation spectrum. Very low

energy excitations dominate at low temperatures, but a random choice of new

spin direction will generally produce a large energy change and is thus

unlikely to be accepted. The acceptance rate can be increased by restricting

the new spin-flip attempts to a small cone about the initial position. If the

cone is made too narrow, however, the changes are so small that the system
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again evolves quite slowly. Hence some initial trials followed by an intelligent

choice of the angle for the cone of maximum displacement must be made.

5.3.4.2 Interpretation

At low temperatures the excitations are spin waves which can be most readily

explained by a harmonic analysis in reciprocal (momentum) space. For small

lattices, however, the reciprocal space is quite coarse grained and the number

of momentum points q is limited. Thus, finite size effects can become impor-

tant, not because of any critical behavior but because of the restrictions on the

number of modes.

5.3.5 Over-relaxation methods

Strictly speaking over-relaxation (Brown and Woch, 1987; Creutz, 1987)

techniques are deterministic, but they are of great value when used in com-

bination with other, stochastic approaches. The effective interaction field for

a spin is determined by examining all neighbors to which it is coupled. The

spin is then precessed about this interaction field by an angle �, making use of

the equation of motion

_SS ¼ �S�Heff : ð5:21Þ
This process is microcanonical since the energy is a constant of the motion,

but for large values of � it can enhance decorrelation. If a checkerboard

algorithm is used, every spin on a single sublattice may be considered, and

then each spin on the next sublattice treated. This algorithm is deterministic,

but when used together with a stochastic technique, e.g. Metropolis, the

resultant states are drawn from a canonical ensemble. This method is quite

efficient and vectorizes extremely well.

5.3.6 Wolff embedding trick and cluster flipping

At first glance the cluster flipping methods which have been described earlier

would seem to be restricted to systems with discrete states, but Wolff

(1989a,b) has also shown how these methods can be applied to general

OðnÞ models. This approach, known as the embedding trick, turns the ori-

ginal uniform interaction classical spin model into an Ising model with inho-

mogeneous couplings. It proceeds in the following manner. First a direction n̂n

is chosen randomly in space. The spins are then projected onto that direction

to form an Ising model with interactions between pairs which depend on the

projections of each spin. In principle the Metropolis method could then be

used to flip spins, but it is clearly more effective to use a cluster flipping

method. If the single cluster (Wolff) flipping algorithm is to be used, bonds

are added between nearest neighbor sites with probability

p ¼ 1� expfmin½0; 2�Jðn̂n � SiÞðn̂n � SjÞ�g ð5:22Þ
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to form a connected cluster of sites in the same way as for a simple Ising

model. The components parallel to n̂n are then reversed for every spin in the

cluster to yield a new spin configuration. Note that in this case the projection

need only be carried out for those spins which have a chance to join the

cluster to be flipped. A new direction is randomly chosen in space and the

process is repeated. Data are collected in the usual way. (See also Section

5.1.3 in this chapter for a quick review of the cluster flipping technique for

the Ising model.)

We wish to emphasize that this trick is not just of academic interest since it

has already been used to extend the studies of critical phenomena in classical

spin systems well beyond what was previously possible. For example, a very

successful investigation of the three-dimensional classical, Heisenberg model

has been made using the embedding trick Wolff flips together with histogram

reweighting (see Chapter 7) and a finite size scaling analysis to determine the

critical temperatures on several lattices with quite high precision (Chen et al.,

1993). Lattices as large as 40� 40� 40 with periodic boundary conditions

were simulated with the results: J=kBTc ¼ 0:693 035ð37Þ (body centered

cubic lattice with two atoms per unit cell) and J=kBTc ¼ 0:486 798ð12Þ (sim-

ple cubic lattice). The critical exponents were found with high precision and

the values agreed quite closely for the two lattices in full support of our ideas

of universality. A Wolff cluster study of this system by Holm and Janke

(1993) yielded similar results but with less resolution. Whereas these lattice

sizes are still much smaller than those which are accessible for the Ising

model, they represent a dramatic improvement over what could be treated

by Metropolis sampling. Other systems have been studied with this method

as well. The three-dimensional XY-model (plane rotator) was studied by

Hasenbusch and Meyer (1990) using the Swendsen–Wang cluster update

method together with the embedding trick and improved estimators. They

found a critical coupling of J=kBTc ¼ 0:454 21ð8Þ and obtained estimates for

static and dynamic critical exponents from finite size scaling. All of the above

mentioned studies indicate that the combination of several methods, for both

simulation and analysis, can indeed be quite powerful.

Problem 5.5 Using the embedding trick perform a Wolff cluster simula-
tion of a 4 � 4 � 4 classical Heisenberg model on a simple cubic lattice with
periodic boundary conditions at T ¼ 2:0 J=kB. Determine the internal
energy and order parameter and compare the results with those of
Problem 5.4.

5.3.7 Hybrid methods

Often it is advisable to combine different updating schemes into a single,

more complicated scheme that is more efficient in destroying correlations

between subsequently generated states on all length scales. Thus, it is

straightforwardly possible to mix ordinary Metropolis or heatbath sweeps

through the lattice with Wolff cluster flips, etc. A very successful study of
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the two-dimensional classical, XY-model (three component) used a mixture

of Metropolis, over-relaxation and embedding trick Wolff flips together with

a finite size scaling analysis to determine the Kosterlitz–Thouless tempera-

ture to much higher precision than had previously been possible (Evertz and

Landau, 1996), J=kBTKT ¼ 0:700ð5Þ:
Another technique which is actually termed ‘hybrid Monte Carlo’ has

been used in lattice gauge theories (see Chapter 11) but is also straightforward

to implement for classical spin systems. Instead of choosing the trial config-

uration by random change of a single spin (or link for lattice gauge models)

one can instead produce a trial state by changing all spins by a small amount

determined from the canonical equations of motion. (Such time integration

methods will be discussed in Chapter 12. As a note, we add that a symplectic

integrator is best chosen to insure detailed balance. For lattice gauge models

it may be necessary to introduce fictitious momenta in order to accomplish

this.) The acceptance or rejection of the new trial state can then be made via

standard Metropolis.

5.3.8 Monte Carlo dynamics vs. equation of motion
dynamics

In the previous sections we have discussed a number of techniques which

allow us to ‘speed up’ the Monte Carlo sampling through phase space

through the intelligent choice of ‘step’ size and direction. For some systems

such changes can be made with impunity since the time development of the

system being modeled is stochastic. In some cases systems have true

dynamics which are described by Poisson’s equations if they are classical

or by the commutator if they are quantum, i.e.

_SSi ¼ � i

�h
½H;Si�; ð5:23Þ

where H is the Hamiltonian and Si the operator in question. Equation (5.23)

represents an equation of motion and takes the system along a deterministic

path through phase space. This path has physical significance and the asso-

ciated time is true time. In contrast, the Monte Carlo method is strongly

dependent on the (arbitrary) transition rate which is chosen. For the Ising

model, Eqn. (5.23) yields no equations of motion since the commutator is

zero. The Ising model thus has only stochastic ‘dynamics’, i.e. kinetics. The

time-dependent behavior of the Heisenberg model may be studied either by

Monte Carlo kinetics or by integrating deterministic equations of motion

obtained through Eqn. (5.23); the time-dependent critical behavior will be

different in the two cases (Landau, 1994; Landau and Krech, 1999).

5.3.9 Topological excitations and solitons

In most situations discussed so far, deviations from the groundstate are

produced by spin-flips or by periodic, spin-wave excitations. In some
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cases, other kinds of excitations have fundamental importance. In the two-

dimensional XY-model, in addition to spin waves, topological excitations

known as vortices play a crucial role. The vortex cores can be located by

following the spin directions around an elementary plaquette and summing

the differences in the relative spin angles with regard to some fixed direction.

If the sum is 2p a vortex is present, if the sum is �2p an antivortex is present,

and if the sum is 0 then no topological excitation is centered on the plaquette.

Both spin waves and vortices are portrayed schematically in Fig. 5.5. At low

temperatures a few tightly bound vortex–antivortex pairs are present in the

two-dimensional XY-model, and as the temperature is increased the pairs

unbind, signaling a special kind of phase transition. A Monte Carlo simula-

tion does not manipulate the vortices directly since it is the spin degrees of

freedom which are sampled, but the vortex behavior can be monitored along

with the thermodynamic properties.

There are also slightly more complex systems which show a combination

of order parameter fluctuations as well as topological excitations. As a simple

‘case study’ example we consider the two-dimensional Heisenberg antiferro-

magnet with exchange anisotropy in a magnetic field,

H ¼ J
X
hi;ji

½ð1� DÞðsixsiy þ siysjyÞ þ sizsjz� þ Hk
X

i

siz; ð5:24Þ

where J > 0 is the antiferromagnetic nearest neighbor exchange parameter,

D describes the exchange anisotropy, and Hk is an applied magnetic field in

the z-direction. Data were obtained for this model using quite simple Monte

Carlo methods by Landau and Binder (1981) either by varying the tempera-

ture at fixed field strength or by sweeping the field at constant temperature.
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L � L lattices with periodic boundaries were simulated using the Metropolis

method. From a combination of data on order parameters, magnetization,

internal energy, susceptibility, and specific heat, a phase diagram was

extracted in Hk�T space. This diagram, see Fig. 5.6, shows that in low fields

below a field-dependent critical temperature, there is an Ising transition to a

state in which the system shows antiferromagnetic order along the field

direction. At high fields the z-components of the spins are aligned (but

disordered) and only the x- and y-spin components are free to order. This

is the so-called ‘spin-flop’ (SF) phase. However, since the symmetry is then

the same as for a two-dimensional XY-model, we expect a Kosterlitz–

Thouless transition with the formation of bound, topological excitations as

the temperature is lowered. In three dimensions the upper and lower phase

boundaries would meet at a Heisenberg-like bicritical point at some finite

temperature, but in two dimensions the Heisenberg model does not order at

any finite temperature so we would expect on theoretical grounds that they

would meet at T ¼ 0. The simulations show that these two phase boundaries

come very close together, but it is not possible to determine whether or not

they merge at some non-zero temperature. In the ‘XY-like’ phase, bound

vortex–antivortex pairs are seen at low temperatures; in addition to increasing

in density as the temperature is elevated, they begin to unbind, as is shown in

Fig. 5.7a. The measured density is consistent with a non-zero excitation

energy and the value of the ‘gap’ varies systematically with the applied

field (see Fig. 5.7b). Of course, with modern computers and techniques

one could obtain far better data on larger systems, but even these results
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respectively.

(b)Vortex-pair density
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needed to create a

vortex–antivortex pair

is 2�. From Landau

and Binder (1981).



which require quite modest computer resources clearly reveal the essential

physics of the problem.

Another very intriguing situation is found in one-dimensional XY-models

with a symmetry breaking field. In the simplest possible case there may be

topological excitations in which the spins go through a 2p-twist as we move

along the chain direction. This may be observed by simply monitoring the

angular position of successive spins. These excitations are known as solitons,

or more properly speaking solitary waves, and may exist in a variety of forms

in magnetic models. (See Fig. 5.5 for a schematic representation of a soliton

excitation.) For example, in an antiferromagnet each sublattice may rotate

through p to form a new kind of soliton. It is also possible for one sublattice

to rotate through p and the other sublattice to rotate through �p. In a third

variant, one sublattice is unchanged and the other rotates through 2p: All of
these types of solitons have been observed in Monte Carlo simulations.

5.4 SYSTEMS WITH QUENCHED RANDOMNESS

5.4.1 General comments: averaging in random systems

By quenched randomness we imply that the model Hamiltonian of interest

depends on random variables other than the degrees of freedom which are

considered in the thermal average, and these random variables are kept fixed

in one physical realization of the system. For example, consider a magnetic

binary alloy AxB1�x, where a crystal is grown from a melt containing a

fraction x of A-atoms and a fraction 1� x of B-atoms. Assuming that both

species carry Ising spins Si ¼ �1, it is nevertheless natural to assume that the

exchange constants Jij depend on the type of pair that is considered: JAA, JAB
or JBB, respectively. Denoting the occupation variable ci ¼ 1 if site i is taken

by an A-atom, ci ¼ 0 if it is taken by a B-atom, one would arrive at the

Hamiltonian (assuming nearest neighbor exchange only)

HfSi; cig ¼ �
X
hi;ji

�
cicjJAA þ cið1� cjÞ þ cjð1� ciÞ

� 	
JAB

þ ð1� ciÞð1� cjÞJBB



SiSj:

ð5:25Þ

Of course, this model includes the dilution of a magnetic crystal by a non-

magnetic species as a special case (then JAB ¼ JBB ¼ 0). While the config-

urations of the spins {Si} in all averages are weighted with the Boltzmann

factor exp½�HfSi; cig=kBT � in all averages, the configurations of the fcig are
not assumed to occur with a weight given by the Boltzmann factor, but rather

with a predetermined distribution Pfcig. Depending on the history of sample

preparation in the laboratory, one may wish to choose the ci completely at

random, but consistent with the chosen concentration x, or with some built-

in correlations reflecting ‘chemical’ short range order. In any case, an average
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of some observable AfSi; cig (e.g. the magnetization M of the crystal) then

becomes

hAfSi; cigiT½ �av¼
ð

dfcigPfcig
1

Zfcig
Tr
fsig

AfSi; cig exp½�HfSi; cig=kBT �:
ð5:26Þ

Thus one sees there is a double average that needs to be carried out: for a

fixed realization fcig; one computes the thermal average as usual, and then

this average is averaged once more with Pfcig: While the thermal averaging is

done with the usual Metropolis importance sampling, the disorder average

½. . .�av ¼
Ð

dfcigPfcig . . . can immediately be realized by simple sampling.

In principle, this problem is hence straightforwardly suitable for Monte

Carlo simulation. However, the question arises how large the sample has to be

for the averaging with Pfcig over the configurations fcig of the quenched

disorder variables. In an experiment, typically measurements are carried

out for a single probe, there is no need to repeat the experiment for a

large number of samples, the observable quantities are ‘self-averaging’. One

would expect that a similar self-averaging property would also apply to

simulations, if very large systems away from any phase transition are studied,

and then simulation of a single (or a few) realizations of the fcig would suffice.

However, the situation is rather different in the case of a finite size scaling

analysis, where one considers systems of finite linear dimension L right at the

critical temperature Tc of the model: the fluctuations from one sample fcig to
the next one cause a significant sample-to-sample fluctuation of the effective

pseudo-critical temperature TcðLÞ of the system (defined e.g. by the max-

imum of the specific heat or the maximum slope of the fourth order cumu-

lant, etc.). This sample-to-sample fluctuation of TcðLÞ causes a lack of self-

averaging for certain quantities (typically for the order parameter and its

susceptibility) at Tc. This lack of self-averaging shows up when one considers

ratios such as (Wiseman and Domany, 1995)

RA � ðhAiT � ½hAiT �avÞ2
� 	

av
= ½hAiT �av

 �2

: ð5:27Þ
Lack of self-averaging implies that (� is the correlation length)

RA ! CA if L=� ! 0 (i.e. for T ¼ TcÞ ð5:28Þ
while away from Tc there is self-averaging, ratios such as RA decay for L !
1 inversely proportional to the volume,

RA / ð�=LÞd if L � �: ð5:29Þ
The lack of self-averaging implies that a sample of the order n �104 realiza-

tions is desirable, in order to get the relative error of the disorder average at

Tc ½hAiTc �av down to 1% or less. This consideration already shows that the

Monte Carlo study of phase transitions in random systems may be very

computer time consuming. Of course, sometimes a relative error of 10%

may seem acceptable, and then only a sample of n � 102 realizations is

required.
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In addition, one has to be careful in the precise manner in which the

disorder averaging is carried out. Suppose we consider the case c ¼ 0:5 for

the AxB1�x alloy. We can generate a sample fcig by drawing a random

uniformly distributed number �i with 0 	 �i < 1 for each lattice site, and

choosing ci ¼ 1 if �i > x and otherwise setting ci ¼ 0. However, for a crystal

with N ¼ Ld sites the average composition will differ from x ¼ 0:5 also by a

random deviation of order 1=
ffiffiffiffiffi
N

p
. Since often dependence of the critical

temperature TcðxÞ on concentration x is rather strong, this sample-to-sample

variation of the concentration may contribute substantially to the sample-to-

sample fluctuation of the pseudo-critical temperature TcðLÞ: However, this

problem is avoided if one simply selects Nx ¼ xN lattice sites at random,

setting ci ¼ 1 at each of these sites and otherwise putting ci ¼ 0. Then the

concentration of every sample is strictly equal to x, and the sample-to-sample

fluctuation of the concentration is suppressed. It turns out that the ‘universal’

numbers CA defined above, that characterize the lack of self-averaging at Tc
in a random system, do differ for these two choices (Wiseman and Domany,

1998). In a sense these two choices to fix the concentration of the random

alloy correspond to the canonical and semi-grand canonical ensemble of

statistical mechanics. If we were to treat the disorder as ‘annealed’ rather

than ‘quenched’ for annealed disorder, the average would simply be

AfSi; cig
� �

T
¼ 1

Z
Tr

fSi;cig
AfSi; cig expð�HfSi; cig=kBTÞ; ð5:30Þ

i.e. in the trace the two types of variables fSig; fcig are now both included,

and treated on an equal footing – so the local concentration on the lattice site

also exhibits thermal fluctuations. (e.g. due to interdiffusion of the species

A;B in the crystal), unlike the quenched case. In the semi-grand canonical

ensemble of alloys, the chemical potential difference �� ¼ �A � �B
between the species is the independent thermodynamic variable, and then

the concentration undergoes thermal fluctuations, while in the canonical

ensemble x is the independent thermodynamic variable and hence strictly

non-fluctuating (thermal fluctuations then occur in the conjugate variable

��, but this variable often is not even recorded in a simulation). These

distinctions between the various thermodynamic ensembles naturally have

analogs for the calculation of quenched averages, since one can consider

quenched averaging as an averaging of the disorder variables (fcig in our

example) as a thermal averaging at a different (higher) temperature: for a

completely random selection of lattice sites, we average at infinite tempera-

ture, but we can introduce some correlations in the occupancy of lattice sites

by defining

Pfcig ¼
1

Z0

expð�Hcfcig=kBT0Þ; ð5:31Þ

where Hc is some model Hamiltonian describing the ‘crystallographic’ inter-

action between the species A, B, and one assumes that at the temperature T0

ð� TÞ the fcig are still in full thermal equilibrium, before one quenches in the
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configurations of the fcig thus generated by sudden cooling from T0 to T ,

where the fcig are forbidden to relax. Obviously, these considerations are

motivated by the actual experimental procedures, but they also clarify that

the different ensembles with which the averaging at T0 is performed lead to

different ensembles for carrying out quenched averages. In most cases one

considers uncorrelated disorder, i.e. 1=T0 ! 0, but these considerations

apply in this limit as well.

One important aspect about quenched averaging is that the distribution

PðAÞ generated in this way ½hAfSi; cigi�av ¼
Ð

dA PðAÞA
 �
typically is not

symmetric around its average, mean value and most probable value may differ

appreciably. Consider, for instance, the magnetization for the above model

Hamiltonian at a temperature slightly above the average value of TcðLÞ : those
samples for which TcðLÞ > T due to the sample-to-sample fluctuation of Tc
ðLÞ will have a large magnetization, while those samples where TcðLÞ deviates
in the other direction will have a very small magnetization. This asymmetry

of the distribution creates problems if one calculates quantities which have

very small averages, e.g. spin correlations ½hSiSjiT �av with large distances ri �
rj between the sites i, j.

An even more subtle effect may occur due to extremely rare fluctuations.

Consider e.g. the case of simple dilution in the above model Hamiltonian,

where JAB ¼ JBB ¼ 0, JAA � J . Then for x < 1 the critical temperature Tc
ðxÞ will be clearly less than Tcð1Þ: However, the probability is non-zero (albeit

extremely small) that somewhere in the system we find a large compact region

free of dilution sites. This region will effectively order already at Tcð1Þ; in a

still disordered environment. A mathematical consideration of this problem

shows that there is a whole temperature region TcðxÞ < T < Tcð1Þ where

very weak singularities are already present. (‘Griffiths singularities’, Griffiths

(1969)). One also expects that these singularities cause some anomalous tails

in dynamic correlation functions at long times, but due to problems of sam-

pling such very small correlations accurately enough this problem is not yet

so well understood.

Monte Carlo simulation of systems with quenched disorder is a difficult

task; due to the need of carrying out the double averaging procedure over

both thermal disorder and quenched disorder the demand for computer

resources is huge and the judgement of the accuracy is subtle, particularly

due to metastability and slow relaxation at low temperatures. Many problems

are still incompletely understood. In the following, we mention two types of

problems more explicitly, but only on the level of rather introductory com-

ments. For up-to-date reviews of the state of the art in this field, we refer to

Young (1998).

5.4.2 Parallel tempering: a general method to better
equilibrate systems with complex energy landscapes

The standard method to equilibrate systems with quenched disorder at

low temperatures relies on a slow cooling from high temperature to the
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temperature of interest. (The same is true for other systems with a broad

spectrum of large relaxation times such as undercooled fluids near the glass

transition to an amorphous solid.) A quite different approach has also been

proposed to accelerate Monte Carlo simulations in systems with complex

behavior. In this method, called ‘parallel tempering’ (Hukushima and Nemoto,

1996) or ‘replica exchange’ (Swendsen and Wang, 1986), multiple copies of

the system, each at a different temperature, are simulated simultaneously. In

addition to the usual single site trial moves, occasionally an interchange of

temperature between two systems at neighboring temperatures is attempted.

The effect is to ‘feed’ fluctuations that occur at higher temperatures into

systems at lower temperatures. There should be overlap between the prob-

ability distributions of the systems at the two temperatures in order for such

exchanges to be successful, and some care must thus be used in choosing the

temperatures of all of the systems being simulated. The method is particu-

larly useful for systems with multiple energy barriers, e.g. spin glasses, for

which cluster methods are not efficient. An example of the successful appli-

cation of this technique will be given in Section 5.4.5.

5.4.3 Random f|elds and random bonds

The presence of certain kinds of randomness leads to some of the most

complex behavior in statistical physics and occurs in several different kinds

of deceptively simple models (see Young, 1996). (In this section we shall not

discuss the case of spin glasses at all since these will be treated separately.) If a

simple Ising ferromagnet is subjected to a magnetic field which is randomly

up or down, what happens to the phase transition? This quite straightforward

question is surprising difficult to answer. Imry and Ma (1975) examined the

question of whether or not the groundstate would be ordered by considering

the competition between the surface energy that would be needed by produ-

cing a domain of overturned spins and the Zeeman energy that would be

gained. They concluded that for lattice dimension d 	 dl ¼ 2 an ordered

state would be unstable against the formation of domains. (For continuous

spins, dl ¼ 4.) These, and other random field models, have been simulated

extensively; but the long correlation times and the need to average over

different realizations of the random field have produced data which have

been interpreted in different ways, including the presence of first order

transitions for at least a portion of the phase diagram and a new 2-exponent

hyperscaling relation. At this time there is still a pressing need for a drama-

tically improved algorithm to allow the unambiguous determination of the

nature of the phase diagram.

For the case of random bond models in the absence of an applied field the

situation is equally intriguing. Two separate kinds of problems have already

been examined, although the descriptions are by no means complete. For q-

state Potts models with large q the transition is known to be first order. A

somewhat surprising prediction was made by Hui and Berker (1989) that the

presence of two different strength ferromagnetic bonds would change the
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order of the transition to second order. This behavior was indeed observed by

Chen et al. (1995) who used a ‘multihit’ Swendsen–Wang algorithm and

histogram reweighting (see Chapter 7) to study the phase transition in the

two-dimensional q ¼ 8 Potts model with exactly 50% of weak bonds ran-

domly spread throughout the lattice, a fraction for which the exact transition

temperature is known. Their finite size analysis yielded critical exponents

which were consistent with two-dimensional Ising values. Although there are

now more refined predictions (Cardy and Jacobsen, 1997) that the exponents

are not quite Ising-like, there is still no broad understanding of the effect of

different kinds of randomness on first order transitions. If the transition is

second order in the absence of any randomness there may again be several

kinds of phenomena which result. If the randomly dispersed bonds are of

zero strength, one can study the nature of the critical behavior, both for small

dilution as well as as the percolation threshhold is approached. Extensive

Monte Carlo simulations of the bond impure two-dimensional Ising model

have suggested that the critical behavior is modified by logarithmic correc-

tions (Selke et al., 1994). Random antiferromagnetic bonds can also lead to

frustration, although this does not necessarily destroy the transition if the

percentage of bonds is below a critical value.

5.4.4 Spin glasses and optimization by simulated annealing

Spin glasses are disordered magnetic systems, where the interactions are

‘frustrated‘ such that no ground state spin configuration can be found that

is satisfactory for all the bonds (Binder and Young, 1986). Experimentally,

such quenched disorder in the exchange constants is found in many strongly

diluted magnets, e.g. a small percentage of (magnetic) Mn ions in a random

Cu–Mn alloy interact with the Ruderman–Kittel indirect exchange which

oscillates with distance as Jij / cosðkFjri � rjjÞ=jri � rjj3, where the Fermi

wavelength 2p=kF is in general incommensurate with the lattice spacing.

Since in such a dilute alloy the distances jri � rjj between the Mn ions are

random, both ferro- and antiferromagnetic Jij occur approximately with equal

probability. Qualitatively, we may model such systems as Ising models with a

Gaussian distribution PðJijÞ; see Eqn. (4.72), or by the even simpler choice of

taking Jij ¼ �J at random with equal probability as shown in Eqn. (4.73). A

plaquette of four bonds on a square with three þJ and one �J is enough to

demonstrate the frustration effect: it is an easy exercise for the reader to show

that such an isolated plaquette that is frustrated (i.e. sign ðJijJjkJklJliÞ ¼ �1)

has an energy �2J and an 8-fold degenerate ground state, while for an

unfrustrated plaquette the energy is �4J and the degeneracy only 2-fold.

An example of frustration, as well as a schematic ‘energy landscape’ for a

frustrated system, is shown in Fig. 5.8. Note that in reality phase space is

multidimensional, not one-dimensional, and finding low lying minima as

well as optimal paths over low lying saddle points is still quite a challenge

for simulations. An approach for tackling this challenge can be based on
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‘multicanonical sampling’ (Berg and Neuhaus, 1991, 1992), as will be

described in Section 7.5.3.

The experimental hallmark of spin glasses is a cusp (or kink) in the zero

field static susceptibility and while mean field theory for an infinite range

model (Edwards and Anderson, 1975) shows such a behavior, the properties

of more realistic spin glasses have been controversial for a long time. As has

already been emphasized above, for systems with such quenched disorder, a

double averaging is necessary, ½h. . .iT �av, i.e. the thermal average has to be

carried out first, and an average over the random bond configuration (accord-

ing to the above probability PðJijÞ) afterwards. Analytic techniques yield only

rather scarce results for this problem, and hence Monte Carlo simulations are

most valuable.

However, Monte Carlo simulations of spin glasses are also very difficult to

perform due to slow relaxation caused by the existence of many states with

low lying energy. Thus, when one tries to estimate the susceptibility � in the

limit H ! 0, the symmetry PðJijÞ ¼ Pð�JijÞ implies that ½hSiSji�av ¼ �ij and

hence

� ¼ 1

kBT

X
j

½hSiSjiT � hSiiT hSjiT �av
� !

¼ 1

kBT
ð1� qÞ; ð5:32Þ

where

q ¼ ½hSii2T �av;
i.e. the cusp would result from onset of a spin glass order parameter q below

the freezing temperature Tf . In the Monte Carlo simulation, the thermal

averaging h. . .iT is replaced by time averaging, and hence (Binder, 1977)

� ¼ 1

kBT
ð1� qðtÞÞ; ð5:33Þ

where

qðtÞ ¼ 1

t

ðt

0

Siðt 0Þ dt 0
� �2

" #
¼ 2

t

ðt

0

1� t 0

t

� �
hSið0ÞSiðt 0Þi dt 0

� �
:

This argument shows that an apparent (weakly time-dependent) spin glass

order parameter qðtÞ may arise if the spin autocorrelation function has not
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decayed during the observation time t. Thus Monte Carlo runs which are too

short may show a cusp in � as an observation-time effect, even if there is no

transition at non-zero temperature in the static limit. This in fact is the

explanation of ‘cusps’ found for � in two-dimensional spin glasses (Binder

and Schröder, 1976). It took great effort with dedicated machines (a special

purpose processor for spin glass simulations was built by Ogielski (1985) at

AT&T Bell Laboratories) or other advanced specialized computers, e.g. the

‘distributed array processor’ (DAP), to show that Tf ¼ 0 for d ¼ 2 but Tf �
1:2 J for the �J-model in d ¼ 3. Again the cumulant intersection method,

generalized to spin glasses (Bhatt and Young, 1985), turned out to be extre-

mely useful: one considers the quantity

gLðrÞ ¼ 1
2
3� ½hq4iT �av=½hq2iT �av

 �

; ð5:34Þ

the hqki being the moments of the distribution of the spin glass parameter.

The fact that the curves for qLðTÞ for various L merge at Tf is evidence for

the existence of the transition (Fig. 5.8). No analytic method has yielded

results competitive with Monte Carlo for this problem. (Note, however,

that more recent work (Kawashima and Young, 1996) using better averaging

and larger lattices has yielded an improved estimate of Tf=J ¼ 1:12ð2Þ. The

sizes that were used to produce Fig. 5.9 were necessarily quite small and good

data with finer resolution simply show that there are still subtle finite size
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effects that cannot be discerned from the figure.) However, more recent work

(Hatano and Gubernatis, 1999) finds instead that Tf=J � 1:3. Thus, the

exact location of the critical temperature of a spin glass is still unknown

today! From Fig. 5.9 it is evident that for T < Tf well-equilibrated data

exist only for rather small systems: the systems get very easily trapped in

low-lying metastable states. In order to come as close to equilibrium as

possible, one has to cool down the system very slowly. Similarly difficult,

of course, is the search for the groundstates of the spin glass: again ‘simulated

annealing’, i.e. equilibration at high temperatures combined with very slow

cooling, turns out to be relatively efficient.

Finding the ground state energy of a spin glass is like solving an optimiza-

tion problem, where the Hamiltonian is treated as a functional of the spin

configuration, and one wishes to minimize this functional. Similar optimiza-

tion problems occur in economics: e.g. in the ‘traveling salesman problem’ a

salesman has to visit n cities (with coordinates fxkykg) successively in one

journey and wishes to travel such that the total distance d ¼ Pn�1
‘¼1 d‘, fd‘ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxk � x 0
kÞ2 þ ðyk � y 0

kÞ2
q

g becomes a minimum: clearly the salesman then

saves time, mileage and gasoline costs, etc. A pictorial view of the ‘traveling

salesman problem’ is shown for a small number of cities in Fig. 5.10. Now

one can generalize this problem, treating this cost function like a Hamiltonian

in statistical mechanics, and introduce ‘temperature’ into the problem, a term

which originally was completely absent from the optimization literature. A

Monte Carlo simulation is then used to modify the route in which the order

of the visits of adjacent cities is reversed in order to produce a new trial state,

and a Metropolis, or other, acceptance criterion is used. At high temperature

the system is able to get out of ‘local minima’ and as the temperature is

lowered it will hopefully settle to the bottom of the lowest minimum, i.e.

the shortest route. This simulated annealing approach, introduced by

Kirkpatrick et al. (1983) to solve global optimization problems, has developed

into a valuable alternative to other schemes for solving optimization pro-

blems. It is thus a good example of how basic science may have unexpected
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economic ‘spin-offs’. The invention of simulated annealing for spin glass

simulations has had an impact on the general theory of optimization pro-

blems, e.g. in information science, economics, protein folding, etc., and has

promoted the interaction between statistical physics and ‘distant’ fields.

Applications of Monte Carlo simulation techniques and optimization algo-

rithms can in fact be combined in a very useful way. Indeed, a rich variety of

methods for the study of ground states and low-lying excited states for

various model systems with randomly quenched disorder exist (Hartmann

and Rieger, 2002). These techniques allow the study of problems ranging

from polymers in random media to loop percolation of flux lines in disor-

dered superconductors (‘vortex glasses’), etc. Yet another interesting out-

come of Monte Carlo simulations of spin glasses is research on neural

networks (the simplest of which are Ising spin glasses with Jij 6¼ Jji) and

information processing which have applications to cryptography and ‘econ-

ophysics’. These topics are beyond the scope of this book, but introductions

can be found in Nishimori (2001) and Kinzel and Kanter (2003) as well as in

the brief remarks in Chapter 13 of this text.

5.4.5 Ageing in spin glasses and related systems

Slow relaxation behavior in spin glasses has long been known to occur, and

consequently increased attention has been given to the understanding of the

non-equilibrium character of spin glasses. There is evidence, from both

experiment and simulation, that random systems such as spin glasses never

reach thermal equilibrium under conditions of practical interest, i.e. for

realizable time scales! Then, so-called ‘ageing’ effects appear, e.g. for which

a correlation function hAðsÞBðt 0 þ sÞi depends not only upon the difference

in time t 0 between the two times but upon s and t ¼ t 0 þ s separately. Ageing

phenomena and the development of a quasi-fluctuation-dissipation theorem

(because of violations of the fluctuation-dissipation relation) have become a

topic of substantial study, much of it by computer simulation (Crisanti

and Ritort, 2003) which has guided the initial steps of the theoretical

description. If one perturbs the system at time t ¼ 0 and waits a time s before

making measurements, one can define quantities like the time dependent

susceptibility

�ðt; sÞ ¼ �stðt � sÞ þ �agðt; sÞ ð5:35Þ
where the first term is the stationary part that asymptotically decays to a finite

value, and the second term is the ageing term that obeys a scaling relation

�agðt; sÞ ¼ �̂�
t

sx

� �
: ð5:36Þ

In many solvable models x ¼ 1, but spin glass models suggest x < 1. (How-

ever, experiments report values quite close to x ¼ 1.) These studies provide a

glimpse of the often poorly understood behavior of non-equilibrium systems

that will be discussed in more detail in Chapter 10.

5.4 Systems with quenched randomness 169



5.4.6 Vector spin glasses: developments and surprises

Until rather recently the ‘conventional wisdom’ was that there was a spin

glass transition in three-dimensional Ising models but not in Heisenberg

models, i.e. the transition was believed to occur only at TSG ¼ 0. Using

extensive Monte Carlo simulations on the Heisenberg spin glass model

with a Gaussian distribution of nearest neighbor bonds, Hukushima and

Kawamura (2000) produced evidence for a chiral ordering transition at finite

temperature. The finite size behavior of the reduced 4th order cumulant for

the chirality showed a crossing at kBT=J � 0:15, but the lack of a similar

crossing for a spin glass order parameter was considered to be evidence that

there was no finite temperature transition that involved the spin degrees of

freedom. By analyzing a different quantity, however, Lee and Young (2003)

came to the (then) surprising conclusion that both spin and chiral degrees of

freedom ordered at the same, non-zero temperature. They began by intro-

ducing ‘parallel tempering’ (see Sec. 5.4.2) to reach low temperatures at

which equilibration would be otherwise very difficult. In addition, they devel-

oped new criteria to check that thermal equilibration had actually been

achieved and calculated the wave vector dependent spin glass susceptibility

in order to extract the finite lattice spin glass correlation length �L. Then,

using the finite size scaling form for this quantity, i.e.

�L

L
¼ ~XX L1=v T � TSGð Þ� 	

; ð5:37Þ

they showed that curves for multiple sizes crossed at a single temperature (see

Fig. 5.11) at which T ¼ TSG. The same procedure for the chiral correlation

length yielded a transition at a temperature that was, within error bars,

identical to that for the spin degrees of freedom. Thus, with the systematic

implementation of new algorithms, substantial cpu time, and thoughtful ana-

lysis, they were able to discover an unexpected result. (This lesson can surely

be applied to other problems in statistical physics.)
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5.5 MODELS WITH MIXED DEGREES OF
FREEDOM: Si/Ge ALLOYS, A CASE STUDY

There are many important models for which both discrete and continuous

degrees of freedom must be incorporated. One example is an impure

Heisenberg model for which Ising degrees of freedom specify whether or

not a site is occupied by a magnetic ion and continuous variables describe the

behavior of the magnetic spins at the sites which are occupied. A Monte

Carlo study must then include possible changes in both variables. A more

complex situation arises when all states of the discrete variable are interesting

and the potential associated with the continuous variable is complicated. A

simple example is Si/Ge alloys. These systems are examples of semiconduc-

tor alloys which play an extremely important role in technological develop-

ment. For purposes of industrial processing we need to know just what the

phase diagram looks like, and more realistic models than simple lattice alloy

models are desirable. These systems may be modeled by an Ising degree of

freedom, e.g. Si ¼ þ1 if the site is occupied by Si and Si ¼ �1 if a Ge is

present, and Si ¼ 0 corresponds to a vacancy at a site. The second, contin-

uous variable describes the movement of the nodes from a perfect lattice

structure to model the disorder due to the atomic displacements of a crystal

that is compressible rather than rigid. Elastic interactions are included so

both the local and global energies change as the system distorts. These

systems are known to have strong covalent bonding so the interactions

between atoms are also strongly directional in character. The empirical

potentials which seem to describe the behavior of these systems effectively

thus include both two-body and three-body terms. In order to limit the effort

involved in calculating the energies of states, a cutoff was implemented

beyond which the interaction was set to zero. This model was studied by

Dünweg and Landau (1993) and Laradji et al. (1995) using a ‘semi-grand

canonical ensemble’ in which the total number of atoms was fixed but the

relative numbers of Si and Ge atoms could change. Monte Carlo ‘moves’

allowed an atom to be displaced slightly or to change its species, i.e. Si ! Ge

or Ge ! Si. (The chemical potential � represented the difference between

the chemical potentials for the two different species; the chemical potential

for vacancies was made so large that no vacancies appeared during the course

of the simulation.) The simulation was carried out at constant pressure by

allowing the volume to change and accepting or rejecting the new state with

an effective Hamiltonian which included the translational entropy, i.e.

�Heff ¼ �H� NkBT ln
� 0

x�
0
y�

0
z

�x�y�z

; ð5:38Þ

where � and � 0 represent the dimensions of the simulation box and of the

trial box, respectively.

The data were analyzed using the methods which have been discussed for

use in lattice models and showed, somewhat surprisingly, that the transition
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was mean field in nature! The analysis was not altogether trivial in that the

critical point was located using a two-dimensional search in ð��TÞ space

(using histograms which will be described in Chapter 7). The behavior of the

fourth order cumulant of the order parameter and the finite size scaling of the

‘susceptibility’ are shown in Fig. 5.12; both properties demonstrate clearly

that the critical point is mean-field in nature. The first study, carried out with

the Keating valence field potential yielded a somewhat surprising and unphy-

sical result in that the lattice constant shrank continuously as the temperature

was raised. When the calculations were repeated with the Stillinger–Weber

potential, this effect disappeared. This showed the importance of not relying

solely on fitting low temperature properties in designing phenomenological

potentials for the description of real alloys.

5.6 SAMPLING THE FREE ENERGY AND
ENTROPY

5.6.1 Thermodynamic integration

There are circumstances in which knowledge of the free energy itself, and not

just its derivatives, is important. For example, at a strongly first order transi-

tion the bulk properties of a system will generally show pronounced hyster-

esis which makes a precise determination of the equilibrium location of the

transition problematic. This problem can be largely avoided, however, by the

determination and subsequent comparison of the free energies of different

phases. The expressions given in Chapter 2 which provide a thermodynamic

definition of the free energy F, can be used rather straightforwardly to

actually provide numerical estimates for F. Since the internal energy U

can be measured directly in a Monte Carlo simulation and the entropy can

be obtained by integrating the specific heat C, i.e.
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SðTÞ ¼
ðT
0

CðT 0Þ
T 0 dT 0: ð5:39Þ

Of course, Eqn. (5.39) only makes sense for Ising-type systems, for which

CðT ! 0Þ ! 0; but not for ‘classical’ systems for whichCðT ! 0Þ ! const:
and the entropy SðT ! 0Þ ! �1! In some cases the free energy in a low

temperature state can be accurately estimated and used to determine the

free energy at finite temperature. (For example, in an Ising model it will be

given by the internal energy at T ¼ 0.) Alternatively, the free energy may

be estimated in the high temperature, disordered state by integrating the

internal energy, i.e.

FðTÞ
kBT

¼ Sð1;HÞ
kB

þ
ð1=kBT

0

Udð1=kBTÞ: ð5:40Þ

The intersection of these two free energy branches (see Fig. 5.13a) deter-

mines the location of the transition. In some cases, however, the transition is

encountered not by varying the temperature but rather by varying an applied

field or chemical potential. In this case the appropriate thermodynamic inte-

gration becomes a two-step process as shown in Fig. 5.13b. Two different

paths of constant field on opposite sides of the transition line are followed up

to the desired temperature T and the free energies are computed. The

temperature is then fixed and the field is then swept across the transition

so that

FðHÞ ¼ FðH1;TÞ þ
ðH
H1

M dH 0; ð5:41aÞ
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Fig. 5.13 (a) Comparison of free energies obtained with the chemical potential swept in opposite directions for the model of

Si/Ge in the previous section. (b) Schematic view of paths for thermodynamic integration. In this figure there are three first

order phase boundaries separating a high temperature disordered phase, and two low temperature ordered phases.



FðHÞ ¼ FðH2;TÞ þ
ðH
H2

M dH 0; ð5:41bÞ

and again the point of intersection locates the transition. The accuracy of this

method is limited by the errors of the data points which are used for the

integration and by residual finite size effects. (In addition to reducing the

usual finite size effect, one must make the system large enough that there are

no excursions to the other phase during a simulation run. The actual size that

is needed depends on the magnitude of the discontinuities which occur at the

transition.) Since the fluctuations are generally small near a first order transi-

tion, quite accurate data for large systems can be generated without too much

difficulty, so the transition can be located quite accurately.

5.6.2 Groundstate free energy determination

For discrete spins the groundstate free energy is given simply by the internal

energy. For systems with continuous variables, however, the groundstate

entropy of classical systems is �1 and the determination of the entropy at

low temperatures is non-trivial. One way to accomplish this is to divide the

Hamiltonian into two parts, one for which the groundstate free energy can be

calculated theoretically, and the second part is a perturbation which is slowly

turned on. The free energy change can be determined by integration over the

prefactor describing the magnitude of the perturbation. One specific applica-

tion of this approach is the method used by Frenkel and Ladd (1984) in

which an Einstein crystal (whose free energy may be calculated exactly) is

taken as the unperturbed system with the interparticle interactions slowly

turned on to produce a harmonic solid. Integration as a function of the added

interaction produces the desired estimate for the free energy. Dünweg and

Landau (1993) introduced an alternative method which relied on the Monte

Carlo sampling of the ratio of the partition functions for the two different

phases using a form of umbrella sampling. This worked quite well for the

Keating potential but is not necessarily effective for all potentials.

5.6.3 Estimation of intensive variables: the chemical
potential

In most of the methods that we have already discussed the intensive variable,

e.g. magnetic field or chemical potential, was held fixed and the conjugate

extensive variable, e.g. the magnetization or density, was measured. The

inverse procedure, although more difficult, can also be carried out

(Alexandrowicz, 1975; Meirovitch and Alexandrowicz, 1977). In the follow-

ing we shall work in the language of a lattice gas model with nearest neighbor

bond energy �", although the procedure for an Ising model would be com-

pletely equivalent. As previously seen in the discussion of the N-fold way, an

occupied site would have five different possible ‘local states’ � depending on
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the number of nearest neighbor sites which were also occupied and would

have energy E�: We then define a set of five conjugate states by removing the

‘central’ atom. This means that E� 0 ¼ 0. If the probabilities of occurrence of

each state are Pð�Þ and Pð� 0Þ, detailed balance requires that

Pð�Þ
Pð� 0Þ ¼ exp½ð�E� þ �Þ=kBT �; ð5:42Þ

so that

�

kBT
¼ ln Pð�Þ

Pð� 0Þ
� �

þ E�

kBT
: ð5:43Þ

By averaging over all five different local states rather good statistical precision

can be obtained for the estimate of the chemical potential. As we shall see in

Chapter 6 there are specialized ‘particle insertion’ techniques which can be

used to estimate the chemical potential when the lattice restriction is

removed.

5.6.4 Lee^Kosterlitz method

The correct identification of the order of a transition can become particularly

tricky if the transition is actually weakly first order. Lee and Kosterlitz (1990)

proposed a very simple scheme which can be remarkably effective, even for

quite small systems. A long simulation run is made at some value of the

extensive ‘field’, e.g. temperature, which is quite near to the phase transition

and a histogram of the order parameter values is constructed. If there are two

peaks in the distribution, the distribution is reweighted to a different field

value (see Chapter 7 for a detailed description of reweighting) until the two

peaks are the same height, and the difference between the maxima and the

minimum between the two peaks is used to estimate the free energy barrier

�F

�F ¼ ln PLðE1Þ
PLðE2Þ

; ð5:44Þ

where PLðE1Þ and PLðE2Þ are the probabilities at the maximum and minimum

values respectively. This procedure is repeated for different lattice sizes and if

�F diverges with increasing size, the transition is first order in the thermo-

dynamic limit. Otherwise, the transition is second order. This procedure was

quite effective for small q ¼ 5 Potts models even though a finite size scaling

analysis for systems as large as L ¼ 240 suggested that the transition was

(incorrectly) second order.

5.6.5 Free energy from f|nite size dependence at Tc

A somewhat specialized but novel approach to the calculation of free energies

at a critical point was proposed by Mon (1985). He considered the finite size
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variation of the free energy at the critical point for an Ld system with periodic

boundary conditions for which it is expected that

fsing � UoL
�d; ð5:45Þ

where Uo is a scaling amplitude. The system is then decomposed into 2d

systems each of size (L=2Þd and the ratio of the partition functions of the two

systems is given by

ZL=2

ZL

¼ Tr expð��HL=2Þ
Tr expð��HLÞ

¼ hexp½��ðHL=2 � HLÞ� ;i ð5:46Þ

where HL represents the Hamiltonian for the original system and HL=2 is the

Hamiltonian for the divided system. From Eqn. (5.46) we can see that the

free energy difference between the two lattices is

fL � fL=2 ¼
lnhexp½��ðHL=2 � HLÞ�i

Ld
ð5:47Þ

and this relation, together with Eqn. (5.45) can be used to determine the

singular part of the free energy. The estimation of the free energy difference

in Eqn. (5.47) may not be easy to do directly but may be calculated using

‘umbrella sampling’, a method which will be described in the first part of

Chapter 7.

5.7 MISCELLANEOUS TOPICS

5.7.1 Inhomogeneous systems: surfaces, interfaces, etc.

If a system contains surfaces or interfaces, its properties become position

dependent. One particular strength of Monte Carlo simulation methods is

that such effects can be studied in full detail and under perfectly well con-

trolled conditions. For instance, let us stick to the example of the Ising

ferromagnet that undergoes a phase transition at some critical temperature

Tcb in the bulk, characterized by the power laws already discussed in Chapter

2, e.g. the bulk magnetization mb ¼ B̂Bð1� T=TcbÞ�; the bulk susceptibility

�b ¼ 
̂
�j1� T=Tcbj�� , etc. We now may ask (Binder, 1983) how this beha-

vior gets modified when we consider the local counterparts of these quantities

right in the surface plane ðm1; �1 ¼ ð@m1=@HÞT Þ or in the nth layer away

from the free surface ðmn; �nÞ. Under which conditions does the surface order

at a temperature Tcs higher than the bulk, i.e. ðM1 / ð1� T=TcsÞ�2d with Tcs
> Tcb and �2d is the two-dimensional Ising exponent)? If the surface layer

orders at the same critical temperature as the bulk does, what are the asso-

ciated exponents? ðm1 / ð1� T=TcbÞ�1 , �1 / ð1� T=TcbÞ��1Þ. Actually,

the surface involves many more exponents than the bulk does, since one

can also consider the response to a local field H1 ð�11 ¼ ð@m1=@H1ÞT / ð1�
T=TcÞ��11Þ and the critical behavior of surface excess quantities: the surface

excess magnetization ms is defined in terms of the profile mn as

ms ¼
P1

n¼1ðmb � mnÞ, etc. In the simulation, all such questions can be
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addressed at once for well-defined models, control parameters (including

local fields Hn in arbitrary layers indexed by n, suitable changes �J ¼ Js �
J of the exchange coupling in the surface plane, etc.) can be varied at will, etc.

Moreover, one can choose an absolutely ideal, perfect surface (no adsorbed

‘dirt’, no surface roughness, no dislocations, no grain boundaries, no surface

steps, . . . ). In all these respects, simulations have a huge advantage over

experiments, and hence the testing of corresponding theory has proceeded

for the most part by simulation methods. As Nobel laureate Pauli had put it a

long time ago, ‘While God has created solids as perfectly ideal crystals, the

devil is responsible for their imperfect surfaces’: of course, the simulations

can make contact with this complex reality as well, putting into the model

more and more of these non-ideal effects (which can again be varied in a

controlled manner to check their relevance).

Of course, surfaces and interfacial effects are not only of great interest near

critical points, but in a much wider context. Just as in an Ising ferromagnet

we may ask how the magnetization mn varies as a function of the layer index n,

in a fluid we may ask what is the profile of the local density �ðzÞ as function of

the distance z from a solid wall (due to a container for instance), etc. Further,

if we model flexible macromolecules as self-avoiding random walks (see

Chapters 3, 4), we may consider the adsorption of flexible macromolecules

at a hard wall in terms of a model where a monomer adjacent to a wall wins an

energy ", and this enthalpic gain may outweigh the entropic loss due to the

reduced number of SAW configurations near a wall (Binder, 1983).

While many of the technical aspects of simulations of models addressing

the effects of free surfaces or other boundaries are rather similar to simula-

tions targeted to sample bulk properties, where surface effects are deliberately

eliminated by the use of periodic boundary conditions, sometimes the

demands for computational resources become exorbitant, since large (meso-

scopic rather than of atomic scale) lengths occur. A typical example is the

phenomenon of ‘wetting’, i.e. when a saturated gas below the critical tem-

perature is exposed to a wall, in which a fluid layer may condense at the wall

without accompanying condensation in the bulk. In the ideal case (and in the

thermodynamic limit) the thickness of this ‘wet’ layer at the wall is infinite at

all temperatures above the wetting temperature Tw: Of course, this is true

only in the absence of gravity, and the chemical potential gas �gasðTÞ must

always be held at its coexistence value �coexðTÞ for gas–liquid phase coex-

istence. For non-zero �� ¼ �coexðTÞ � �gasðTÞ, a fluid layer may also con-

dense, but it is not infinitely thick, ‘wetting / ð��Þ�pco where pco is some

exponent that depends on the character of the forces between the wall and the

particles in the gas (Dietrich, 1988). The approach to the wet state (for

T > Tw) where ‘wetting ! 1 as �� ! 0 is called ‘complete wetting’. On

the other hand, if we approach the wetting transition for �� ¼ 0 and let T

approach Tw from below, we may distinguish two situations: ‘wettingðT !
TwÞ may approach a finite value at Tw and then jump discontinuously to

infinity (‘first order wetting’); or ‘wetting may show a critical divergence,

‘wetting / ðTw � TÞ�p where p is another exponent (‘critical wetting’). To
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avoid confusion, we mention that for short range forces in d ¼ 3 dimensions

actually both exponents pco, p are zero (which implies logarithmic diver-

gences).

Simulation of such wetting phenomena is very difficult: not only must the

linear dimension perpendicular to the wall be very large, much larger than

‘wetting, but also the linear dimension of the system in the directions parallel

to the wall must be huge, since a very large correlation length �k / ����co or

�k / ðTw � TÞ�� appears (where �co, � are exponents appropriate for ‘com-

plete wetting’ or ‘critical wetting’, respectively). The occurrence of this large

length can be understood qualitatively by recalling the interpretation of wet-

ting phenomena as ‘interface unbinding transitions’ (Dietrich, 1988): as the

fluid layer at the wall gets thicker, the gas–liquid interface gets more and

more remote from the wall, and capillary wave excitations of larger and larger

wavelength – up to �k – become possible. This problem is very closely

related to the finite size effects encountered in simulations set up to study

interfaces between coexisting phases, already discussed in Section 4.2.3.6.

Again the lesson is that a rather good qualitative understanding of the physics

of a problem is already mandatory when one sets up the model parameters for

a simulation of that problem!

Next we mention that even wetting phenomena can be studied with the

simple Ising lattice model. We only have to remember the correspondence

with the lattice gas interpretation: ‘spin down’ represents liquid, ‘spin up’

represents gas, and gas–liquid phase coexistence ð�� ¼ ��coexðTÞ) in the

Ising magnet then simply means that the bulk magnetic field H is zero. A

wetting transition can be induced by applying a negative surface field

H1 < 0 – favoring hence liquid at the wall – at the surface of a ferromagnet

with a positive spontaneous magnetization (i.e. gas) in the bulk.

We now make some more specific comments on the technical aspects of

the simulation of such systems and also present a few typical examples.

If surface properties are of interest in a model for which the bulk values are

well known, it may be preferable to sample layers near the surface more

frequently than those far from the surface in order to reduce the statistical

error in estimates for surface related properties. If the interior is sampled too

infrequently, however, the bulk may not reach equilibrium, and this, in turn,

will bias the surface behavior. If, instead, a slowly fluctuating interface is

present, it may be preferable to sample layers in the interior, in the vicinity

of the interface, more often than those near the surface. Both variants of

preferential sampling have been used successfully; in a new problem it may

be useful to first make some test runs before choosing the layer sampling

probabilities. Note that there are a large number of interesting phenomena

which may be seen in quite simple systems confined between two surfaces

simply by varying the interaction in the surface layers and applying either

surface or bulk fields, or both (see e.g. Landau (1996); Binder et al. (1988;

1989; 1992; 1996)). Perhaps the simplest model which shows such effects is

the L � L � D Ising film with Hamiltonian
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H ¼ �J
X

hi;ji2bulk
�i�j � Js

X
hi;ji2surf

�i�j � H
X

i

�i � H1

X
i2surf

�i; ð5:48Þ

which in the limit of D ! 1 becomes equivalently a semi-infinite system

with L � L surface. Thus, capillary condensation in thin films and layering

and critical wetting in thick films have both been studied in simple nearest

neighbor Ising models between two confining surfaces using preferential

sampling. For example, the data for the layer magnetization, shown in Fig.

5.14 demonstrate quite clearly the onset of wetting as the surface field H1 is

varied. Perhaps the most interesting consequence of these studies is the

discovery that critical wetting is apparently mean-field-like in contradiction

to theoretical predictions of non-universal, non-mean-field-like behavior.

The discrepancy between the Monte Carlo result and the theoretical renor-

malization group calculation, which used as the characteristic length the

distance of the interface from the wall, was rather perplexing and helped

spark new theoretical efforts. It currently appears likely that there is an

additional characteristic length involved (the distance from the wall to the

metastable state) which renormalized the ‘bare’ result and that the simula-

tional result was indeed correct (Boulter and Parry, 1995). A clue to this

possiblity is actually visible in Fig. 5.14 where a small ‘kink’ can be seen in the

profile near the surface, even when the wetting interface has moved quite

some distance into the bulk. The Monte Carlo data which yielded this unex-

pected result were not simple to obtain or analyze because of the large

fluctuations to which we alluded earlier. For example, data for the sucept-

ibility of L � L � D systems with L ¼ 50;D ¼ 40 using standard Metropolis

sampling showed huge fluctuations (see Fig. 5.15). When a multispin coding

technique was used to make much longer runs with L ¼ 128;D ¼ 80, Fig.

5.15 shows that the results were much improved. Note, however, that even

though these data were taken far from the transition, only roughly a factor of

two increase in linear dimension was possible with an improvement of

roughly 102 in the implementation of the sampling algorithm.
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Fig. 5.14 Profiles of

the layer magnetization

for a 128� 128� 160

Ising film with Js=J ¼
1:33; J=kBT ¼ 0:226.

The arrows show the

values of the bulk

magnetization in the

spin-up and spin-

down phases. From

Binder et al. (1989).



Yet another simple variation in the choice of boundary conditions for a

three-dimensional Ising model can produce ‘wedge filling’ instead of ‘wetting’

and yield entirely different physics. Instead of having two free, parallel sur-

faces as in the previous discussion, the situation portrayed in Fig. 5.16

effectively produced a double wedge geometry with a periodic boundary

parallel to the wedges. In this case, critical wetting is supplanted by a transi-

tion that is analogous to the ‘filling’ transition that would occur in a single,

infinite wedge. Here the corresponding ‘thickness’ is the distance from a

corner, l0, and this quantity diverges at the transition. The transition is

characterized by fluctuations that are stronger than for the wetting transition

and detailed Monte Carlo data (Milchev et al., 2003a,b) reveal critical expo-

nents that differ from mean field values and agree with theoretical predic-

tions. This is but one further example of how the clever use of boundary

conditions makes new physical behavior accessible to Monte Carlo simula-

tions. Since the correlation length �? for interfacial fluctuations normal to the

interface (see Fig. 5.16) diverges less strongly than the correlation length �y in

the y-direction along the wedge, this geometry is another example where

anisotropic finite size scaling (Binder and Wang, 1989) needs to be used.
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Fig. 5.15 Monte Carlo

data for the surface

layer suceptibility near

the critical wetting

transition of an Ising

film for Js ¼ J; at

J=kBT ¼ 0:23:

(a) multispin coding

data for L ¼ 128,

D ¼ 80.

(b) Metropolis data for

L ¼ 50, D ¼ 40. From

Binder et al. (1989).



A novel effect which occurs in interacting statistical systems between two

walls is the ‘Casimir effect’; an overview of this unusual but increasingly

popular effect was given by Krech (1994). This effect is the equivalent of

the phenomenon in electromagnetism in which a force is produced between

two conducting plates separated by a vacuum due to quantum fluctuations in

the electromagnetic field in the vacuum. The free energy of a system F at

temperature T and between plates of area A and separated by a distance D

can be expressed as the sum of four terms,

lim
A!1

FðT;DÞ
kBTc;bA

¼ DFbulkðTÞ þ Fs;aðTÞ þ Fs;bðTÞ þ �Fa;bðT;DÞ; ð5:49Þ

where Fs;a and Fs;b are surface free energies, and �Fa;b is the finite separation
contribution which in d-dimensions at the bulk critical point has a contribu-

tion ð" ¼ j1� T=TcjÞ
�Fsinga;b ð" ¼ 0;DÞ ¼ Da;bD

�ðd�1Þ; ð5:50Þ
where Da;b is the critical Casimir amplitude. The determination of the

Casimir amplitude by simulations is quite difficult since it represents only

a very small correction to the bulk and surface free energies. This has been

done quite successfully by Krech and Landau (1996) using a variation of a

method proposed by Mon (1985). As an example we consider two L � D

square lattice systems: in the x-direction there are periodic boundary condi-

tions for both systems, the second system is split into two horizontal strips,

each of width L and thickness D=2: The top strip has the same boundary

conditions as the original lattice and the second one has periodic boundaries.

An interaction � between the strips is used to interpolate between the

two systems using umbrella sampling and the sums of different Casimir
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amplitudes are extracted from the difference. Using this scheme, however,

there are finite size effects due to both L and D so an additional extrapolation

is needed.

The behavior of the interface itself may be of interest. One well studied

problem is that of interface roughening as the temperature is raised for a

system which has a ‘smooth’ interface at low temperatures. (See, e.g. Ising

model simulations by Mon et al. (1988, 1990).) At first glance it would seem

that the simplest way to impose an interface would be by fixing the top and

bottom walls of the system to point in opposite directions. As the interface

roughness grows, however, it is possible that there will be excursions of the

interface which will hit one of the walls; the ‘confinement’ of the interface

may thus modify its behavior. Instead an antiperiodic boundary may be

imposed so that the interface may wander in an unrestricted manner. A

periodic boundary may then be used in the directions parallel to the interface

(see Fig. 4.11). The interfacial fluctuations may be quite slow and correlation

times become quite long for large systems. An ‘interface flipping’ method has

been developed by Hasenbusch and Meyer (1991) for the treatment of inter-

faces in solid-on-solid models. The essential ingredient in this method is that

the entire interface is simply reflected about the mean interface position. This

approach has been shown to greatly reduce the correlation time for fluctua-

tions involving the interface near the roughening transition. For the three-

dimensional Ising model they found an effective dynamic critical exponent of

about 0.4 whereas Metropolis yields z � 2. Swendsen–Wang updating is

even worse than local updating.

5.7.2 OtherMonte Carlo schemes

5.7.2.1 Damage spreading

An example of a method which uses existing simulation techniques in a novel

way is that of ‘damage spreading’ (Herrmann, 1990). (This phenomenon was

first observed in cellular automata.) Two initial states of the system are

prepared in such a way that they differ only slightly. Both systems are

then simulated with the same algorithm and the same random number

sequence and the difference between the two systems, or the ‘damage’ is

monitored to see if it disappears, stays about the same, or spreads; the

spreading of the damage is an indication of the onset of a phase transition.

A useful quantitative metric is given by the ‘Hamming distance’

�ðtÞ ¼ 1

2N

X
i

j�iðtÞ � �iðtÞj; ð5:51Þ

where f�iðtÞg and f�iðtÞg are the two ‘parallel’ time-dependent configurations

and N is the number of sites. The dynamical behavior will then be deter-

mined ‘chaotic’ if �ðtÞ goes to a finite value as t ! 1 for �ð0Þ ! 0: Studies
on the Ising model show that the Hamming distance goes nicely to zero at the

critical point. This is an example of a process which cannot be studied
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theoretically but is quite well suited for Monte Carlo simulation and delivers

information in a quite unusual way. One interesting consequence of this

process is that it shows that in multilattice coding it can be dangerous to

adopt the time saving practice of using the same random number for every

lattice if all the lattices are at the same temperature; except exactly at the

critical point, all the lattices will eventually reach the same state.

5.7.2.2 Gaussian ensemble method

Challa and Hetheringon (1988) introduced a ‘Gaussian ensemble’ method

which interpolates between the canonical and microcanonical ensemble. A

system of N spins is coupled to a bath of N 0 spins which has a particular

functional form for the entropy. (For N 0 ¼ 0 the microcanonical is obtained,

for N 0 ¼ 1 the canonical ensemble results.) The total, composite system is

then simulated with the result that ‘van der Waals loops’ can be traced out

clearly in (E,T) space and the small system acts in many ways as a probe. The

relative probability of two different states � and � is given by

P�

P�

¼ exp½�aðE� � EtÞ2�
exp½�aðE� � EtÞ2�

; ð5:52Þ

where Et is the total energy of the system plus bath and a / 1=N 0. This

method may offer certain advantages for the study of first order transitions,

but more careful finite size analyses, considering both the size of the system

as well as that of the heat bath, still need to be performed. We mention this

approach here because it provides an example of how the theoretical concepts

of reservoirs and walls, etc. can be used to develop a simple, new simulation

technique with properties that differ from their more obvious predecessors.

5.7.2.3 Simulations at more than one length scale

Monte Carlo methods can also be used in concert with techniques that work

at a different length scale. For example, Reuter et al. (2004) have shown that

it can be effective to use density functional theory (DFT) together with

Monte Carlo for the study of phase transitions in adsorbed monolayers,

e.g. O/Ru(0001). The DFT calculations provide effective interaction para-

meters for a grand canonical Monte Carlo simulation which in turn allows the

determination of a phase diagram that includes multiple ordered phases. At

least two of the ordered phases were later found experimentally, a finding that

suggests that this approach has predictive value! This DFT/MC technique is

but one example of the utility of combining diverse methods, and more will

be said in this regard in Chapter 12. The extension of this approach to the

study of adatom diffusion on surfaces has already been mentioned in Section

4.4.4.
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5.7.3 Inverse Monte Carlo methods

Inverse Monte Carlo methods have been developed to calculate interaction

energies from experimentally generated data for the short range order of

a system (Gerold and Kern, 1987). In the original approach for A-B

binary alloys a ‘model crystal’ was created by starting with a random

distribution of atoms with the correct concentration and determining the

short range order coefficients. Then, a randomly chosen pair is exchanged

if it reduces the sum of the squares of the deviations of the short range

order coefficients. Once ‘equilibrium’ is obtained, the interaction parameters

are then determined by looking at the fluctuations. Virtual exchanges are

made and the number of A-A bonds in each shell of neighbors is measured.

This is done many times, and from the mean values of these bond numbers

and the exchange probability expressed in terms of the energy change

that would result, a set of equations, one for each shell of neighbors, is

determined. These are then solved to extract estimates for the interaction

energies. The method appears to be robust, i.e. a model with a given set of

interactions can be simulated, and the resultant correlations can be used as

input for an inverse Monte Carlo study. Such tests have been carried out

successfully and interactions were determined for Cu-Ni, Cu-Pt and

CuAu alloys.

Inverse Monte Carlo methods are also effective for the estimation of

effective pair potentials for suitable off-lattice models. This is generally

done using experimental scattering data of fluids and macromolecules (see

e.g. Bathe and Rutledge, 2003) although in some test cases the target ‘data’

are generated by standard Monte Carlo or by molecular dynamics methods.

(See Chapter 6 for more information about Monte Carlo simulations of off-

lattice systems.) A quite efficient inverse Monte Carlo procedure, inspired by

Wang-Landau sampling (see Chapter 7.7), was used with considerable suc-

cess by Almarza and Lomba (2003) to extract estimated interaction para-

meters for liquid aluminum.

A closely related method, reverse Monte Carlo (McGreevy, 2001) differs

from Inverse Monte Carlo in that it does not attempt to generate an inter-

action Hamiltonian but only tries to reproduce the configuration that best

reproduces experimental data for the pair distribution function. McGreevy

(2001) outlines the ‘details’ of the method and presents a critical assessment

of the quality of results that can be expected. His examples include the

application to liquids, glasses, disorder in crystals, and magnetic structures.

One quite instructional example is the description of a Reverse Monte Carlo

simulation for a small two-dimensional Lennard-Jones system (see Fig. 5.17).

The initial state is a perfect crystal and the pair correlation function to which

the intermediate values are being fitted (generated by Metropolis Monte

Carlo) is shown by the dotted line. After 2500 trial moves are accepted,

the distribution function has ‘converged’. Of course, the target ‘data’ are

themselves somewhat noisy and the ultimate accuracy will depend on the

‘details’ of the simulation, but the sequence shown in Fig. 5.17 shows clearly
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how the approach to the final state and the agreement between the simulated

and target distribution functions are correlated.

5.7.4 Finite size effects: a review and summary

We have already seen a number of different cases where the finite system size

affects the nature of the results. This may come about because of a discre-

tization of the excitation spectrum in a classical system or due to a limitation

of the correlation length near a phase transition in any system. In the latter

case a cursory inspection of the data may be incapable of even determining

the order of the transition, but we have seen that finite size scaling provides a
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of the reverse Monte

Carlo method to a

two-dimensional

Lennard-Jones system.

On the left is the

development of the

radial distribution

function. The dotted

curves give the target

‘data’ (obtained by the

Metropolis method)

and the solid curves

show the instantaneous

distributions obtained

from intermediate

particle configurations

(shown on the right).

After McGreevy

(2001).



theoretically well grounded mechanism for the extraction of system behavior

in the thermodynamic limit. We have now observed multiple finite size

scaling forms and have seen that they are clearly effective. The general

feature of all of them is that if appropriate scaling variables are chosen,

both the location of the transition temperature as well as a description of

the behavior in the infinite system can be accurately extracted. Thus, for

example, near a second order phase transition that is reached by changing the

temperature, the appropriate scaling variable is "L1=� as long as the lattice

dimension is below the upper critical dimension. If instead the transition is

approached by varying a field h that is conjugate to the order parameter, the

scaling variable is hL��=�. The complication in all of this is that as the size of

the system increases, statistical errors become a problem because of correla-

tions. Thus, the two effects of finite system size and finite sampling time

become intertwined. For a temperature driven first order transition the rele-

vant scaling variable becomes "Ld where d is the spatial dimension. In all

cases, however, scaling is valid only in some asymptotic size regime which

may vary from model to model. There have also been attempts to recast finite

size scaling in a form which will enable the extraction of thermodynamic

information at much longer size scales. Kim (1993) proposed using the

ratio of the finite lattice correlation length and the lattice size as a new scaling

variable and Kim et al. (1996) showed that, close enough to the phase transi-

tion of the Ising model, the behavior for lattices which were much larger than

those which could be measured was accurately predicted.

In summary, then, the key to a successful finite size scaling analysis is the

careful examination of the quality of the scaling with particular care given to

the identification of systematic deviations (however small) from scaling. This

means that the statistical accuracy of the data is important and some com-

promise must be made between large lattices and high statistics.

5.7.5 More about error estimation

In Chapter 2 we introduced simple concepts of the estimation of errors in

Monte Carlo data. A more sophisticated method of error estimation, the

‘jackknife’ was introduced by Quenouille and Tukey (see e.g. Miller, 1974)

to reduce bias in an estimator and to provide a measure of the variance of the

resulting estimator by reusing the individual values in the sample. This

method, which has its origin in the theory of statistics, is of quite general

applicability. Let A1; . . . ;An represent a sample of n independent and iden-

tically distributed random variables and h�i is the estimator calculated using

all members of the sample. The data are divided into g groups of size h each,

i.e. n ¼ gh. Deleting the ith group of h values, one then calculates the esti-

mator h��ii based on the remaining groups. The estimator

��� ¼ 1

g

Xg

i¼1

~��i; ð5:53Þ
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where

~��i ¼ gh�i � ðg � 1Þh��ii: ð5:54Þ
This estimate eliminates the order n�1 bias from the estimator. Error esti-

mates can also be extracted from a jackknife analysis.

5.7.6 Random number generators revisited

In Chapter 2 we briefly touched on the entire matter of random number

generation and testing for quality. We now wish to return to this topic and

cite a specific example where the deficiencies of several generators could only

be clearly seen by careful inspection of the results of a Monte Carlo simula-

tion which was carried out using the generator in question. The Wolff cluster

flipping algorithm was used to study 16� 16 Ising square lattices using the

generators defined in Chapter 2. Most of the simulations were performed

exactly at T ¼ Tc, and between 5 and 10 runs of 107 updates were per-

formed. (Note that for the Swendsen–Wang and Metropolis algorithms,

one update means one complete update of the lattice (MCS); in the Wolff

algorithm, one update is less than one MCS and depends on the temperature.

For simulations at Tc, a Wolff update is � 0:55 MCS.) Surprisingly, the use

of the ‘high quality’ generators together with the Wolff algorithm produces

systematically incorrect results. Simulations using R250 produce energies

which are systematically too low and specific heats which are too high (see

Table 5.1). Each of the ten runs was made at the infinite lattice critical

temperature and calculated averages over 106 MCS; the deviation from the

exact value of the energy was over 40� (standard deviations)! Runs made

using the SWC generator gave better results, but even these data showed

noticeable systematic errors which had the opposite sign from those produced

using R250! In contrast, data obtained using the simple 32 bit congruential

generator CONG produced answers which were correct to within the error

bars. Even use of the mixed generator SWCW did not yield results which

were free of bias, although the systematic errors were much smaller (2� for

the energy and 4� for the specific heat). Use of another shift-register random

number generator, R1279, resulted in data which were in substantially better

agreement with exact values than were the R250 values. These data may be

contrasted to those which were obtained using the identical random number

generators in conjunction with the single spin-flip Metropolis method and

the multicluster flipping approach of Swendsen and Wang (1987). For all

combinations of simulation methods and random number generators, the

energy and specific heat values (shown in Table 5.2) are correct to within

a few � of the respective simulations; except for the CONG generator with

Metropolis and R250 with Swendsen–Wang, the answers agree to within 1�:
The problems which were encountered with the Wolff method are, in

principle, a concern with other algorithms. Although Metropolis simulations

are not as sensitive to these correlations, as resolution improves some very

small bias may appear. In fact, some time after the errors with the Wolff

5.7 Miscellaneous topics 187



algorithm were first noticed, a separate simulation of the Blume–Capel model

(spin-1 Ising model with single ion anisotropy) near the tricritical point

revealed asymmetries in the resultant distribution of states between þ1 and

�1 which were clearly with the Metropolis method traced to problems with

the random number generator (Schmid and Wilding, 1995). Hidden errors

obviously pose a subtle, potential danger for many simulations such as per-

colation or random walks of various kinds which generate geometric struc-

tures using similar ‘growth algorithms’ as the Wolff method.

The problems with the widely used shift register generator have been

attributed to triplet correlations (Heuer et al., 1997; Compagner, 1991).

This problem can be simply removed by XORing together two shift register

generators with different pairs of lags without too great a loss in speed. The

‘universal’ properties have been analyzed by Shchur et al. (1998) and we refer

the reader to this paper and to Heuer et al. (1997) for a deeper description of

the problems and tests. We do wish to comment that it is nonetheless unclear

just how and why these correlations affect specific algorithms in the manner

that they do.

To summarize, extensive Monte Carlo simulations on an Ising model for

which the exact answers are known have shown that ostensibly high quality

random number generators may lead to subtle, but dramatic, systematic

errors for some algorithms, but not others. Since there is no reason to believe

that this model has any special idiosyncrasies, this result should be viewed as

another stern warning about the need to very carefully test the implementa-

tion of new algorithms. In particular, each specific algorithm must be tested
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Table 5.1 Values of the internal energy for 10 independent runs with the Wolff

algorithm for an L ¼ 16 Ising square lattice at Kc. The last number in each

column, labeled ‘dev’, gives the difference between the simulation value and the

exact value, measured in terms of the standard deviation � of the simulation.

CONG R250 R1279 SWC SWCW

1.453 089 1.455 096 1.453 237 1.452 321 1.453 058

1.453 107 1.454 697 1.452 947 1.452 321 1.453 132

1.452 866 1.455 126 1.453 036 1.452 097 1.453 330

1.453 056 1.455 011 1.452 910 1.452 544 1.453 219

1.453 035 1.454 866 1.453 040 1.452 366 1.452 828

1.453 198 1.455 054 1.453 065 1.452 388 1.453 273

1.453 032 1.454 989 1.453 129 1.452 444 1.453 128

1.453 169 1.454 988 1.453 091 1.452 321 1.453 083

1.452 970 1.455 178 1.453 146 1.452 306 1.453 216

1.453 033 1.455 162 1.452 961 1.452 093 1.453 266

�hEi 1.453 055 1.455 017 1.453 056 1.452 320 1.453 153

error 0.000 030 0.000 046 0.000 032 0.000 044 0.000 046

dev. �0:31 � 42:09 � �0:27 � �16:95 � 1.94 �



together with the random number generator being used regardless of the tests

which the generator has previously passed!

Mertens and Bauke (2004) re-examined the connection between random

number sequence limitations and the Wolff algorithm as applied to the Ising

model. They found a correlation between the bias of several lagged Fibonacci

generators and the average cluster size and suggested the use of a hybrid

congruential lagged Fibonacci generator that had good ‘entropic’ character-

istics. This generator is much faster than the RANLUX generator (Lüscher,

1994) often used in high energy physics which discards many random num-

bers that are generated. A different approach was taken by Plascak et al.

(2002) who mixed Wolff cluster flips and Metropolis single spin flips in a

single simulation. With the addition of �50% of Metropolis flips the sys-

tematic error in the simulation of the Ising square lattice with R250 was

essentially eliminated. Somewhat surprisingly, the relative performance was

also enhanced even though the correlation times of the Metropolis algorithm

exceed those of the Wolff algorithm. Thus, our understanding of and cures for

random number ‘diseases’ are continuing to progress, but as computers

continue to increase in performance and Monte Carlo runs use ever more

random numbers, the practitioner must remain cautious!

5.8 SUMMARY AND PERSPECTIVE

We have now seen a quite broad array of different simulational algorithms

which may be applied to different systems and situations. Many new

approaches have been found to circumvent difficulties with existing methods,

and together with the rapid increase in computer speed the overall increase in

our capabilities has been enormous. In fact, a brief overview of progress made
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Table 5.2 Values of the internal energy (top) and specific heat (bottom) for an

L ¼ 16 Ising square lattice at Kc. Data were obtained using different random

number generators together with Metropolis and Swendsen–Wang algorithms. The

values labeled ‘dev.’ show the difference between the simulation results and the

exact values in terms of standard deviations � of the simulations.

Metropolis

CONG

SW

CONG

Metropolis

R250

SW

R250

Metropolis

SWC

SW

SWC

�hEi 1.452 783 1.453 019 1.453 150 1.452 988 1.453 051 1.453 236

error 0.000 021 0.000 053 0.000 053 0.000 056 0.000 080 0.000 041

dev. �13:25 � �0:86 � 1.62 � �1:36 � �0:17 � 4:16 �

�hCi 1.497 925 1.498 816 1.498 742 1.496 603 1.498 794 1.499 860

error 0.000 179 0.000 338 0.000 511 0.000 326 0.000 430 0.000 433

dev. �4:40 � 0.31 � 0.06 � �6:47 � 0.19 � 2.65 �



for the Ising model over a 25-year period, shown in Fig. 5.18, indicates that

the improvement due to algorithmic improvements far exceeds that due to

raw computer speed alone. Of course, it is not only the improvement in speed

which matters but also the net cost. Over the last decade alone the cost of

purchasing a machine divided by the speed of the Monte Carlo algorithm has

decreased by a factor of 104! Ultimately, however, the choice of method

depends on the problem being considered, the type of computer which is

available, and the judgement of the researcher.
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Fig. 5.18 Approximate

variation of Ising

model simulation

performance with

time: (upper curve)

total relative

performance; (lower

curve) relative

improvement in

computer speed.
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(Springer Verlag, Heidelberg).

Heuer, A., Dünweg, B., and Ferrenberg,

A. M. (1997), Comput. Phys.

Commun. 103, 1.

Holm, C. and Janke, W. (1993), Phys.

Lett. A 173, 8.

Hui, K. and Berker, A. N. (1989), Phys.

Rev. Lett. 62, 2507.

Hukushima, K. and Nemoto, K. (1996),

J. Phys. Soc. Japan 65, 1604.

Hukushima, K. and Kawamura, H.

(2000), Phys. Rev. E 61, R1008.

Imry, Y. and Ma, S. (1975), Phys. Rev.

Lett. 35, 1399.

Kandel, D., Domany, E., Ron, D.,

Brandt, A., and Loh, Jr., E. (1988),

Phys. Rev. Lett. 60, 1591.

Kandel, D., Domany, E., and Brandt, A.

(1989), Phys. Rev. B 40, 330.

Kasteleyn, P. W. and Fortuin, C. M.

(1969), J. Phys. Soc. Japan Suppl.

26s, 11.

Kawashima, N. and Young, A. P. (1996),

Phys. Rev. B 53, R484.

Kim, J.-K. (1993), Phys. Rev. Lett. 70,

1735.



192 5 More on importance sampling MC methods for lattice systems

Kim, J.-K., de Souza, A. J. F., and

Landau, D. P. (1996), Phys. Rev. E

54, 2291.

Kinzel, W. and Kanter, I. (2003), J.

Phys. A: Math. Gen. 36, 11173.

Kirkpatrick, S., Gelatt, Jr., S. C., and

Vecchi, M. P. (1983), Science 220,

671.

Kolesik, M., Novotny, M. A., and

Rikvold, P. A. (1998), Phys. Rev.

Lett. 80, 3384.

Krech, M. (1994), The Casimir Effect in

Critical Systems (World Scientific,

Singapore).

Krech, M. and Landau, D. P. (1996),

Phys. Rev. E 53, 4414.

Landau, D. P. (1992), in The Monte

Carlo Method in Condensed Matter

Physics, ed. K. Binder (Springer,

Berlin).

Landau, D. P. (1994), Physica A 205,

41.

Landau, D. P. (1996), in Monte Carlo

and Molecular Dynamics of Condensed

Matter Systems, eds. K. Binder and

G. Ciccotti (Società Italiana de Fisica,
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6 Off-lattice models

6.1 FLUIDS

6.1.1 NVT ensemble and the virial theorem

The examination of the equation of state of a two-dimensional model fluid

(the hard disk system) was the very first application of the importance sam-

pling Monte Carlo method in statistical mechanics (Metropolis et al., 1953),

and since then the study of both atomic and molecular fluids by Monte Carlo

simulation has been a very active area of research. Remember that statistical

mechanics can deal well analytically with very dilute fluids (ideal gases!), and

it can also deal well with crystalline solids (making use of the harmonic

approximation and perfect crystal lattice periodicity and symmetry), but

the treatment of strongly correlated dense fluids (and their solid counterparts,

amorphous glasses) is much more difficult. Even the description of short

range order in fluids in a thermodynamic state far away from any phase

transition is a non-trivial matter (unlike the lattice models discussed in the

last chapter, where far away from phase transitions the molecular field

approximation or a variant thereof is usually both good enough and easily

worked out, and the real interest is generally in phase transition problems).

We are concerned here with classical mechanics only (the extension to the

quantum case will be treated in Chapter 8) and then momenta of the particles

cancel out from the statistical averages of any observables A, which are given

as

hAiN;V ;T ¼
1

Z

ð
dXAðXÞe�UðXÞ=kBT : ð6:1Þ

Here we have specialized the treatment to a case where there are N point

particles in a box of volume V in thermal equilibrium at a given temperature

T : This situation is called the NVT-ensemble of statistical mechanics. The

phase space fXg is spanned by all the coordinates ri of the N point particles,
i.e. fXg ¼ fr1; r2; . . . ; rNg and is 3N-dimensional. Each point in that space
contributes to the average Eqn. (6.1) with the Boltzmann weight,

PðXÞ ¼ e�UðXÞ=kBT=Z; ð6:2Þ
which is the continuum analog of the weight that we have encountered for the

discrete lattice models (Eqn. (4.5)). Here UðXÞ is not the total energy, of
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course, but only the total potential energy (the kinetic energy has cancelled

out from the average). Often it is assumed that UðXÞ is simply a sum of pair-
wise interactions Uðri � rjÞ between point particles at positions ri, rj,

UðXÞ ¼
X
i<j

uðri � rjÞ; ð6:3Þ

but sometimes three-body and four-body interactions, etc., are also included.

A standard choice for a pair-wise potential is the Lennard-Jones interaction

ULJ ðrÞ ¼ 4" ð�=rÞ12 � ð�=rÞ6
� �

; ð6:4Þ

" being the strength and � the range of this potential.

Problem 6.1 Determine the location and depth of the minimum of the
Lennard^Jones potential. At which distance has this potential decayed to
about 1/1000 of its depth in the minimum?

Many other potentials have also been used in the literature; examples include

the use of hard-core interactions to represent the repulsion at short distances,

uðrÞ ¼ 1; r < r0; uðrÞ ¼ 0; r > r0; ð6:5Þ

additional soft-sphere attractions,

uðrÞ ¼ 1; r < r0; uðrÞ ¼ �"; r0 
 r < r1; uðrÞ ¼ 0; r > r1

ð6:6Þ

and inverse power law potentials,

uðrÞ ¼ ð�=rÞn; n ¼ integer; ð6:7Þ

etc.

Just as in the Monte Carlo algorithm for a lattice classical spin model,

where a spin ðSiÞ was randomly selected and a new spin orientation was
proposed as the basic Monte Carlo step, we now select a particle i at random

and consider a random displacement d from its old position r 0i ¼ ri þ d to a

new position. This displacement vector d is chosen randomly and uniformly

from some volume region, �V , whose size is fixed such that the acceptance

probability for the proposed move is on average neither close to unity nor

close to zero. As in the case of the lattice model, the acceptance probability for

the move,W ðri ! r 0i Þ, depends on the energy change �U ¼ Uðr 0i Þ �UðriÞ,
given by the Boltzmann factor

W ðri � r 0i Þ ¼ minf1; expð��U=kBTÞg: ð6:8Þ

The implementation of the algorithm is thus quite analogous to the lattice

case and can be summarized by the following steps:
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From this algorithm it is straightforward to calculate quantities like the

average potential energy hUiNVT , or structural information like the radial pair

distribution function gðrÞ; but in order to obtain the equation of state, one
would also like to know the pressure p. Since this is an intensive variable, it is

not so straightforward to obtain it from Monte Carlo sampling as it would be

for any density of extensive variable. Nevertheless there is again a recipe from

statistical mechanics that helps us, namely the virial theorem

p ¼ �kBT þ
1

dV

X
i<j

fðri � rjÞ � ðri � rjÞ
* +

; ð6:9Þ

where � � N=V is the particle density, fðri � rjÞ is the force between par-
ticles i and j, and d is the spatial dimension. Since for the continuous,

pairwise interactions considered above, such as those in Eqns. (6.4) and

(6.7), the forces are easily related to derivatives du=dr of these potentials
and one can re-express the virial theorem in terms of the pair distribution

function. In d ¼ 3 dimensions this yields

p ¼ �kBT �
2

3
p�2

ð1
0

dr r3
duðrÞ
dr

gðrÞ: ð6:10Þ

Of course, these expressions for the pressure do not work for potentials that

are discontinuous, such as those in Eqns. (6.5) and (6.6), and other tech-

niques then have to be used instead. Finally, we note that the internal energy

and the compressibility can also be conveniently expressed in terms of the

pair distribution function which in d ¼ 3 dimensions is

hUi=N ¼ 2p�
ð1
0

dr r2uðrÞgðrÞ; ð6:11aÞ
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‘Off-lattice’ Metropolis Monte Carlomethod

(1) Choose an initial state (to avoid difficulties when particles are very

close to each other and U thus very large, one frequently distributes

particles on the sites of a regular face-centered cubic lattice).

(2) Consider a particle with a randomly chosen label i and calculate a

trial position r 0i ¼ ri þ d.

(3) Calculate the energy change �U which results from this displace-

ment.

(4) If �U < 0 the move is accepted; go to (2).
(5) If �U > 0, a random number 	 is chosen such that 0 < 	 < 1.
(6) If 	 < expð��U=kBTÞ, accept the move and in any case go then
to (2). Note that if such a trial move is rejected, the old configuration is

again counted in the averaging.




=
id ¼ 1þ 4p�
ð1
0

dr r2½gðrÞ � 1�; ð6:11bÞ

where 
id is the ideal gas compressibility.

Problem 6.2 Write a program that approximates gðrÞ via a histogram, bin-
ning together particles that fall within a distance interval ½r; rþ�r� from
each other.

Problem6.3 Generalize Eqns. (6.10)^(6.11) todimensionsd ¼ 2 and d ¼ 4.

6.1.2 NpT ensemble

The isobaric–isothermal ensemble is very often used in Monte Carlo simula-

tions of fluids and solids, in particular when one wishes to address problems

such as the fluid–solid transition or transitions among different solid phases.

At such first order transitions, first derivatives (such as internal energy U ,

volume V ) of the appropriate thermodynamic potential exhibit a jump (e.g.

�U , �V ). Using such an extensive variable (like the volume V ) as a control

parameter of a simulation, however, causes particular problems if the chosen

value of V falls in the ‘forbidden region’ of this jump. It means that in

thermal equilibrium the system should separate into two coexisting phases

(e.g. if we cool down a box containing water molecules from high temperature

to room temperature at any intermediate density N=V between that of water
vapor and that of water at room temperature). This separation can be

observed in the framework of NVT simulations in simple cases, e.g. for a

two-dimensional Lennard-Jones fluid this is seen in the snapshots (Rovere et

al., 1990) in Fig. 6.1, but reaching equilibrium in such a computer simulation

of phase separation is rather cumbersome. Also, averaging any observables in

such a two-phase coexistence regime is a tricky business – obviously in Fig.

6.1 it would be hard to disentangle which features are due to the gas phase,

which are due to the liquid phase, and which are attributed to the interface.
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Fig. 6.1 Snapshots of 576 particles at a density �� ¼ 0:3 for T� ¼ (a) 0.7, (b) 0.5, and (c) 0.45. Here ��, T� are density and
temperature in reduced units, i.e. the Lennard-Jones parameters � and "=kB are used as units of length and temperature,
respectively. From Rovere et al. (1990).



(By the way, interfaces are slowly fluctuating objects and are hard to char-

acterize quantitatively, see Section 4.2.3.6.) Sometimes phase separation is

even missed, either because the system is too small, or because of hysteresis.

As a result, for a study of phase transitions in off-lattice systems it is often

preferable to use the NpT ensemble (or the grand canonical �VT ensemble
where the chemical potential � rather than the pressure p is used as a second
intensive thermodynamic variable to characterize the static system). For sys-

tems with continuous potentials the first use of the NpT ensemble dates back

to 1972 (McDonald, 1972). We follow Frenkel and Smit (1996) in deriving it

from statistical mechanics. To begin with we consider the partition function

ZðN;V ;TÞ in the canonical ðNVTÞ ensemble for a box V ¼ L3 in three

dimensions,

ZðN;V ;TÞ ¼ 1

�3NN!

ðL
0

. . .

ðL
0

dr1 . . . drN exp½�Uðr1; . . . ; rN Þ=kBT �;

ð6:12Þ
where the prefactors ensure the proper normalization of entropy via the

quasi-classical limit of quantum mechanics (� is the thermal de Broglie

wavelength of the atoms and the factor 1=N! accounts for the indistinguish-

ability of the particles).

In the NpT ensemble the volume V , and hence the linear dimension L, is

not fixed but is a fluctuating quantity. It is convenient to define scaled

coordinates si by

ri ¼ Lsi; for i ¼ 1; 2; . . . ;N; ð6:13Þ
and treat the fsig and the linear dimension L as separate variables fsi;Lg. The
(Helmholtz) free energy FðN;V ;TÞ thus is written as

FðN;V ;TÞ ¼ �kBT lnZðN;V ;TÞ

¼ �kBT ln
½V=�3�N

N!

� �

� kBT ln

ð1
0

. . .

ð1
0

dsN exp �
Uðs1; . . . ; sN ;LÞ

kBT

	 


¼ FigðN;V ;TÞ þ�FðN;V ;TÞ;

ð6:14Þ

where the first term has been identified as the well-known expression for the

free energy of the ideal gas, FigðN;V ;TÞ; and �FðN;V ;TÞ is the non-
trivial part involving all the interactions among the particles. Of course, U

depends originally on the actual coordinates r1; . . . ; rN , and when we write U
in terms of the fsig we must allow for L as an additional variable.
Now we consider the situation in which the system under consideration is

actually a subsystem of a much larger ideal gas system of volume V0, with

V0 � V , which acts as a heat bath (exchange of energy but not of particles is

possible), and from which it is separated by a piston which is free to move.
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Denoting the total number of atoms asM, we find that there are hence ðM�
NÞ � N atoms in the reservoir. The partition function of the total system is

simply the product of the partition functions of these two subsystems,

ZðN;M�N;V ;V0 � V ;TÞ

¼ VNðV0 � V ÞM�N

N!ðM�NÞ! ��3M
ð1
0

. . .

ð1
0

ds 01 . . . ds
0
M�N

ð1
0

. . .

ð1
0

ds1 . . . dsN

exp �Uðs1; . . . ; sN ;LÞ
kBT

	 

:

ð6:15Þ

Note that the integral over the 3ðM�NÞ scaled coordinates s 01; . . . ; s 0M�N of

the ideal gas particles simply yields unity. The probability density PðV Þ that
the N-particle subsystem has the volume V then is

PðV Þ ¼

VNðV0 � V ÞM�N
ð1
0

. . .

ð1
0

ds1 . . . dsN exp½�Uðs1; . . . ; sN ;LÞ=kBT �

ðV0
0

dV 0V 0NðV0 � V 0ÞM�N

ð1
0

. . .

ð1
0

ds1 . . . dsN exp½�Uðs1; . . . ; sN ;L 0Þ=kBT �
:

ð6:16Þ

Let us now exploit the fact that we consider the limit V0!1,M!1 but
with ðM�NÞ=V0 ¼ � held fixed. In that limit, a minor volume change of the
small system does not alter the pressure p of the large system. In order to

introduce the pressure p in Eqns. (6.15) and (6.16), in the limit V=V0! 0

we can write

ðV0 � V ÞM�N ¼ VM�N
0 ½1� ðV=V0Þ�M�N

� VM�N
0 exp½�ðM�NÞV=V0� ¼ VM�N

0 exp½��V �
ð6:17Þ

and simply use the ideal gas law � ¼ p=kBT to replace the exponential factor
in Eqn. (6.17) by expð�pV=kBTÞ: Integrating the partition function over
the volume V and splitting off the partition function of the reservoir,

VM�N
0 =½ðM�NÞ!�3ðM�NÞ�, we obtain the partition function YðN; p;TÞ in
the NpT ensemble

YðN; p;TÞ � p=kBT

�3NN!

ð
dV VN expð�pV=kBTÞ

ð1
0

. . .

ð1
0

ds1 . . . dsN

exp½�Uðs1; . . . ; sN ;LÞ=kBT �:
ð6:18Þ
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The probability density PðV Þ then becomes

PðV Þ ¼

VN expð�pV=kBTÞ
ð1
0

. . .

ð1
0

ds1 . . . dsN exp½�Uðs1; . . . ; sN ;LÞ=kBT �

ðV0
0

dV 0 V 0N expð�pV 0=kBTÞ
ð1
0

. . .

ð1
0

ds1 . . . dsN exp½�Uðs1; . . . ; sN ;LÞ=kBT �
:

ð6:19Þ

The partition function YðN; p;TÞ yields the Gibbs free energy as usual,
GðN; p;TÞ ¼ �kBT lnYðN; p;TÞ: Equation (6.19) is now the starting
point for the NpT Monte Carlo method. We note that the probability density

of finding the subsystem in a specific configuration of the N atoms (as

specified by s1; . . . ; sN ) and a volume V is

Pðs1; . . . ; sN ;V Þ / VN expð�pV=kBTÞ exp½�Uðs1; . . . ; sN ;LÞ=kBT �
¼ expf�½Uðs1; . . . ; sN ;LÞ þ pV �NkBT lnV �=kBTg:

ð6:20Þ

Equation (6.20) looks like the Boltzmann factor for traditional Monte Carlo

sampling if the square bracket is interpreted as a generalized ‘Hamiltonian’,

involving an extra variable, V ¼ L3. Thus, trial moves which change V have

to be carried out, and these must satisfy the same rules as trial moves in the

particle positions fsig. For example, consider attempted changes from V to

V 0 ¼ V þ�V ; where �V is a random number uniformly distributed in the

interval ½��Vmax;þ�Vmax� so that V 0 ¼ L03. In the Metropolis scheme, the
acceptance probability of such a volume changing move is hence

W ðV ! V 0Þ ¼ min

(
1; exp

�
� 1

kBT
½Uðs1; . . . ; sN;L 0Þ

�Uðs1; . . . ; sN;LÞ þ pðV 0 � V Þ � kBTN lnðV 0=V Þ�

)

:

ð6:21Þ

The frequency with which ‘volume moves’ should be tried in place of the

standard particle displacements ri ! r 0i depends on the efficiency with which
phase space is then sampled by the algorithm. In general, a volume trial move

could mean that all interatomic interactions are recomputed, which would

need a cpu time comparable to N trial moves on the atomic positions.

Fortunately, for potentials which can be written as a sum over terms Un

that are simple inverse powers of interatomic distances there is a scaling

property that makes the volume changing trial move much ‘cheaper’. We

can see this by writing
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Un ¼
X
i<j

" �=jri � rjj
� �n¼ L�n

X
i<j

" �=jsi � sjj
� �n

; ð6:22Þ

from which we can infer that UnðL 0Þ ¼ ðL=L 0ÞnUnðLÞ. Note, however, that
Eqn. (6.22) is only true for an untruncated potential (cf. Section 6.2).

In order to check the equilibration of the system (and the validity of the

implementation of the algorithm!) it is also advisable to calculate the pressure

p from the virial theorem (see Eqns. (6.9, 10)) in such an NpT ensemble,

since one can prove that the virial pressure and the externally applied pres-

sure (that appears in the probability, Eqn. (6.21)) must agree. Finally, we

mention that in solids (which are intrinsically anisotropic!) a generalization of

this algorithm applies where one does not consider isotropic volume changes

but anisotropic ones. For an orthorhombic crystal it is thus necessary to have

a box with three different linear dimensions Lx;Ly;Lz, and in the NpT

ensemble these three linear dimensions may change separately. We shall

return to an example for this case in Section 6.6.

6.1.3 Grand canonical ensemble

The grand canonical ensemble �VT uses the volume V and the chemical

potential � as independent thermodynamic variables along with the tempera-
ture T . While in the NpT ensemble the particle number N was fixed and the

volume could fluctuate, here it is exactly the other way around. Of course, in

the thermodynamic limit ðN !1 or V !1; respectively) fluctuations are
negligible, and the different ensembles of statistical mechanics yield equiva-

lent results. However, in computer simulations one often wishes to choose N

and/or V as small as possible, in order to save cpu time. Then the optimal

choice of statistical ensembles is a non-trivial question, the answer to which

depends both on the type of physical system being studied and the type of

properties to be calculated. As an example, consider the study of adsorption

of small gas molecules in the pores of a zeolite crystal (see e.g. Catlow, 1992;

Smit, 1995). Then the adsorbate in an experiment is in fact in contact with a

gas reservoir with which it can exchange particles, and this is exactly the type

of equilibrium described by the �VT ensemble. Choosing this ensemble to
simulate an ‘adsorption isotherm’ (describing the amount of adsorbed gas as a

function of the gas pressure in the reservoir) has the advantage that the

simulation closely parallels the experiment. It may also be advantageous to

choose the �VT ensemble for other cases, e.g. for a study of the liquid/gas
transition and critical point of a bulk fluid (Wilding, 1997). Experimental

studies of this problem typically are done in the NVT or NpT ensembles,

respectively. Simulations of fluid criticality have been attempted as well, both

in the NVT ensemble (Rovere et al., 1990) and the NpT ensemble (Wilding

and Binder, 1996), but these approaches are clearly less efficient than the

simulations in the �VT ensemble (Wilding, 1997).
The grand canonical partition function is written
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Yð�;V ;TÞ ¼
X1
N¼0

1

N!
ðV=�3ÞN expð�N=kBTÞ

ð
ds1; . . . ;

ð
dsN

exp½�Uðs1; . . . ; sNÞ=kBT �;
ð6:23Þ

where the si are the scaled coordinates of the particles, Eqn. (6.14). Note that

we again consider only a cubic box in d ¼ 3 dimensions here, V ¼ L3. Then

the corresponding probability density is

N �VT ðs1; . . . ; sN ;NÞ / 1

N!

V

�3

� 
N

exp �½Uðs1; . . . ; sNÞ � �N�=kBT
� �

:

ð6:24Þ
This probability density can be sampled by a Metropolis Monte Carlo

method (see Chapter 4). In addition to trial moves that displace particles

(the acceptance probability for such moves is still given by Eqn. (6.8)) trial

moves for the insertion or removal of particles from the reservoir are also

introduced. The insertion of a particle at a randomly selected position sNþ1 is
accepted with the probability (Norman and Filinov, 1969)

W ðN ! N þ 1Þ ¼min
(
1;

V

�3ðN þ 1Þ exp �½Uðs1; . . . ; sNþ1Þ
�

�Uðs1; . . . ; sNÞ � ��=kBT
�)

;

ð6:25Þ

while the removal of a randomly chosen particle is accepted with the prob-

ability

W ðN ! N � 1Þ ¼ min

(
1;

�3N

V
exp �½Uðs1; . . . ; sNÞ �Uðs1; . . . ; sN�1Þ

�

þ ��=kBT
�)

: ð6:26Þ

Since the particles are indistinguishable, their labeling is arbitrary, and hence

in Eqn. (6.26) we have given the particle that was removed the index N.

Obviously, two successive (successful) events in which a particle is removed

at a site sN and inserted at a site s
0
N have the same effect as a (random) move

from sN to s
0
N according to Eqn. (6.8). Therefore, these displacement moves

are not actually necessary, and one can set up a simulation program that

includes random insertions and removals exclusively. For densities which

are not too large (but including the critical density of a fluid (Wilding,

1997)), such an algorithm is in effect very efficient, much more so than the

simple random displacement algorithm of Eqn. (6.8). This is true because the

effective displacements generated are of the order of the linear dimension of

the box while the displacements generated by the algorithm of Eqn. (6.8) are

of the order �, a length typically chosen of the same order as the range � of
the inter-particle potential. On the other hand, the efficiency of this straight-
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forward implementation of the grand canonical Monte Carlo algorithm dete-

riorates very quickly when the density increases – for dense fluids near their

fluid–solid transition successful attempts of a particle insertion are extremely

rare, and thus the method becomes impractical, at least in this straightforward

form.

A particular advantage of grand canonical simulations of gas–fluid criti-

cality is that the analysis in terms of finite size scaling is most natural in this

ensemble (Wilding, 1997; see also Section 4.3.5). As has already been dis-

cussed in Section 4.3.5, for an accurate analysis of this situation one needs to

properly disentangle density fluctuations and energy density fluctuations in

terms of the appropriate ‘scaling fields’. In this way, critical phenomena in

fluids can be studied with an accuracy which is nearly competitive to that in

corresponding studies of lattice systems (Chapter 4).

Extensions to binary (A, B) or multicomponent mixtures can also be

straightforwardly considered. For the grand canonical simulation of a binary

mixture, two chemical potentials �A, �B are needed, of course, and the term
�N in Eqn. (6.24) is generalized to �ANA þ �BNB. Then the moves in

Eqns. (6.25) and (6.26) must distinguish between the insertion or removal

of an A particle or a B particle. An important extension of the fully grand

canonical simulation of mixtures is the so-called semi-grand canonical simula-

tion technique, where the total particle number Ntot ¼ NA þNB is held fixed

and only the chemical potential difference �� ¼ �A � �B is an independent
variable, since then �ANA þ �BNB ¼ ��NA þ �BNtot and the second

term �BNtot then cancels out from the transition probability. Thus, the

moves consist of the removal of a B particle and insertion of an A particle

at the same position, or vice versa. Alternatively, one can consider this move

as an ‘identity switch’: an A particle transforms into B or a B into A. The

obvious advantage of this algorithm is that it still can be efficient for very

dense systems, where the standard grand canonical algorithm is bound to fail.

Thus the semi-grand canonical method can be generalized from simple

monatomic mixtures to such complex systems as symmetrical mixtures of

flexible polymers (Sariban and Binder, 1987). An entire polymer chain then

undergoes such an ‘identity switch’, keeping its configuration constant. In

addition, other moves are needed to sample the possible configurations, and

these will be described in Section 6.6 below. However, the extension of the

semi-grand canonical ensemble to formulate efficient Monte Carlo algorithms

of asymmetric mixtures poses particular challenges. For mixtures of flexible

polymers, such an asymmetry is very common due to the differing chain

lengths of the constituents, Na ¼ Nb. We shall return to this problem in

Section 6.6.2. Another very popular model is a mixture of hard spheres

with very different sizes. A variant uses mixtures of hard and soft spheres,

e.g. the famous Asakura-Oosawa (AO) model of colloid-polymer mixtures

(Asakura and Oosawa, 1954). Here the colloidal particles are represented

by impenetrable spheres of radius Rc, and polymers are represented as

spheres of radius Rp, such that the potential between a colloidal particle

and a polymer is infinite if their distance is less than Rc þ Rp. Two polymers
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can overlap with no energy cost, however. (As will be discussed further in

Section 6.6, flexible polymers have random walk-like configurations which

can easily penetrate each other.) Although this model is only a crude repre-

sentation of reality, it is nevertheless widely used. Typically the colloids are

much larger than the polymers, Rc � Rp.

Now the general problem in the simulation of asymmetric binary mixtures

is that an attempt to insert a large particle inevitably results in an overlap with

several small particles, and hence such a trial move will be rejected. Vink and

Horbach (2004) solved this problem by inventing a collective move in which a

random number nr of small particles (with 0 
 nr < m, where m is an integer

will be specified later) is removed when one tries to insert a large particle (or

vice versa). The first step of the move consists of randomly selecting a point

in the mixture at which one wants to insert the large particle and drawing a

sphere of radius � around it. (� must be sufficiently large, e.g. � ¼ Rc þ Rp is

a useful choice). There will be npð¼ 0; 1; 2; . . .Þ small particles inside the
sphere. If nr > rp, the move is rejected, but if nr 
 np, nr small particles

are randomly selected and removed and then the insertion of the large par-

ticle is attempted. The new configuration is accepted with probability

Aþ ¼ min 1;
zcV

Nc þ 1
ðnpÞ!

ðnp � nrÞ!
expð��E=kBTÞ

ðzpV�Þnr
	 


;

where V is the volume of the box and V� the volume of the sphere,

V� ¼ 4��3=3, and fzc; zpg are the fugacities of all the large and small particles,
respectively ðz ¼ expð�=kBTÞ where � is the appropriate chemical poten-
tial). Here we have allowed for a potential energy difference �E between the

initial and the final configuration, since the algorithm is by no means

restricted to hard-core systems. Finally, Nc is the number of colloids. The

reverse move is constructed such that detailed balance holds. First a large

particle is selected at random, and a sphere with radius � is drawn around the
center of this particle. Next, a uniform random integer nr is chosen from the

interval 0 
 nr < m, followed by the selection of nr random sites from inside

the sphere. The large particle then is removed, and nr small particles are

placed on the selected site before the new configuration is accepted with

probability

A� ¼ min 1;
Nc

zcV

ðnpÞ!ðzpV�Þnr
ðnp þ nrÞ!

expð��E=kBTÞ
	 


:

The algorithm is ergodic and satisfies detailed balance. The integer m must be

chosen large enough to allow for the formation of voids, e.g. m ¼ zpV� is a

reasonable choice if Rc ¼ 1 is the unit of length.
When this algorithm is combined with successive umbrella samplings

(Virnau and Müller, 2004) and finite size scaling analyses, both the phase

diagram and the interfacial tension of this AO model could be accurately

estimated (Vink and Horbach, 2004). This work is a good example showing

that the great strength of Monte Carlo methods is the possibility of suitably

adapting an algorithm to the problem of interest.
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Problem 6.4 Demonstrate that the algorithm defined by Eqns. (6.25) and
(6.26) satisfies the detailed balance principle with the semi-grand canonical
probability distribution, Eqn. (6.24).

Problem 6.5 Write down the transition probabilities and the grand cano-
nical probability distribution for a Monte Carlo algorithm that samples the
lattice gasmodel, Eqn. (2.49), at given volume of the lattice V ¼ L3, tempera-
ture T and chemical potential �. Discuss the differences between the result
and Eqns. (6.24)^(6.26).

6.1.4 Near critical coexistence: a case study

The study of phase transitions in systems without a clear symmetry, which is

the situation for many systems in the continuum, is a challenging problem. A

good example of such a case is the examination of asymmetric fluid criticality.

One particular complication is the possible presence of a Yang-Yang singu-

larity, i.e. the 2nd derivative of the chemical potential ��ðTÞ diverges as the
critical point is approached from below. Kim et al. (2003) used grand cano-

nical Monte Carlo, together with a finite size analysis to identify and include

pressure mixing effects, for the hard-core square-well (HCSW) fluid and for

the restricted primitive model (RPM) electrolyte. In Fig. 6.2 we show their

results for the density discontinuity as the critical point is approached. This

figure demonstrates that very high resolution can now be achieved quite close

to the critical point for non-trivial, off-lattice models. The precision of these

simulations is, in fact, quite competitive with experimental resolution for real

materials. Below Tc the grand canonical description of phase coexistence of

the density distribution function is approximated by two gaussians centered

at ��ðTÞ, and the separation of the peaks is a measure of the discontinuity at
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Fig. 6.2 Grand

canonical Monte

Carlo results for the

semi-density jump

�� ¼ ð�þ � ��Þ=2
vs. " ¼ jT � Tcj=Tc

for a HCSW fluid

with interaction range

1.5a (where a is the

hard-sphere diameter

and ��c � 0:3067) and
for the RPM with

��c � 0:079. The
dashed line has the

Ising slope � ¼ 0:32.
(After Kim, Fisher,

and Luijten, 2003.)



the transition. As the critical point is approached, however, finite size round-

ing begins to smear out the discontinuity at the transition and a finite size

scaling study of properties such as the 4th order cumulant becomes essential

to extracting information about the transition. Kim et al. (2003) defined three

scaling fields:

~pp ¼ �pp� k0"� l0 ���þ � � �
~"" ¼ "� l1 ���� j1 �ppþ � � �
~hh ¼ �� k1t � j2 �pp

ð6:27Þ

where " ¼ j1� T=Tcj, �pp ¼ p� pcð Þ=�ckBT and ��� ¼ �� �cð Þ=kBT . Finite
size scaling then implies that

�c ~pp ¼ L�dYðx; zÞ ð6:28Þ

where x ¼ D ~""L1=� and z ¼ U ~hh ~""j j�� and Yðx; zÞ is a universal scaling func-
tion, D and U are non-universal amplitudes. Looking at the mean value of

the minimum of the 4th order cumulant and the difference in the scaling of

the mean density, one can make scaling plots (see Fig. 6.3) to determine how

the system behaves as the critical point is approached.

The resultant scaling behavior is excellent and allows a quite accurate

determination of the location of the critical point and a description of the

coexistence curves quite close to this point. It is particularly gratifying that

this work is co-authored by one of the pioneers in the development of the

theory of phase transitions (MEF) who has been very skeptical about Monte

Carlo simulations for many years. Now, however, he helps guide the analysis

of these careful simulations with the proper theoretical background – such

close interactions between theory and simulation (as shown schematically in

Fig. 1.1) provide a good example of how significant progress can be achieved.

206 6 Off-lattice models

Fig. 6.3 Scaling plots

for the HCSW fluid.

Parameters are

described in the text.
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6.1.5 Subsystems: a case study

In dense off-lattice systems particle insertions often are very hard to perform,

and simulations in the grand canonical ensemble are impractical.

Nevertheless, equivalent information often is easily deduced from a study

of subsystems of a larger system that is simulated in the standard canonical

NVT ensemble (Rovere et al., 1990; Weber et al., 1995). A study of sub-

systems is attractive because from a single simulation one can obtain informa-

tion about both finite size behavior and response functions that is not

accessible otherwise. In order to explain how this is done, we best proceed

by way of an example, and for this purpose we choose the solid–liquid

transition of hard disks in d ¼ 2 dimensions. Actually this model system
has been under study since the very first application of the importance

sampling Monte Carlo method (Metropolis et al., 1953), and many classic

papers have appeared since then (e.g. Alder and Wainwright, 1962; Zollweg

and Chester, 1992).

The total system of size S� S is divided into L� L subsystems of linear

dimension L ¼ S=Mb with Mb ¼ 1; 2; 3; 4; . . . up to a value at which the
subsystem size becomes too small for a meaningful analysis. The boundaries

of these subsystems have no physical effect whatsoever; they only serve to

allow a counting of which particle belongs to which subsystems, so informa-

tion on subsystem properties for all subsystem sizes is deduced simulta-

neously from the same simulation run. (Actually, one can also choose non-

integer Mb to allow a continuous variation of L, choose subsystems of sphe-

rical rather than quadratic shape, if desired, etc.). Such subsystem properties

are, first of all, the density �, and in the present example another quantity of
interest is the bond orientational order parameter � defined as

� ¼
X
i

X
j

expð6i�ijÞ
�����

�����=Nbond; ð6:29Þ

where the sum over i runs over all particles in the subsystem and the sum

over j runs over all neighbors of i (defined by the criterion that the distance is

less than 1.3 times the close packing distance). �ij is the angle between the

‘bond’ connecting neighbors i and j and an arbitrary but fixed reference axis,

and Nbond is the number of bonds included in the sums in Eqn. (6.29).

A study of the probability distribution PLð�; �Þ is illuminating (see Fig.
6.4) as it allows the estimation of various response functions. While we expect

that � and � fluctuate independently of each other in the disordered phase,
this is not so in the ordered phase where an increase of � also enhances �,
and a cross-correlation h����i is thus non-vanishing. For linear dimensions
L much larger than the (largest) correlation length � we can assume a
Gaussian probability distribution (Landau and Lifshitz, 1980; Weber et al.,

1995)

PLð�; �Þ / exp �Ld

2

ð��Þ2
�L;�

�����

�L
þ ð��Þ2


L;�

" #( )
; ð6:30Þ
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with the fluctuations �� � �� h�iL and �� � �� h�iL. The bond orien-
tational ‘susceptibility’ measured in a system of linear dimension L at con-

stant density � is denoted by �L;�, and ��1L is the coupling parameter

measured on the same length scale L, while 
L;� denotes the compressibility
measured on length scale L at a constant value h�i of the order parameter.
Note that factors 1=kBT have been absorbed in these definitions throughout.
From Eqn. (6.30) we can derive an expression for the differences between

the ‘susceptibilities’ at constant density �L;� and constant chemical potential

�L;�. Note that a subsystem with L� S can freely exchange particles with a

much larger ‘reservoir’ (remember that the walls of the subsystems are only

virtual boundaries, of course), and hence is at constant chemical potential

even if the total system is held at constant density �. Thus (for L!1 the
index L can be omitted)

�� � �� ¼ Ldh����i2=hð��Þ2i: ð6:31Þ
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Fig. 6.4 Contour plot

of the joint probability

distribution Pð�; �Þ of
the bond-orientational

order parameter � and

the subsystem density

� for subsystems with

Mb ¼ 6, at a system
density (in units of the

close packing density)

of (a) � ¼ 0:78 (fluid
phase) and (b) � ¼
0:95 (solid phase). The

total number of

particles is N ¼ 2916,
and averages were

taken over 600 000

MCS/particle. From

the outermost to the

innermost contour the

probability increases as

i�p, i ¼ 1, 2, 3, 4, 5,
with (a) �p ¼
0:000 965 and (b)

�p ¼ 0:000 216. Note
that in the disordered

phase the peak of

Pð�; �Þ occurs at a
non-zero value of �,

because � is the

absolute value of a

two-component order

parameter. From

Weber et al. (1995).



In fact, a distinction between �� and �� is expected only in the ordered

phase, since

h����iL ¼ ð@h�iL=@�Þ=ðLd=kBTÞ; ð6:32Þ
and h�iL!1 � 0 in the disordered phase. As expected, the distribution in
Fig. 6.4 has contours with the long axis parallel to the abscissa (no ���
coupling) in the disordered phase, while in the ordered phase the long axis

forms a non-trivial angle with the abscissa, due to the presence of a coupling

term in Eqn. (6.30). From Fig. 6.4 both ��, h����i, and hð��Þ2i can be
measured, and one finds susceptibilities ��; �� in both ensembles (from Eqn.

(6.31)) and the isothermal compressibility


 ¼ Ld��2hð��Þ2iL ð6:33Þ
from a single simulation run!

However, it is important to realize that the subsystem fluctuations ‘cut off’

correlations across the subsystem boundaries, and hence one has to carry out

an extrapolation according to (Rovere et al., 1990; Weber et al., 1995)

�L;� ¼ ��ð1� const:�=LÞ; L� �; ð6:34Þ
where the constant is of order unity. Actually, both the compressibility 

(Fig. 6.5) and the susceptibility �� (Fig. 6.6a) have to be found by an extra-

polation of the form given by Eqn. (6.34), see Fig. 6.6b, and hence are

denoted as 
1, �1, in these figures. Figure 6.6b shows that the extrapolation
suggested by Eqn. (6.34) does indeed work, but one must discard data for

small L�1 which bend systematically down to smaller values. This effect is
due to crossover from the grand canonical ensemble (small sub-boxes,

Mb � 1) to the canonical ensemble (realized by Mb ¼ 1, of course).
Indeed, Eqn. (6.31) shows that �� > �� in the ordered phase.
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Compressibility 
1 of
the hard disk model as

a function of density

�, obtained by

extrapolation from

circular and

rectangular subsystems

in the solid and fluid

phases, respectively.

Total number of

particles is N ¼ 576.
From Weber et al.

(1995).



The major reason for the great interest in the solid–liquid transition of

hard disks is a longstanding controversy about whether the Nelson–Halperin

(1979) theory works for this model. According to this theory, melting in two

dimensions is not a conventional first order transition (as it is in the three-

dimensional case) but rather occurs via a sequence of two continuous transi-

tions: by increasing the density one leaves the fluid phase through a diver-

gence of the susceptibility �1,

�1 / exp b 0ð�f � �Þ�1=2� �
; ð6:35Þ

where b 0 is a constant and at �f a transition occurs to a rather unconventional
phase, the hexatic phase. In this phase, for �f < � < � 0f , the order parameter
h�i is still zero in the thermodynamic limit L!1, but correlation func-
tions of this order parameter decay algebraically, i.e. the correlation length �
(cf. Eqn. (6.34)) is infinite. Only for � > � 0f would one have h�i > 0, i.e. a
conventional solid.

As Fig. 6.6a shows, Eqn. (6.35) provides a very good fit to the simulation

data, but the ‘critical’ density �f is larger than the density �cross, which results
from cumulant intersections (Fig. 6.7). As in the case of the Ising model, see

Chapter 4, the cumulant of the bond orientational order parameter has been

defined as (cf. Eqn. (4.12))

UL ¼ 1� h�4iL=ð3h�2i2LÞ: ð6:36Þ
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Fig. 6.6 (a) Extrapolated ‘susceptibility’ �1 of the hard disk system versus density. The data in the fluid are fitted to �1 /
expfb 0ð�f � �Þ�1=2g where b 0 is a constant and �f ¼ 0:913 is marked with an arrow. The vertical solid line marks the
estimated transition density �cross ¼ 0:8985� 0:0005 obtained from cumulant intersections (Fig. 6.7). Previous estimates for
the width of the two-phase region are indicated by horizontal arrows. Error bars are only shown when they exceed the size of

the symbols. (b) Susceptibility �L as a function of the inverse linear subsystem size L
�1 in the solid phase away from the

transition, for N ¼ 16 384 particles. From Weber et al. (1995).



Figure 6.7 shows that the intersection occurs in the region 0:898 
 �

 0:899, and this estimate clearly is significantly smaller than �f � 0:913
extracted from the fit to Eqn. (6.35), cf. Fig. 6.6a. Thus the implication is

that at the (first order) transition �1 is still finite, �f only has the meaning
of a ‘spinodal point’ (limit of metastability of the fluid phase). Of course,

noting that � is the density of an extensive thermodynamic variable, we
emphasize that in principle there should be a jump in density from �l
(where one leaves the fluid phase) to �s (where one enters the solid phase).
In the ‘forbidden’ region of densities in between �l and �s one finds two-
phase coexistence (which for large enough L must show up in a double peak

distribution for �Lð�; �Þ, rather than the single peaks seen in Fig. 6.4).
Unfortunately, even with 16 384 particles no evidence for this ultimate

signature of first order melting in two dimensions is found. The large values

found for �1 near the transition at �cross in Fig. 6.6a imply that the system is
indeed rather close to a continuous melting transition, and previous estimates

for the width of the two-phase coexistence region (included in Fig. 6.6a)

clearly are too large. This fact that the system is so close to continuous

melting also explains why one cannot see a jump singularity of 
1 at the
transition (Fig. 6.5 rather suggests only a discontinuity of the slope).

However, the conclusions are called into question by a recent finite size

scaling analysis for very large systems (Jaster, 1998) which studied �1
much closer to the transition than in the data in Fig. 6.6a and which

concluded that there is a continuous transition at �c � 0:900 compatible
with Fig. 6.7.
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parameter cumulants

for the bond

orientational order

parameter, plotted as a

function of the total

density � for various

subsystem sizes

L ¼ S=Mb. The

vertical dashed lines

mark the range within

which the cumulant

intersection occurs, i.e.

they indicate the error

in the estimated

transition density of

�cross ¼ 0:8985
� 0:0005. From
Weber et al. (1995).



Originally, the subsystem analysis for off-lattice systems was used to study

the gas–liquid transition (Rovere et al., 1990), but it now is evident that for

this problem the grand canonical simulation method is more efficient

(Wilding, 1997). For very dense systems, however, the subsystem analysis

clearly has its merits. Another recent, useful application concerns the analysis

of capillary-wave type fluctuations of interfaces between coexisting phases in

polymer mixtures (Werner et al., 1997). Thus we suggest that the reader

keep this technique in mind as an alternative to the more traditional

approaches.

6.1.6 Gibbs ensemble

For a study of many fluids or fluid mixtures one is not primarily interested in

a precise knowledge of critical properties, but rather in an overall description

of phase diagrams, involving the description of phase coexistence between

liquid and gas, or between an A-rich phase and a B-rich phase in a binary

mixture (AB), respectively. The so-called ‘Gibbs ensemble’ method, pio-

neered by Panagiotopoulos (1987, 1995), is an efficient (and computationally

‘cheap’) approach to achieve that goal, and hence is of widespread use for a

large variety of systems.

The basic idea of this method is very intuitive. Consider a macroscopic

system where gas and fluid phases coexist in thermal equilibrium. The

Gibbs ensemble attempts to simulate two microscopic regions within the

bulk phase, away from an interface (Fig. 6.8). The thermodynamic require-

ments for phase coexistence are that each region should be in internal equili-
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Fig. 6.8 Schematic

diagram of the Gibbs

ensemble technique. A

two-dimensional

system is shown for

simplicity. Broken

lines indicate

boundaries where

periodic boundary

conditions are applied.

From Panagiotopoulos

(1995).



brium and that temperature, pressure and the chemical potential are the same

in both regions. The system temperature in Monte Carlo simulations is

specified in advance. The remaining conditions are satisfied by three types

of Monte Carlo moves: displacements of particles within each region (to

ensure internal equilibrium), exchange of volume between the two regions

(to ensure equality of pressures) and particle exchanges (to ensure equality of

the chemical potentials).

From this discussion and from Fig. 6.8 it is evident that the Gibbs

ensemble somehow interpolates between the NVT , NpT and �VT ensem-
bles discussed above; and it is applicable only when grand canonical simula-

tions (or semi-grand canonical ones, for the simulation of phase equilibrium

in a mixture) are also feasible, since the transfer of particles from one box to

the other one is an indispensable step of the procedure in order to maintain

the equality of the chemical potentials of the two boxes. Therefore, its appli-

cation is straightforward for fluid–fluid phase equilibria only and not for

phase equilibria involving solid phases (or for complex fluids, such as very

asymmetric polymer mixtures).

For a formal derivation of the acceptance rules of the moves shown in

Fig. 6.8, one proceeds similarly as in the derivation of rules for the NpT and

�VT ensembles. The total particle number N ¼ NI þNII and the total

volume V ¼ VI þ VII of the two boxes are kept constant, and hence we

apply the canonic partition function, cf. Eqns. (6.12) and (6.15)

ZNVT ¼
1

�3NN!

XN
NI¼0

N

NI

� 
 ðV
0

dVI V
NI

I ðV � VIÞðN�NIÞ
ð
ds1 . . . dsNI

e�UI=kBT

ð
dsNIþ1 . . .

ð
dsNe

�UII=kBT :

ð6:37Þ

UI is the total intermolecular interaction potential of the NI particles in VI,

and UII the corresponding quantitiy in VII. The probability density corre-

sponding to Eqn. (6.37) is

PðNI;VI;N;V ;TÞ / N!

NIðN �NIÞ!
exp

�
NI lnVI þ ðN �NIÞ lnðV � VIÞ

� UI

kBT
� UII

kBT

�
:

ð6:38Þ

From Eqn. (6.38), one obtains the transition probability for the various types

of moves as in Sections 6.1.1–3. For a displacement step in one of the regions,

the situation is exactly the same as in a standard NVT simulation. For a

volume exchange step, we have (cf. Eqn. (6.21))
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W ðVI!VIþ�V;VII!VII ��V Þ ¼ min

(
1; exp

	
��UI þ�UII

kBT

þNI ln
VI þ�V

VI

þ ðN �NIÞ ln
ðV � VI ��V Þ

V � VI


)
:

ð6:39Þ
The transition probability for particle exchanges (written here for a transfer

from region II to region I) is

W ðNI ! NI þ 1;NII ! NII � 1Þ ¼ min

(
1;

ðN �NIÞVI
ðNI þ 1ÞðV � VIÞ

exp ��VI þ�VII
kBT

	 
)
:

ð6:40Þ

Note that beforehand neither the vapor pressure at which phase coexistence

occurs nor the associated chemical potential need to be known starting from

suitable initial conditions (e.g. one box with density smaller than the gas

density at phase coexistence, the other box with a density higher than the

corresponding liquid density). The system will automatically develop towards

phase coexistence, but of course, the total density N=V must be chosen such
that the state point would fall inside of the two-phase coexistence region in

the thermodynamic limit.

One practical difficulty is that in a long simulation run it can happen (and

will inevitably happen close to criticality) that the box labeled by I will some-

times contain the gas phase and sometimes the liquid phase, and so one would

not obtain any meaningful results (refering to properties of a pure phase) by

simply taking running averages for the two boxes separately. Hence a safer

way to analyze the results is to record the density distribution function: as

long as it shows two clearly separated peaks, there is no difficulty in ascribing

to them the properties of the two coexisting phases. Unlike canonical simula-

tions of phase coexistence (Rovere et al., 1990), equilibrium is established

very quickly and the data are not affected so much by interfacial contribu-

tions. Near the critical point, however, the accuracy of the method deterio-

rates, finite size effects are less straightforward to analyze, since both volumes

and particle numbers of the individual boxes fluctuate. Given the current

status of our knowledge, the grand canonical method in conjunction with

finite size scaling yields clearly superior results (Wilding, 1997).

Nevertheless, the Gibbs ensemble method has a suitable place in our ‘bag

of tricks’; due to its relative simplicity of implementation and modest cpu

requirements it has been applied in numerous studies of simple fluids as well

as of ionic, associating and reacting fluids and even for simple models of

homopolymers (combining the technique with ‘configurational bias’ Monte
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Carlo methods, see e.g. Mooij et al. (1992)). We do not give further details

here, but draw the reader’s attention to the recent extensive reviews pre-

sented by Panagiotopoulos (1995) and Frenkel and Smit (1996).

Problem 6.6 Generalize Eqn. (6.40) to a multicomponent system (where
at phase coexistence the chemical potentials of all components should be
equal).

6.1.7 Widom particle insertionmethod and variants

The test particle insertion method (Widom, 1963) is a technique which can

be used to sample the chemical potential in a fluid. Remember that the

chemical potential is defined by

� ¼ ð@F=@NÞVT ¼ ð@G=@NÞpT : ð6:41Þ
Consider first the case of the NVT ensemble where F ¼ �kBT lnZðN;V ;
TÞ and the partition function ZðN;V ;TÞ is given by Eqn. (6.12). For N � 1
we can replace the partial derivative with respect to N by a difference,

� ¼ kBT lnfZðN þ 1;V ;TÞ=ZðN;V ;TÞg. Again using scaled coordinates
si (Eqn. (6.13)) and Eqn. (6.14) to split off the contribution of the ideal

gas, �idð�Þ ¼ �kBT lnfV=½�dðN þ 1Þ�g with � ¼ N=V , we find

� ¼ �idð�Þ þ �ex ð6:42Þ
where

�ex ¼� kBT

(ð1
0

ds1 . . .

ð1
0

ds
Nþ1 exp �

Uðs1; . . . ; sNþ1 ;LÞ
kBT

	 
�ð1
0

ds1 . . .

ð1
0

dsN

exp �Uðs1; . . . ; sN ;LÞ
kBT

	 
)
:

We now separate the potential energy U of the ðN þ 1Þ-particle system into
the energy of the N-particle system and the interaction energy �U of the

ðN þ 1Þth particle with the rest of the system, i.e.
Uðs1; . . . ; sNþ1;LÞ ¼ Uðs1; . . . ;SN ;LÞ þ�U : ð6:43Þ

We immediately realize that �ex then can be rewritten as

�ex ¼ �kBT ln
ð1
0

dsNþ1hexpð��U=kBTÞiN ; ð6:44Þ

where h. . .iN is a canonical ensemble average over the configuration space of
the N-particle system. This average now can be sampled by the conventional

Monte Carlo methods. In practice one proceeds as follows: one carries out a

standard NVT Monte Carlo simulation of the system of N particles (as

described in Section 6.1.1). Often one randomly generates additional coor-
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dinates sNþ1 of the test particle, uniformly distributed in the d-dimensional

unit cube in order to carry out the remaining integral in Eqn. (6.44). With

this value of sNþ1, one computes �U from Eqn. (6.43) and samples then

expð��U=kBTÞ.
Thus one computes the average of the Boltzmann factor associated with

the random insertion of an additional particle in an N-particle system, but

actually this insertion is never carried out, because then we would have

created an N þ 1-particle system, but we do need an N-particle system for

the averaging in Eqn. (6.44).

Care is necessary when applying this method to other ensembles. One can

show that (for details see e.g. Frenkel and Smit, 1996) in the NpT ensemble

Eqns. (6.42) and (6.44) are replaced by

� ¼ �idðpÞ þ �exðpÞ;
�idðpÞ ¼ �kBT lnðkBT=p�dÞ;

�exðpÞ ¼ �kBT ln
pV

ðN þ 1ÞkBT
ð1
0

dsNþ1 expð��U=kBTÞ
* +

: ð6:45Þ

Thus one uses the ideal gas reference state at the same pressure (rather than

at the same density as in Eqn. (6.42)) as the investigated system, and the

quantity that is sampled is V expð��U=kBTÞ rather than expð��U=kBTÞ.
An obvious extension of the particle insertion method is to binary mixtures

(A,B) where one often is interested only in chemical potential differences �A
��B rather than in individual chemical potentials �A; �B. Then trial moves
can be considered in which one attempts to transform a particle of species A

into one of species B (without ever accepting such a transformation, of

course).

While the Widom test particle method works well for moderately dense

fluids (such as near and below the critical density), it breaks down long before

the triple point density of a fluid is reached, simply because the probability

expð��U=kBTÞ that a random insertion is accepted becomes too small.
Even for hard spheres, the insertion probability is down to 4� 10�5 at a
packing fraction of 0.4, long before the freezing transition is reached.

Therefore, substantial effort has been devoted to devising schemes for biasing

the insertions (rather inserting them ‘blindly’) as well as implementing ‘gra-

dual insertions’. We refer to Allen (1996) for a recent review.

We conclude this section with a caveat: often the chemical potential is

computed in a desire to establish phase diagrams (remember that chemical

potentials of coexisting phases are equal). Then very good accuracy is needed,

and one must carefully pay attention to systematic errors both due to finite

size effects and due to the potential cutoff (if the potential is truncated, see

Section 6.2.1, one may approximately correct for this truncation by applying

so-called ‘tail corrections’, see Frenkel and Smit, (1996)).
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6.1.8 Monte Carlo Phase Switch

Another difficult problem of considerable interest is the freezing of a simple

fluid. The particular difficulties presented by the freezing transition stem

from the distinctive symmetries of the coexisting fluid ðFÞ and crystalline
solid ðCSÞ phases that give rise to kinetic problems because the crystal that
forms from the fluid is often replete with defects. These defects do not

normally anneal out on accessible simulation time-scales so the system may

become trapped in states from which it cannot escape. Thus, computational

studies of freezing have generally relied on indirect approaches, e.g. thermo-

dynamic integration. An innovative technique, known as Phase Switch Monte

Carlo (PSMC), which was originally developed for computing free energy

differences between distinct crystalline structures where interfacial states are

computationally problematic has been extended to permit the study of freez-

ing. The method (Wilding, 2001; Errington, 2004) samples the disjoint con-

figuration spaces of two coexisting phases within a single simulation using a

global coordinate transformation or ‘phase switch’ which directly maps one

pure phase onto the other. Biased sampling methods are employed to

enhance the probability of certain ‘gateway’ states in each phase from

which the switch can be successfully launched. The method permits direct

determination of equilibrium coexistence-point parameters and prescribes

statistical uncertainties transparently.

To illustrate the method we consider N hard spheres simulated within an

NpT ensemble with periodic boundary conditions. The configurational

weight of a phase may be written as

Z� N; pð Þ ¼
ð1
0

dVe�pVZ�ðN;V Þ ð6:46Þ

with (units are chosen such that kBT ¼ 1 throughout)

Z� N;Vð Þ ¼ 1

N!

YN
i¼1

ð
V ;�

d ~rri
� �

e�E ~rrf g ð6:47Þ

where V is the system volume, p the reduced pressure and � (CS-crystalline
solid or F-fluid) labels the phase. The hard sphere configurational energy is

E, and the factor of ðN!Þ�1 corrects for indistinguishability. The �-label
denotes some constraint that picks out configurations f~rrg that ‘belong’ to
phase �. In a MC simulation, this constraint is formulated as follows.
Denote some representative configuration ~RR�

1 . . .
~RR�
N ¼ f~RRg� as the reference

state of phase �. The constraint picks out those configurations which can be
reached from f~RRg� on a simulational time-scale which is presumed to be
sufficiently long to allow exploration of one phase, but still short compared

to spontaneous inter-phase traverses. Such a situation is realized if the freez-

ing transition is sufficiently strongly first order. The reference sites f~RRg� are
the origins of the particle coordinates defined via some arbitrary association

between the N particles and the N reference sites. The particle positions can

then be written as
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~uui ¼ ~rri � ~RRi ð6:48Þ
which serves to define the set of displacement vectors ~uui (independent of the
phase label �) linking each particle i to its associated reference site ~RRi. The

configurational energy is then

E� ~uu
� �� � � E ~RR� þ ~uu

n o� �
: ð6:49Þ

In the case of the F-phase all contributing configurations are reachable from

any one and so

ZF N;Vð Þ ¼ 1

N!

YN
i¼1

ð
V ; Rf gF

d ~uui
� �

e�E
F ~uuf g ð6:50Þ

where f~RRgF is an arbitrary fluid configuration which can be selected at ran-
dom in the course of MC exploration of the fluid phase.

For the CS phase, f~RRgCS can be chosen to be the sites of a FCC lattice. In
contrast to the F phase, the MC simulation does not sample the complete CS

configuration space which is composed of several mutually inaccessible frag-

ments corresponding essentially to the different permutations of particles

between lattice sites. In the absence of self-diffusion, Monte Carlo sampling

will visit only the states within the fragment in which it is initiated. By

symmetry each fragment should contribute equally to the configurational

weight, so the total weight of the CS phase is the product of the contribution

of one fragment times the number of fragments, i.e. the number of distinct

permutations of N distinguishable particles amongst N fixed lattice sites in a

periodic system. This number is not N! but ðN � 1Þ! since certain permuta-
tions are reachable from others via a global translation (permitted via the

boundary conditions) (Wilding, 2001). Thus,

ZCS N;Vð Þ ¼ 1
N

YN
i¼1

ð
V ; Rf gCS

d ~uui
� �

e�ECS ~uuf g ð6:51Þ

and the Gibbs Free energy difference is

�g ¼ gCSðN;PÞ � gFðN;PÞ ¼ 1
N
ln ZF ZCS

� Þ:� ð6:52Þ

The key to a Monte Carlo algorithm that visits both phases is the observation

that the system may be transformed between the CS and F reference states

simply by switching the representative vectors ~RRF
i $ ~RRCS

i for all i. Hence,

any CSðFÞ configuration that is close enough to the reference may be trans-
formed, and the phase switch can itself be implemented as a MC step, so that

the phase label � becomes a stochastic variable. However, the set of config-
urations for which the MC switch will be accepted will generally constitute

only a small fraction of the respective configuration spaces and multicanoni-

cally biased sampling (see Chapter 7) is needed to enhance the probabilities

with which these ‘gateway’ regions are visited. To that end an order para-

meter M can be defined that measures the overlap (between particle i and its
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neighbors) which would be created by a phase switch. The equilibrium states

of both phases are characterized by large M values. The ‘overlap’ term

contributes in both phases: swapping the f~RRg vectors will, in general, produce
a configuration of the ‘other’ phase in which spheres overlap. A ‘tether’ term

contributes only in the F-phase where particles may drift arbitrarily far from

the sites with which they are nominally associated; the tethers provide the

means to ‘pull’ the fluid towards the reference sites. The gateway states are

those for which M ¼ 0, i.e. for which a phase switch can be implemented
without incurring hard sphere overlaps.

Simulations in the resultant ensemble measure the joint probability dis-

tribution pðM;V ; �jN; p; f	gÞ and thus permit the unfolding of the bias due
to the weights to infer the true equilibrium distribution pðM;V ; �jN; pÞ. The
desired free energy difference between the two phases follows by integrating

over the contributions associated with each � to give the a priori probabilities
of the respective phases. (Of course, histogram reweighting techniques

described in Chapter 7 can be employed to determine the value at neighbor-

ing pressures, thereby permitting a very precise determination of the coex-

istence pressure.)

Before the simulation is performed, values must be assigned to the para-

meters appearing in the definition of the order parameter, and there is some

license in making this choice. Simulations were performed using systems of

N ¼ 256 particles using suitable weights obtained by iterative means. In
Fig. 6.9 we show a typical portion of the evolution of the preweighted

order parameter M as a function of MC time. For clarity of presentation,

states in the F phase are denoted by positive values of M, while negative

values correspond to CS phase states. Note that the range of M values

sampled in the CS phase is quite small because particles are localized near

their reference sites by the suppression of the global translation mode. By

contrast, much larger values of M are explored in the CS phase because the

particles can drift far from the reference site to which they are associated.

Nevertheless the whole range can be spanned relatively quickly by virtue of
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the highly efficient associations updates which permit large-scale changes in

tether lengths.

The density distribution pð�Þ was obtained from the measured distribution
pðM;V ; �jN; p; f	gÞ by marginalizing with respect to the volume V and

unfolding the effect of the weights. The results for the N ¼ 256 system
in the vicinity of the coexistence pressure are shown in Fig. 6.10. The

distributions are derived from histogram reweighting of simulation data

obtained at p ¼ 11:1. Coexistence, identified by the equality of the area
under each peak, occurs for p ¼ 11:23ð3Þ. With the use of this method, it
is possible to locate the solid-liquid transition in a system of hard spheres

with impressive accuracy. (Note: the finding that this transition actually

occurs was made in the 1950s and represented one of the first major new

discoveries made via computer simulations.) Current resolution is

competitive to the most extensive alternative approaches, e.g. thermo-

dynamic integration. Applications of Phase Switch Monte Carlo to transitions

between different crystalline phases also exist (Bruce et al., 1997; Jackson

et al., 2002).

6.1.9 Cluster algorithm for fluids

How to devise a general cluster flipping method for off-lattice systems, e.g.

fluids, was not immediately obvious. The first step was taken by Dress

and Krauth (1995) who used geometric operations to design a cluster

algorithm for hard spheres. They would take a configuration, choose a

pivot point randomly, rotate the entire system about that pivot, and super-
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impose the rotated configuration with the original one to produce a joint

system. Overlapping clusters in the joint system are identified. Then,

either the clusters with even numbers of particles or pairs of clusters with

an odd number of particles are flipped, i.e. those in the rotated configuration

replace those in the original configuration. (This choice is made so that

the total number of particles is conserved and the simulation is in the

canonical ensemble.) The resultant configuration will then, in general,

differ significantly from the original one because non-local moves have

been made.

Later, Liu and Luijten (2004) generalized this method in the following

way. They considered particles with ‘soft’ interactions that extend out to

some cutoff distance rc. A random pivot is chosen, and one randomly chosen

particle, at position ~rri, is moved via a point reflection with respect to the pivot
to position ~rr0i . Two classes of particles are then identified: those that interact
with particle i in its original position; and those that interact with it in its new

position. Particle i is always moved, and subsequent particles j are added to

the cluster with probability

pij ¼ max 1� e��ij=kBT ; 0
� � ð6:53Þ

where �ij ¼ V ðjr0i � rjjÞ � V ðjri � rjjÞ. This means that the probability of
adding particle j to the cluster depends only on the energy difference that

would result from a change in the relative position of particles i and j. If

particle j is added to the cluster, all of its interacting neighbors are considered

in an iterative fashion, just as in the original Wolff algorithm, until the cluster

stops growing. The positions of the particles in the cluster are accepted and a

new, random pivot is chosen to continue the process. The procedure is

shown, schematically, in Fig. 6.11. This method offers the potential for the

acceleration of simulations for models representing many different physical

systems and we expect it to be of great importance.

6.1 Fluids 221

a

2

4

1

3

5

6

b

2

4

1

3

5 2

3

1

6

c

4

5 2

3

1

6

Fig. 6.11 Two-dimensional illustration of the continuous space cluster algorithm. Light and dark objects represent the particle

before and after movement, respectively. The pivot is marked by the small dot at the center of the figure. Configurations are:

(a) the initial particle state; (b) state resulting from point reflection of particles #1-3; (c) final state. (From Liu and Luijten,

2004.)



6.2 ‘SHORT RANGE’ INTERACTIONS

6.2.1 Cutoffs

One significant advantage of a potential like Lennard-Jones is that it falls off

quite fast, and only those particles within a nearby environment have much

effect. As a consequence it is possible to limit, or ‘cut off’, the maximum

range of the interaction at a distance rc. This effectively introduces a step

function into the distance dependence, but the hope is that if the potential has

already decayed substantially, this effect will be small. (The situation is

perhaps less complex than for molecular dynamics for which this cutoff

can introduce a singularity in the force; there the potential is then often

‘shifted’ so that the force is quite small at rc.) The choice of cutoff radius

is somewhat arbitrary and depends upon the potential used. For Lennard-

Jones a convenient choice is often rc ¼ 2:5�. The use of a cutoff dramatically
reduces the number of near neighbors which must be included in the calcu-

lation of energy of the new trial state, but in order to take advantage of this

fact one must use an intelligent data structure. One simple, but very good

choice, is discussed in the next sub-section. In general one must balance the

desire to speed up the program by using a small cutoff with the concern that

the cutoff may change the physics!

6.2.2 Verlet tables and cell structure

A very simple method to reduce the amount of work needed to calculate

energy changes is to construct a table of neighbors for each particle which

contains only those neighbors which are closer than rc. This can be further

improved by making the following observation: as particles move due to the

acceptance of Monte Carlo moves they may leave the ‘interaction volume’ or

new particles may enter this region. The recalculation of the table following

each successful move may be avoided by keeping track of all particles within

some distance rmax > rc where (rmax � rcÞ ¼ n�max is large enough that no
particle can enter the ‘interaction volume’ in n Monte Carlo steps of max-

imum size �; the table is then only recalculated after every n steps. For very
large systems even this occasional recalculation can become very time con-

suming, so an additional step can be introduced to further limit the growth in

time requirement as the system size increases. The system can be divided into

a set of cells of size l which are small compared to the size of the simulation

box L but larger than the cutoff radius rc. The only interacting neighbors

must then be found within the same cell or the neighboring cells, so the

remainder of the simulation volume need not be searched.

6.2.3 Minimum image convention

Periodic boundary conditions may be easily implemented by simply attaching

copies of the system to each ‘wall’ of the simulation volume. An ‘image’ of
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each particle is then replicated in each of the fictitious volumes; only the

distance between the nearest neighbor, including one of the ‘images’ is used

in computing the interaction.

6.2.4 Mixed degrees of freedom reconsidered

Often one of the degrees of freedom in the semi-canonical ensemble is con-

tinuous. An example that we considered earlier was Si/Ge mixtures for

which the choice of atom was determined by a discrete (Ising) variable and

a continuous variable was used to determine the movement of the particles. In

this case a three-body interaction was included so that the table structure

became more complicated. Since the interactions of a ‘trimer’ needed to be

calculated, it was sometimes necessary to calculate the position of the neigh-

bor of a neighbor, i.e. both the nearest neighbor distance as well as the bond

angle. This effectively extends the range of the interaction potential substan-

tially. An instructive example of the combination of the positional and mag-

netic degrees of freedom is the study of the phase transition in a

ferromagnetic fluid. Nijmeijer and Weis (1995) studied a Heisenberg fluid

with magnetic interactions that decayed with distance out to 2.5� beyond
which a cut-off was imposed. Their Monte Carlo simulations used

Metropolis sampling for the positional degrees of freedom and the Wolf

cluster flipping/embedding trick for the magnetic degrees of freedom. A

finite size scaling analysis for systems as large as 2916 particles was employed

and critical behavior that was different from that of a lattice system was

observed.

6.3 TREATMENT OF LONG RANGE FORCES

Long range interactions represent a special challenge for simulation because

they cannot be truncated without producing drastic effects. In the following

we shall briefly describe several different methods which have been used to

study systems with long range interactions (Pollock and Glosli, 1996).

6.3.1 Reaction f|eld method

This approach is taken from the continuum theory of dielectrics and is

effective for the study of dipolar systems. We consider a system of N particles

each of which has a dipolar moment of magnitude �. The dipole–dipole
interaction between two dipoles i and j is given by

�dd ¼
li � lj

r3ij
� 3ðli � rijÞðlj � rijÞ

r5ij
; ð6:54Þ

and the total energy of a given dipole is determined by summing over all

other dipoles. An approximation to the sum may be made by carving out a

spherical cavity about the dipole, calculating the sum exactly within that
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cavity, and treating the remaining volume as a continuum dielectric. In the

spirit of dielectric theory, we can describe the volume within the cavity of

radius rc by a homogeneous polarization which in turn induces a ‘reaction

field’ ER

ERðiÞ ¼
2ð"� 1Þ
r3cð2"þ 1Þ

XN
i

li; ð6:55Þ

which acts on each dipole. The correct choice of the dielectric constant " is
still a matter of some debate. The total dipolar energy of a particle is thus

given by the sum of the ‘local’ part within the cavity and the ‘global’ part

which comes from the reaction field.

6.3.2 Ewaldmethod

The Ewald method is not new; in fact it has long been used to sum the

Coulomb energy in ionic crystals in order to calculate the Madelung constant.

The implementation to the simulation of a finite system is straightforward

with the single modification that one must first periodically replicate the

simulation volume to produce an ‘infinite’ array of image charges. Each

cell is identified by the integer n and the vector rn is the replication vector.

The electrostatic energy is calculated, however, only for those charges in the

original cell. The potential at charge qi is

�iðrÞ ¼
XN
j

X1
n¼ni

qj

jr� rj þ rnj
ni ¼ 0; j 6¼ i

ni ¼ 1; j ¼ i

�
ð6:56Þ

which excludes self-interaction. The trick is to add and subtract a Gaussian

charge distribution centered at each site rj and separate the potential into two

sums, one in real space and one in reciprocal space. The Coulomb potential

then becomes

�iðrÞ ¼ �ri ðrÞ þ �ki ðrÞ; ð6:57Þ
with

�ki ðrÞ ¼
X
m6¼0

W ðkmÞSðkmÞe2pkm�r � 2
ffiffiffi
2

p

r
qi
�

ð6:58Þ

where the second term corrects for the self-energy, and

W ðkmÞ ¼
1

pL3k2m
e�2p

2k2m�
2

; ð6:59aÞ

SðkmÞ ¼
XN
j

qje
�2pikm�rj : ð6:59bÞ

The width of the Gaussian distribution is �. By proper choice of � the sums
in both real space and reciprocal space in Eqn. (6.57) can be truncated.

Instead of replicating the simulation cell for computing the Ewald sum,

Caillot (1992) showed that it was possible to map the system onto the three-

dimensional surface of a four-dimensional hypersphere. Although the use of
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non-Euclidean geometry would seem to complicate the problem, program

coding is simple, and for system size of about 103 particles the increase in

performance is about a factor of 3.

6.3.3 Fast multipole method

The fast multipole method (Greengard and Rokhlin, 1987) plays a particu-

larly important role in calculating Coulomb interactions in large systems

because it exhibits OðNÞ scaling, where N is the number of particles. The
method relies on two expansions which converge for large distances and short

distances, respectively. The multipole expansion is

V ðrÞ ¼ 4p
Xlmax
l;m

Mlm

ð2l þ 1Þ
Ylmð�Þ
rlþ1

þ � � � ð6:60Þ

where YlmðrÞ is a spherical harmonic, the multipole moment is

Mlm ¼
XN
i

qir
l
i Y

�
lmð�iÞ ð6:61Þ

and the ‘local’ expansion is

V ðrÞ ¼ 4p
Xlmax
l;m

Llmr
lYlmð�Þ þ � � � ð6:62Þ

where the ‘local’ moment is

Llm ¼
X
l

qi
ð2l þ 1Þ

Y�
lmð�iÞ
rlþ1i

þ � � � : ð6:63Þ

The algorithm is implemented in the following way:

This procedure becomes increasingly efficient as the number of particles is

made larger.
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Fast multipole method

(1) Divide the system into sets of successively smaller sub-cells.

(2) Shift the origin of the multipole expansion and calculate the multi-

pole moments at all sub-cell levels starting from the lowest level.

(3) Shift the origin of the local expansion and calculate the local

expansion coefficients starting from the highest level.

(4) Evaluate the potential and fields for each particle using local

expansion coefficients for the smallest sub-cell containing the par-

ticle.

(5) Add the contributions from other charges in the same cell and

near neighbor cells by direct summation.



6.4 ADSORBED MONOLAYERS

6.4.1 Smooth substrates

The study of two-dimensional systems of adsorbed atoms has attracted great

attention because of the entire question of the nature of two-dimensional

melting. In the absence of a periodic substrate potential, the system is free

to form an ordered structure determined solely by the interparticle interac-

tions. As the temperature is raised this planar ‘solid’ is expected to melt, but

the nature of the transition is a matter of debate.

6.4.2 Periodic substrate potentials

Extensive experimental data now exist for adsorbed monolayers on various

crystalline substrates and there have been a number of different attempts

made to carry out simulations which would describe the experimental obser-

vations. These fall into two general categories: lattice gas models, and off-

lattice models with continuous, position dependent potentials. For certain

general features of the phase diagrams lattice gas models offer a simple and

exceedingly efficient simulations capability. This approach can describe the

general features of order–disorder transitions involving commensurate

phases. (For early reviews of such work see Binder and Landau, 1989;

Landau, 1991.) An extension of the lattice gas description for the ordering

of hydrogen on palladium (100) in the c(2� 2) structure has recently been
proposed by giving the adatoms translational degrees of freedom within a

lattice cell (Presber et al., 1998).

The situation is complicated if one wishes to consider orientational transi-

tions involving adsorbed molecules since continuous degrees of freedom must

be used to describe the angular variables. Both quadrupolar and octupolar

systems have been simulated. For a more complete description of the proper-

ties of adsorbed monolayers it is necessary to allow continuous movement of

particles in a periodic potential produced by the underlying substrate. One

simplification which is often used is to constrain the system to lie in a two-

dimensional plane so that the height of the adatoms above the substrate is

fixed. The problem is still difficult computationally since there may be strong

competition between ordering due to the adatom–adatom interaction and the

substrate potential and incommensurate phases may result. Molecular

dynamics has been used extensively for this class of problems but there

have been Monte Carlo studies as well. One of the ‘classic’ adsorbed mono-

layer systems is Kr on graphite. The substrate has hexagonal symmetry with

a lattice constant of 2.46 Å whereas the lattice constant of a compressed two-

dimensional krypton solid is 1.9 Å. The 1� 1 structure is thus highly unfa-
vorable and instead we find occupation of next-nearest neighbor graphite

hexagons leading to a (
ffiffiffi
3

p � ffiffiffi
3

p
) commensurate structure with lattice con-

stant 4.26 Å. This means, however, that the krypton structure must expand

relative to an isolated two-dimensional solid. Thus, there is competition
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between the length scales set by the Kr–Kr and Kr–graphite interactions. An

important question was thus whether or not this competition could lead to an

incommensurate phase at low temperatures. This is a situation in which

boundary conditions again become an important consideration. If periodic

boundary conditions are imposed, they will naturally tend to produce a

structure which is periodic with respect to the size of the simulation cell.

In this case a more profitable strategy is to use free edges to provide the

system with more freedom. The negative aspect of this choice is that finite

size effects become even more pronounced. This question has been studied

using a Hamiltonian

H ¼
X
i

V ðriÞ þ
1

2

X
i 6¼j

vLJðrijÞ; ð6:64Þ

where the substrate potential is given by

V ðriÞ ¼ VoðzeqÞ þ 2V1ðzeqÞfcosðb1 � riÞ þ cosðb2 � riÞ þ cos½ðb1 þ b2Þ � ri�g;
ð6:65Þ

where b1 and b2 are the reciprocal lattice vectors for the graphite basal plane,

and �LJ is the Lennard-Jones potential of Eqn. (6.4). The strength of the
corrugation potential is given by V1. The order parameter for the (

ffiffiffi
3

p � ffiffiffi
3

p
)

registered phase is

	 ¼ 1

3N

X
i

fcosðb1 � riÞ þ cosðb2 � riÞ þ cos½ðb1 þ b2Þ � ri�g: ð6:66Þ

A local order parameter can also be defined using the reciprocal lattice vectors

appropriate to each of the three possible sublattices. A canonical Monte Carlo

study (Houlrik et al., 1994) showed that there was a first order transition

between a low temperature incommensurate phase and a high temperature

commensurate (
ffiffiffi
3

p � ffiffiffi
3

p
) structure. Both the smearing of the transition and

the shift in the transition temperature decrease rapidly as the system size

increases. At higher temperature still the (
ffiffiffi
3

p � ffiffiffi
3

p
) ordered structure melts.

Similar potentials as that given in Eqn. (6.55) can also be used when the

substrate surface has square or rectangular symmetry as would be appropriate

for (100) and (110) faces of cubic crystals (Patrykiejew et al., 1995, 1998).

Interesting effects due to competition occur since the adsorbed layer prefers a

triangular structure for weak corrugation.

6.5 COMPLEX FLUIDS

By the term ‘complex fluids’ as opposed to ‘simple fluids’ one means systems

such as colloidal dispersions, surfactant solutions (microemulsions) and their

various microphase-separated structures (sponge phases, phases with lamellar

superstructure, solutions containing micelles or vesicles, etc.), polymer solu-

tions and melts, liquid crystalline systems with various types of order
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(nematic, smectic, cholesteric, etc.). Unlike simple atomic fluids (whose basic

constituents, the atoms, e.g. fluid Ar, have nothing but their positional degree

of freedom) and unlike diatomic molecules (such as N2, O2, etc.), whose basic

constituents have just positional and orientational degrees of freedom

(neglecting the high-frequency small amplitude molecular vibrations, these

molecules are just treated as two point particles kept at a rigidly fixed dis-

tance), these complex fluids typically have a large number of atomic consti-

tuents. Typically they contain several types of atoms and involve different

types of interactions, and sometimes they have a large number of internal

degrees of freedom. Typical examples are surfactant molecules such as fatty

acids that form monomolecular layers (so-called ‘Langmuir monolayers’, e.g.

Gaines (1996)) at the air–water interface (a related system known to the

reader from daily life is a thin soap film!) Typically, these surfactant mole-

cules exhibit self-assembly at an interface because of their structure, compris-

ing a hydrophilic head group and a hydrophobic tail (e.g. a short alkane chain,

cf. Fig. 6.12). Similar surfactant molecules have important practical applica-

tions as detergents, for oil recovery (when small oil droplets are dispersed in

water, surfactants are useful that gather at the oil–water interfaces), and also

the biological membranes that are the basis of all biological functions in the

living cell are formed from similar amphiphilic phospholipid molecules.

Simulation of such systems in full atomistic detail is a very difficult task,

since the single molecule is already a rather large object, with complicated

interactions which are often only rather incompletely known, and since a

common feature of these systems is a tendency to organize themselves in
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supramolecular structures on mesoscopic length scales, thermal equilibrium

is rather hard to obtain. Figure 6.12 indicates one possibility to simplify the

model by a kind of coarse-graining procedure: first of all, the water molecules

are not considered explicitly (simulation of water and water surfaces is a

difficult task itself, see Alejandre et al. (1995); note that there is not even a

consensus on a good effective potential for water that is ‘good’ under all

physical conditions, because of the tendency of water molecules to form

bridging hydrogen bonds). Thus, the air–water interface here is simply idea-

lized as a flat plane at z ¼ 0, and it is assumed that the interaction between
the hydrophilic head groups and the water substrate is so strong that the head

groups are also fixed at z ¼ 0; they are simply described as point-like par-
ticles which interact with a Lennard-Jones-type potential. Similar Lennard-

Jones-type potentials are also assumed to act between the effective mono-

mers. In addition, a bond angle potential V ð�Þ / ð1� cos �Þ is used.
Sometimes one even ignores the internal flexibility of these alkane chains

(at low temperatures V ð�Þ � T apart from the case � ¼ 0), and treats them
as rigid rods with a single orientational degree of freedom (or, more precisely,

two polar angles #, ’ specifying the orientation of the rod with respect to the
z-axis, see Scheringer et al. (1992)). While this rigid-rod model clearly is too

crude to exhibit much similarity with actual Langmuir monolayers, the model

shown in Fig. 6.12 can describe at least qualitatively some of the experimen-

tally observed phases of dense monolayers, such as the untilted structure and

phases where the head groups form a regular triangular lattice, while the tails

are uniformly tilted towards nearest or next-nearest neighbors, respectively

(Schmid et al., 1998). However, at present there exists no model yet that

could describe all the experimentally observed phases, that include solid

structures with herringbone-type ordering of the CH2-groups in the xy-

plane parallel to the water surface, for instance. However, only for these

simplified models has it been possible to study phase changes (applying

techniques such as finite size scaling, constant pressure simulations with

variable shape of the simulation box, etc.), see Haas et al. (1996) and

Schmid et al. (1998).

While these techniques are straightforwardly generalized from simple to

complex fluids, other techniques (such as grand canonical ensemble, Gibbs

ensemble, etc.) require special methods, because the particle insertion step for

a large surfactant molecule will be rejected in the overwhelming majority of

cases. Such special methods (like the ‘configurational bias’ method) will be

discussed later in this chapter.

The situation is similar, as far as the phase behavior of surfactants in bulk

solution (rather than at the air–water interface) is concerned. The classic

problem is micelle formation in dilute solution (Degiorgio and Corti,

1985). Suppose molecules as shown in Fig. 6.12 are dissolved in a good solvent

for alkanes (e.g. benzene or toluol, etc.) while the solvent is a bad solvent for

the head group. Then the solution behaves as ideal (i.e. a random, geome-

trically uncorrelated arrangement of the solute molecules) only at extreme

dilution, while for larger concentrations the surfactants cluster together into

6.5 Complex fluids 229



aggregates, such that the hydrophilic heads form the core of the aggregate,

while the tails form the ‘corona’ of this (star polymer-like) ‘micelle’. The

transition from the ideal ‘gas’ of individual surfactant molecules in solution to

a ‘gas’ of micelles occurs relatively sharply at the ‘cmc’ (critical micelle con-

centration), although this is not a thermodynamic phase transition. Questions

that one likes to answer by simulations concern the precise molecular struc-

ture of such micelles, the distribution of their sizes near the cmc, possible

transitions between different shapes (spherical vs. cylindrical shape), etc.

Again, there is a wide variety of different models that are used in correspond-

ing simulations: fully atomistic models (Karaborni and O’Connell, 1990) are

valuable for a description of the detailed structure of a given isolated micelle

of a priori chosen size, but cannot be used to study the micellar size distribu-

tion – there one needs a very large simulation box containing many micelles

(to avoid finite size effects) and a very fast simulation algorithm, because in

equilibrium many exchanges of surfactant molecules between the different

micelles must have occurred. Many different types of coarse-grained models

have been used; often it is more realistic to have the hydrophobic and hydro-

philic parts comparable in size (unlike the molecule shown in Fig. 6.12), and

then one may use symmetric or asymmetric dumbbells (two point-like par-

ticles with different Lennard-Jones potential are connected by a spring of

finite extensibility (see Rector et al., 1994)) or short flexible chains of type

A-A-B-B, where A stands for hydrophilic and B for hydrophobic (von

Gottberg et al., 1997; Viduna et al., 1998), etc. In addition, a model where

the hydrophilic part is a branched object has also been studied (Smit et al.,

1993). Here we cannot review this rapidly developing field, but we only try to

convey to the reader the flavor of the questions that one asks and the spirit of

the model-building that is both possible and necessary. Due to structure

formation on mesoscopic scales, and the large number of mesophases that

are possible both at interfaces and in the bulk, this field of ‘soft condensed

matter’ is rapidly growing and still incompletely explored. Since entropy is a

dominating factor regarding structure on mesoscopic scales, it is very difficult

to develop analytical theories, and hence simulation studies are expected to

play a very important rôle. We elaborate on this fact only for one particular

example of ‘complex fluids’, namely polymer solutions and melts, to be

described in the next section.

6.5.1 Application of the Liu-Luijten algorithm to a binary
fluid mixture

A simple fluid model that nonetheless shows slow relaxation is a binary fluid

mixture where the two kinds of particles are two different-sized spherical

particles. Liu and Luijten (2004) simulated a system with 150 large particles

and between 1200 and 506, 250 small particles with size ratio varying from

2 to 15. All interactions involving small particles are hard core, but the large

particles interact amongst themselves with a Yukawa repulsion
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U22ðrÞ ¼
þ1 r 
 �22

J exp½�
ðr � �22Þ�=ðr=�22Þ r > �22

�
ð6:67Þ

where �J ¼ 3:0 and the screening length 
�1 ¼ �11. The relative efficiency
as compared with Metropolis sampling is shown in Fig. 6.13. Beyond a size

ratio asymmetry � ¼ 7 it was not possible to equilibrate the system with the
Metropolis algorithm so no data can be shown for larger ratios; we can

however, anticipate that the characteristic time needed will continue to

increase rapidly. For the Liu-Luijten algorithm, however, the autocorrelation

time is continuing to increase relatively slowly with increasing ratios.

6.6 POLYMERS: AN INTRODUCTION

6.6.1 Length scales and models

Polymers represent an area where computer simulations are providing an

ever increasing amount of information about a complex and very important

class of physical systems. Before beginning a discussion of the simulation of

polymer models, we want to provide a brief background on the special

characteristics which are unique to polymers. For systems of small molecules,

such as simple fluids containing rare gas atoms, diatomic molecules or water

etc., it is possible to treat a small region of matter in full atomistic detail.

Since away from the critical point the pair correlation function often exhibits

no significant structure on a length scale of 10 Å, such systems may be

simulated using a box of linear dimensions 20 Å or thereabouts which con-

tains a few thousand atoms.

For macromolecules the situation is quite different, of course (Binder,

1995). Even a single, flexible, neutral polymer in dilute solution exhibits

structure on multiple length scales ranging from that of a single chemical
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bond (1 Å) to the ‘persistence length’ (�10 Å) to the coil radius (100 Å). Note
that the persistence length ðlpÞ describes the length scale over which correla-
tions between the angles formed by subsequent chemical bonds along the

‘backbone’ of the chain molecule have decayed. Assuming a ‘random walk’-

like structure is formed by N uncorrelated subunits of length lp, one con-

cludes that the end-to-end distance R of this ‘polymer’ should scale like R �
lp

ffiffiffiffi
N

p
(see Section 3.8). In fact, such a random walk-like structure occurs

only in rather special polymer solutions, namely at the so-called ‘theta tem-

perature, 
’ where the excluded volume repulsive interaction between the

segments of the chains is effectively canceled by an attractive interaction

mediated by the solvent (De Gennes, 1979). In ‘good solvents’, where the

excluded volume interactions dominate, the coils are ‘swollen’ and rather

non-trivial correlations in their structure develop. The radius then scales

with N according to a non-trivial exponent �, i.e. R / lpN
� with � � 0:588

in d ¼ 3 dimensions while � ¼ 3=4 in d ¼ 2 dimensions (De Gennes,
1979). We have already discussed these relations in the context of self-

avoiding walks on lattices in Chapter 3.

The above description applies to simple synthetic polymers such as poly-

ethylene (CH2)N or polystyrene (CH2CH(C6H5))N. Additional length scales

arise for liquid-crystalline polymers, for polymers carrying electrical charges

(polyelectrolytes carry charges of one sign only; polyampholytes carry

charges of both sign), branched polymers, etc. Such macromolecules are

not at all unimportant; a biopolymer such as DNA is an example of a rather

stiff polyelectrolyte, and for some biopolymers the understanding of structure

formation (‘protein folding’) is one of the ‘grand challenge problems’ of

modern science!

Nevertheless we shall consider neither polyelectrolytes nor branched poly-

mers further, since they pose special problems for simulations, and thus

computer simulation of these systems is much less well developed. For poly-

electrolytes the explicit treatment of the long range Coulomb interactions

among the charges is a problem for the large length scales that need to be

considered (Dünweg et al., 1995). For polymer networks (like rubbery mate-

rials) or other branched polymers (randomly branched chains near the gel

point, etc.) equilibration is a problem, and one may need special algorithms to

move the crosslink points of the network. Since the chemical structure of a

network is fixed one also needs to average over many equivalent configura-

tions (Kremer and Grest, 1995). We thus restrict ourselves to flexible neutral

polymers. Even then the treatment of full chemical detail is rather difficult,

and simplified, coarse-grained models are often the only acceptable choice.

We have already encountered the extreme case of coarse-grained models for

polymers in Chapter 3 of this book where we dealt with random walks and

self-avoiding walks on lattices. Of course, the precise choice of model in a

simulation dealing with polymers depends very much on the type of problem

that one wishes to clarify. Thus, if one wants to estimate precisely the expo-

nent � mentioned above or associated ‘correction to scaling’ exponents, the
self-avoiding walk on the lattice is indeed the most appropriate model (Sokal,
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1995), since these exponents are ‘universal’. On the other hand, if one wants

to elucidate where the anomalous anisotropic thermal expansion of crystalline

polyethylene comes from, full chemical detail must be kept in the model. In

the orthorhombic phase of solid polyethylene there is a contraction of the

lattice parameter c in the z-direction (Fig. 6.14c) while the lattice parameters

a; b in the x, y directions expand (Fig. 6.14a, b). These experimental trends
are qualitatively reproduced by the simulation but there is no quantitative

agreement. (i) The simulation is classical Monte Carlo sampling in the NpT

ensemble, and hence the temperature derivatives of lattice parameters

daðTÞ=dT etc. remain non-zero as T ! 0, while quantum mechanics requires

that daðTÞ=dT ! 0 as T ! 0, as is also borne out by the data T < 100K. (ii)
There are uncertainties about the accurate choice of the non-bonded inter-

actions, which typically are chosen of the Lennard-Jones form (suitably trun-

cated and shifted). Even for the chemically simplest polymer, polyethylene,

potentials for use in classical Monte Carlo or molecular dynamics work are not
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Fig. 6.14 Monte Carlo data for the temperature dependence of the lattice parameters for crystalline polyethylene together with

the experimental data of Davis et al. (1970) (labeled as [19]) and Dadobaev and Slutsker (1981) (labeled as [20]). Lines are

only guides to the eye. From Martonak et al. (1997).



perfectly known! As one can see from the simulation data in Fig. 6.14, even in

the case of polymer crystals there is a need to carefully watch out for finite size

effects.

While in a polymer crystal the chain structure is essentially linear, in melts

and solutions the chains are coils of random walk or self-avoiding walk type,

and their structure needs to be characterized. There are several important

quantities which can be used to characterize the behavior of polymer chains.

In addition to the mean-square end-to-end distance hR2i, the relative fluctua-
tion of hR2i,

�ðRÞ ¼ hR4i � hR2i2� �
=hR2i2; ð6:68Þ

and the mean-square gyration radius

hR2gi ¼
1

N

X
ðri � rjÞ2

�  
; ð6:69Þ

where ri is the position of the ith monomer, are all important quantities to

measure. Similarly the mean-square displacement of the center of mass of the

chain,

gðtÞ � ðrcmðtÞ � rcmð0ÞÞ2
�  ð6:70Þ

leads to an estimate of the self-diffusion constant of the chain from the

Einstein relation,

DN ¼ lim
t!1

gðtÞ
6t

: ð6:71Þ

In the simulation of crystalline polyethylene, in principle the problem of

large length scales is extremely severe, since the polymer is stretched out in

an ‘all-trans’ zig-zag type linear configuration (Fig. 6.15), i.e. R / N rather

than R / N�. This problem is overcome by neglecting the CH3-groups at the

chain ends completely and simply applying a periodic boundary condition in

the z-direction. As Fig. 6.14 shows, there are non-trivial finite size effects in

one of the other directions if the size of the simulation box is not large

enough. In addition, this artificial periodicity prevents a physically reasonable
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Fig. 6.15 Schematic model for polyethylene: Hydrogen atoms (H) are shown by small white circles,

the carbon atoms (C) by larger shaded circles which are connected by harmonic bonds (thick

straight lines) of lengths li . Segments are labeled consecutively by an index i (i ¼ 0 to Np � 1
where Np is the degree of polymerization). Three successive segments define a bond angle 
i , and

four successive segments define a torsional angle 	i . All the angles 	i ¼ 0 in the ‘all-trans’
configuration.



description of the melting transition at high temperature. Significant discre-

pancies are seen between the sets of experimental data included in Fig. 6.13;

however, since polyethylene single crystals do not occur in nature, and

lamellar arrangements separated by amorphous regions may occur in the

laboratory, measurements may suffer from unknown systematic errors. The

aim of the simulation is to realize an ideal sample of a material that cannot yet

be prepared in the laboratory! Technically, a simulation of crystalline poly-

ethylene is rather demanding (Martonak et al., 1996), since the potentials for

the lengths li of the covalent bonds and the angles �i between them are rather
stiff, and the scale for the barriers of the torsional potential (Fig. 6.16) is an

order of magnitude larger than temperatures of interest (� 103 K). Hence the
trial displacements (�x;�y;�z) of carbon atoms in the local Monte Carlo

moves have to be chosen extremely small, in order to ensure that the accep-

tance rate of these trial moves is not too low. The relaxation of the (much

weaker and slowly varying) non-bonded energy is then very slow. To over-

come such problems where the Hamiltonian contains terms with very differ-

ent energy scales, it is advisable to randomly mix different types of Monte

Carlo moves. In the present example, global displacements of chains by

amounts �xc;�yc;�zc were chosen, as well as rigid rotations around the

c-axis, in addition to the standard local moves. In this way a reasonable

convergence was achieved. If one is interested in the properties of molten

polyethylene at high temperatures (i.e. T  450K), a study of models that
include hydrogen atoms explicitly is only possible for rather small Np (Yoon

et al., 1993). An approach which allows the study of larger chains is to model

the system using the ‘united atom’ model where an entire CH2-monomer is

treated as an effective spherical entity. With such models it is still possible to

equilibrate polyethylene melts at T ¼ 500K and Np ¼ 100 (Paul et al.,

1995). Actually these studies of melts are carried out mostly using molecular

dynamics techniques rather than by Monte Carlo, simply because of the lack

of efficient Monte Carlo moves for these locally stiff chains. For the study of

isolated chains with realistic interactions, however, Monte Carlo techniques

are very efficient, and chains as long as Np ¼ 4096 can be simulated
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(Ryckaert, 1996). However, it is difficult to relate a simulation of such an

isolated chain in vacuum to a physically meaningful situation (Baschnagel et

al., 1992). We shall therefore not discuss such single chain simulations

further, although many sophisticated Monte Carlo techniques which have

already proven useful for lattice models (Sokal, 1995) are applicable to the

off-lattice case as well.

In polymer science, in addition to the explanation of material properties of

specific macromolecular substances by simulations, an important goal is the

clarification of qualitative questions such as whether polymer chains in a melt

‘reptate’ (Lodge et al., 1990). By ‘reptation’ (De Gennes, 1979) one means a

snake-like motion of polymer chains along their own contour, since the

‘entanglements’ with other chains create an effective ‘tube’ along the contour

that constrains the motions. Since this type of motion is a universal phenom-

enon, it can be studied by coarse-grained models of polymers (Fig. 6.17)

where one dispenses with much of the chemical detail such as the torsional

potential (Fig. 6.16). Rather one considers models where effective bonds are

formed by treating n � 3�5 successive covalent bonds along the backbone of
the chain in one effective subunit. While the chains are generally treated as

being completely flexible, i.e. the only potentials considered are bond length

potentials and non-bonded forces, a treatment of stiff chains by bond angle

potentials is straightforward (Haas et al., 1996). Such models are useful for

describing the alkane tails in monolayers of amphiphilic fatty acids at the air–

water interface (Haas et al., 1996). In the freely jointed chain (a) rigid links of

length l are jointed at beads (shown by dots) and may make arbitrary angles

with each other. The stochastic chain conformational changes, that on a

microscopic level come about by jumps between the minima of the torsional

potential (Fig. 6.16), are modeled by random rotations about the axis con-

necting the nearest neighbor beads along the chain, as indicated. A new bead

position i may be chosen by assigning an angle ’i, drawn randomly from the

interval ½��’;þ�’� with�’ 
 p: For the simulation of melts, freely joined
chains are often supplemented by a Lennard-Jones-type potential (Fig. 6.16)

between any pairs of beads (Baumgärtner and Binder, 1981). An alternative

model is the pearl-necklace model (b), where the beads are at the center of
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hard spheres of diameter h, which must not intersect each other. By varying

the ratio h=l one can to some extent control the persistence length of the
polymer chains. With this model studies of rather long chains have been

possible (Baumgärtner, 1984). The most popular model, however, is the

bead-spring model (c), which is used both for Monte Carlo simulations as

indicated (Milchev et al., 1993) and for molecular dynamics simulations

(Kremer and Grest, 1995). In both cases the non-bonded interactions are

modeled by Lennard-Jones potentials among the beads or by Morse poten-

tials, respectively. These coarse-grained off-lattice models exist in several

variants, and defining a model that is optimally suited for the desired applica-

tion is the first step of a successful Monte Carlo simulation in polymer

science.

Problem 6.7 Write a Monte Carlo algorithm that generates recursively
freely jointed chains containing N rigid links of length ‘, i.e. start from the
origin and build up a random walk step-by-step. For N ¼ 10, 20, 30, 40 and
50 generate a sample of n ¼ 10 000 configurations. Use these configurations
to calculate the mean-square end-to-end distance hR2i and the mean-square
gyration radius. Analyze the ratio hR2i=hR2gi as a function ofN.

Problem 6.8 Using the algorithmof Problem6.7 calculate the relative fluc-
tuation of hR2i, i.e. �ðRÞ, see Eqn. (6.68), as a function of N. How can you
interpret the result?

Problem 6.9 Use a configuration generated in Problem 6.7 as the initial
state for the algorithm shown in Fig. 6.17a, with �� ¼ p=4. (End bonds
may rotate freely by arbitrary angles to a new point on the surface of a
sphere of radius ‘ and center at the monomer adjacent to the end.)
Calculate the mean-square displacement of the center of mass of the chain.
Obtain the self-diffusion constant DN of the chain from the Einstein relation
(Eqn. 6.71). Choose the time unit such that each bead on average is chosen
randomly for a move once. Analyze the behavior DN vs.N on a log^log plot.

Problem6.10 UseaconfigurationofProblem6.7as a startingconfiguration
for the algorithm in Fig. 6.17a, butwith a Lennard-Jones interaction between
the beads with � ¼ l=2, " ¼ 3. Study the relaxation of the end-to-end dis-
tance. Analyze hR2i vs. N on a log^log plot and compare the result to the
self-avoidingwalk problem.

6.6.2 Asymmetric polymermixtures: a case study

Many aspects of Monte Carlo simulations of polymeric systems are in fact

rather similar to those of simulations of systems composed of atoms or small

molecules. This fact will become apparent from the case study treated in this

subsection, where we consider a mixture of two polymers (A, B) with dif-

ferent chain lengths, NA < NB. In other physical properties (shape and size
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of monomeric units, chain stiffness, etc.) the two types of chains are assumed

to be identical, but a choice of pairwise interaction parameters is made which

leads to unmixing:

"ABðrÞ ¼ "AAðrÞ ¼ "BBðrÞ ¼ 1; r < rmin; ð6:72Þ
"ABðrÞ ¼ �"AAðrÞ ¼ �"BBðrÞ ¼ T"; rmin 
 r 
 rmax; ð6:73Þ
"ABðrÞ ¼ "AAðrÞ ¼ "BBðrÞ ¼ 0; r > rmax: ð6:74Þ

If, in addition NA ¼ NB, there would be a symmetry in the problem with

respect to the interchange of A and B, and due to that symmetry phase

coexistence between unmixed A-rich and B-rich phases could only occur

at a chemical potential difference �� ¼ �A � �B ¼ 0 between the two spe-
cies. The critical value �c of the concentration � of species A, defined in
terms of the densities of monomers �A; �B as � ¼ �A=ð�A þ �BÞ; would thus
be simply �c ¼ 1=2 due to this symmetry A,B. In the case of chain length
asymmetry, however, this symmetry is destroyed, and then phase coexistence

between the A-rich and the B-rich phase occurs along a non-trivial curve

�� ¼ ��coexðTÞ in the plane of variables (temperature T, chemical potential
difference ��). Also �c now has a non-trivial value. Problems of this sort are
of interest in materials science, since polymer blends have many practical

applications. As a consequence we would very much like to understand to

what extent simple mean-field theories of this problem, such as the Flory–

Huggins theory (Binder, 1994), are reliable. These predict the critical point to

be at

�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA=NB

p
þ 1

� ��1
; ð2z"cÞ�1 ¼ 2 1=

ffiffiffiffiffiffiffi
NA

p
þ 1=

ffiffiffiffiffiffiffi
NB

p� ��2
;

ð6:75Þ
where z is the effective number of monomers within the interaction range

specified in Eqn. (6.73) and "c is the effective value of " (see Eqn. (6.73)) at
the critical point.

An actual study of this problem has been carried out by Müller and Binder

(1995) in the framework of the bond fluctuation lattice model of polymers

(see Section 4.7). We nevertheless describe this case study here, because the

problem of asymmetric mixtures is rather typical for the off-lattice simula-

tions of binary mixtures in general. For the bond fluctuation model,

rmin ¼ 2a, where a is the lattice spacing, and rmax ¼
ffiffiffi
6

p
a:

We now describe how such a simulation is carried out. The first step

consists in choosing an initial, well-equilibrated configuration of an athermal

(T !1) polymer melt, consisting purely of B-chains, at the chosen total
monomer density �m ¼ �A þ �B. This part of the simulation is a standard
problem for all kinds of polymer simulations of dense polymeric systems,

because if we would fill the available volume of the simulation box by putting

in simple random-walk type configurations of polymers, the excluded volume

interaction, Eqn. (6.72), would not be obeyed. If we put in the chains con-

secutively, growing them step by step as growing self-avoiding walk type
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configurations, we would create a bias with subtle correlations in their struc-

ture rather than creating the configurations typical for chains in dense melts

which do respect excluded volume interactions locally but behave like simple

random walks on large length scales, since then the excluded volume inter-

actions are effectively screened out. Thus, whatever procedure one chooses to

define the initial configuration, it needs to be carefully relaxed (e.g. by apply-

ing the ‘slithering snake’ algorithm or the ‘random hopping’ algorithm, cf.

Section 4.7 for lattice models of polymers and the previous subsection for off-

lattice models). In the case where large boxes containing many short polymers

is simulated, one may simply put them into the box until the memory of this

ordered initial configuration is completely lost. Of course, this particular

choice requires that the linear dimension L of the box exceeds the length

of the fully stretched polymer chain.

When dealing with problems of phase coexistence and unmixing criticality

of mixtures, it is advisable to work in the semi-grand canonical ensemble,

with temperature T and chemical potential difference �� being the inde-
pendent thermodynamic variables. This is exactly analogous to the problem

of phase coexistence and criticality in simple fluids, see Section 6.1 of the

present chapter, where we have also seen that the grand canonical ensemble is

preferable. However, while there it is straightforward to use Monte Carlo

moves where particles are inserted or deleted, the analogous move for a

mixture (an A-particle transforms into a B-particle, or vice versa) is straight-

forward to use only for the case of symmetric polymer mixtures (we can take

out an A-chain and replace it by a B-chain in the identical conformation:

essentially this identity switch is just a relabeling of the chain). Of course,

there is no problem in taking out a long B-chain and using part of the

emptied volume to insert a shorter A-chain, but the inverse move will hardly

ever be successful for a dense polymeric system, because of the excluded

volume interaction the acceptance probability for such chain insertions in

practice always is zero!

But this problem can be overcome in the special situation NB ¼ kNA,

when k is an integer (k ¼ 2; 3; 4; . . .), by considering the generalized semi-
grand canonical moves where a single B-chain is replaced by k A-chains, or

vice versa. In the net effect, one has to cut (or insert, respectively) k� 1
covalent bonds together with the relabeling step. While the cutting of bonds

of a B-chain is unique, the reverse step of bond insertion is non-unique, and

hence one must use carefully constructed weighting factors in the acceptance

probability of such moves to ensure that the detailed balance principle holds!

We shall not dwell on these weighting factors here further but rather

discuss how one can find the chemical potential difference ��coexðTÞ
where phase coexistence occurs, applying such an algorithm. This is done

exactly with the same ‘equal weight rule’ that we have discussed in Section

4.2 in the context of finite size effects at first order transitions: the distribu-

tion function PLð�Þ in the L� L� L box (with periodic boundary conditions

as usual) will exhibit a double-peak structure for �� near ��coexðTÞ, and at
��coexðTÞ the weights of the two peaks have to be equal. In practice, histo-
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gram reweighting techniques are needed (and for T far below Tc, even the

application of the ‘multicanonical’ method is advisable, see Chapter 5) in

order to sample PLð�Þ efficiently. Furthermore, several choices of L need
to be studied, in order to check for finite size effects. The analysis of finite

size effects is subtle particularly near the critical point, because there the ‘field

mixing’ problem (order parameter density and energy density are coupled for

asymmetric systems, see Section 4.2.3) comes into play, too.

Figure 6.18 shows typical results from the finite size scaling analysis

applied to this problem. For a given choice of NA; NB and the normalized

energy "=kBTÞ; we have to find ��coexðTÞ such that the second moment
hm2i of the order parameter m � ð�A � �critA Þ=ð�A þ �BÞ satisfies the finite
size scaling characteristic of first order transitions as long as T < Tc, namely

hm2i is a universal function of L3ð�����coexðTÞÞ, in d ¼ 3 dimensions
(Fig. 6.18a). Along the line�� ¼ ��coexðTÞ one can then apply the moment
analysis as usual, recording ratios such as hm2i=hjmji2 and 1� hm4i=3hm2i2
for different choices of L, in order to locate the critical temperature Tc from

the common size-independent intersection point (Fig. 6.18b). The consis-

tency of this Ising-model type finite size scaling description can be checked

for T ¼ Tc by analyzing the full order parameter distribution (Fig. 6.18c).

We see that the same type of finite size scaling at Tc as discussed in Chapter 4

is again encountered, the order parameter distribution PðmÞ scales as
PðmÞ ¼ L�=� ~PPðmL�=�Þ, where � ¼ 0:325, � ¼ 0:63 are the Ising model criti-
cal exponents of order parameter and correlation length, respectively, and the

scaling function ~PPð Þ is defined numerically from the ‘data collapse’ of PðmÞ
as obtained for the different linear dimensions L in the figure. Of course, this

data collapse is not perfect – there are various sources of error for a compli-

cated model like the present asymmetric polymer mixture. Neither

��coexðTÞ, nor Tc and �critA ð¼ 0:57 here, see Fig. 6.18c) are known without
error, there are statistical errors in the simulation data for PðmÞ and systema-
tic errors due to finite size scaling, etc., but the quality of this data collapse is

good enough to make this analysis credible and useful. For the example

chosen ðNA ¼ 40, NB ¼ 80Þ one expects from Eqn. (6.75) that �c � 0:586
and hence the finding �c ¼ �critA =ð�A þ �BÞ � 0:57 (Fig. 6.18c) deviates from
the prediction only slightly.

6.6.3 Applications: dynamics of polymermelts; thin
adsorbed polymeric f|lms

The reptation concept alluded to above is only effective if the chain length N

far exceeds the chain length Ne between ‘entanglements’. For short chains,

with N � Ne or less, entanglements are believed to be ineffective, and neigh-

boring chains only hinder the motion of a chain by providing ‘friction’ and

random forces acting on the bonds of the chain. In more mathematical terms,

this is the content of the ‘Rouse model’ (Rouse, 1953) of polymer dynamics,

where one considers the Langevin equation for a harmonic bead-spring chain

exposed to a heat bath. Now it is clear that random motions of beads as
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considered in Fig. 6.17c can be considered as discretized realizations of such

a stochastic dynamical process described by a Langevin equation. Monte

Carlo moves are thus suitable for the modeling of the slow Brownian motion

of polymer chains in melts, and since the non-bonded potentials can be

chosen such that they have the side effect that no chain intersections can

occur in the course of the random motions of the beads, all essential ingre-

dients of the reptation mechanism are included in the Monte Carlo algorithm.

As a consequence, various Monte Carlo studies of models shown in Fig. 6.17

have been made to attempt to clarify questions about reptation theory

(Baumgärtner, 1984). These simulations supplement molecular dynamics

studies (Kremer and Grest, 1990) and Monte Carlo work on lattice models,

e.g. Paul et al. (1991). One typical example is the crossover behavior in the

self-diffusion of chains. From Fig. 6.17c it is clear that random displacements

�r will lead to a mean-square displacement of the center of mass of a chain of

the order ð�r=NÞ2N / l2=N after N moves (the natural unit of time is such
that every monomer experiences an attempted displacement on average once,

and the mean-square distances between the old and new positions are of the

same order as the bond length square, l2). This shows that the self-diffusion

constant of the Rouse model, DRouse, should scale with chain length like

DRouse / 1=N. The characteristic relaxation time, !Rouse, can be found as
the time needed for a chain to diffuse its own sizes l

ffiffiffiffiffi
N

p
. Putting DRouse

!Rouse / ðl
ffiffiffiffiffi
N

p Þ2 and using DRouse / l2=N yields !Rouse / N2. This beha-

vior is indeed observed both in single chain simulations at the �-temperature
(Milchev et al., 1993) and for melts of very short chains (Baumgärtner and

Binder, 1981)

If we consider instead the motion of very long chains, we can argue that

this can be again described by a Rouse-like diffusion but constrained to take

place in a tube. During the Rouse time the chain has traveled a distance

proportional to l
ffiffiffiffiffi
N

p
along the axis of the tube. However, the axis of the tube

follows the random-walk-like contour of the chain, which hence has a length

proportional to lN rather than l
ffiffiffiffiffi
N

p
. A mean-square distance of order l2N2,

i.e. the full length of the contour, hence is only traveled at a time of order

!RouseN / N3. Hence the characteristic time !Rep for a chain to ‘creep out’ of
its tube scales like N3. On the other hand, the distance traveled in the

coordinate system of laboratory space (not along the tube contour!) is no

more than the chain radius, R � l
ffiffiffiffiffi
N

p
. Putting again a scaling relation

between diffusion constant DN and relaxation time, DN!Rep / ðl
ffiffiffiffiffi
N

p Þ2 we
conclude DN / N�2: In general, then, one expects that DN / N�1 for N �
Ne and DN / N�2 for N � Ne, with a smooth crossover for N � Ne.

Figure 6.19 shows that these expectations indeed are borne out by the

simulations. Rescaling D by DRouse and N by Ne (which can be estimated

independently by other means, such as an analysis of the mean-square

displacement of inner monomers) one finds that Monte Carlo data for

the bond fluctuation model (Paul et al., 1991) and molecular dynamics

data for the bead-spring model with purely repulsive Lennard-Jones inter-

action (Kremer and Grest, 1990) fall on a common curve. The bond
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fluctuation model is actually a lattice model, but unlike the self-avoiding

walk model of Chapter 3 where a bead is a lattice site and a bond connects

two nearest neighbor sites of the lattice, the discretization is rather fine: a

bead takes all 8 sites of the elementary cube of the lattice, an effective bond

has a length of �3 lattice spacings, and rather than 6 bond vectors con-
necting nearest neighbor sites on the simple cubic lattice one has 108 bond

vectors. The result is a rather close approximation to the properties of

continuum models. Although Monte Carlo methods certainly omit many

aspects of the dynamics of polymer melts – from bond length vibrations to

hydrodynamic flows – they can model the slow Brownian diffusive motion

of polymer chains rather well. This is indicated by the agreement with the

experimental data on polyethylene (Pearson et al., 1987). Note that there is

no inconsistency in the observation that the experimental value of Ne is

about three times as large as in the simulation: here the count is simply the

degree of polymerization, i.e. number of C–C bonds along the backbone of

the chain, while in the simulations each effective bond corresponds to n �
3�5 such C–C bonds.
As a final example, we briefly mention thin polymeric films adsorbed on

walls. While the adsorption of single chains at walls from dilute solution has

been studied for a long time, both in the framework of lattice (Eisenriegler et

al., 1982) and continuum models (Milchev and Binder, 1996), the study of

many-chain systems at surfaces in equilibrium with surrounding solution has

just begun. A particular advantage of the off-lattice models is that from the

virial theorem it is straightforward to obtain the components p��ðzÞ of the
local pressure tensor as a function of the distance z from the attractive wall

(Rao and Berne, 1979)
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Fig. 6.19 The self-
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	 of occupied sites,

squares are molecular

dynamics results of
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are experimental data

for polyethylene

(Pearson et al., 1987).

From Paul et al.

(1991).
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ð6:76Þ
where �ðzÞ is the local density, A is the surface area of the wall in the
simulated system, � is the step function, and U the total potential. This

pressure tensor, which generalizes the expression for the average pressure

given in Eqn. (6.9), provides a good criterion for judging whether the simu-

lation box is large enough that bulk behavior in the solution coexisting with

the adsorbed layer is actually reached, since in the bulk solution the pressure

tensor must be isotropic,

pxxðzÞ ¼ pyyðzÞ ¼ pzzðzÞ; ð6:77Þ
and independent of z. On the other hand, the anisotropy of the pressure

tensor near the wall can be used to obtain interfacial free energies (e.g. Smit,

1988). For a geometry where the wall at z ¼ 0 is attractive while the wall at
the opposite surface, z ¼ D, is purely repulsive, even two different interfacial

free energies can be estimated (Pandey et al., 1997; Nijmeijer et al., 1990)

�attI ¼
ðD=2

0

dz pzzðzÞ � ðpxxðzÞ þ pyyðzÞÞ=2� �ðzÞz d

dz
�attðzÞ

	 

; ð6:78Þ

�repI ¼
ðD

D=2

dz pzzðzÞ � ðpxxðzÞ þ pyyðzÞÞ=2� �ðzÞz d

dz
�repðzÞ

	 

; ð6:79Þ

if the thickness of the system is large enough such that in the center (near

z ¼ D=2) the pressure tensor is isotropic. Here �attðzÞ; �repðzÞ denote the
attractive and repulsive wall potentials.

Of course, understanding the dynamics of chains in these adsorbed layers

is a particular challenge (Milchev and Binder, 1996, 1997; Pandey et al.,

1997). Also, non-equilibrium phenomena such as ‘dewetting’ can be observed

(Milchev and Binder, 1997): if at time t ¼ 0 the strength of the adsorption
potential is strongly reduced, a densely adsorbed, very thin polymer film

becomes thermodynamically unstable, and it breaks up into small droplets

which slowly coarsen as time passes, similar to the coarsening observed in

intermediate and late stages of spinodal decomposition of mixtures (Fig.

6.20). While some features of such simulations are qualitatively similar to

those found in some experiments, one must consider the possibility that

effects due to hydrodynamic flow, which are not included in the Monte

Carlo ‘dynamics’, could be important.

Thus, for simulation of polymers it is particularly important for the reader

to consider quite carefully the question of which models and simulation

technique are most suitable for the investigation of a particular problem.

We have not attempted to give an exhaustive survey but hope that our

treatment provides a feeling for the considerations that need to be made.
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6.7 CONFIGURATIONAL BIAS AND ‘SMART
MONTE CARLO’

If the trial states generated in attempted Monte Carlo moves are chosen

completely ‘blindly’, without paying particular attention to the state the

system is in when the move is attempted, sometimes the acceptance of

such a move is very small. An example is the insertion of a rod-like molecule

in a nematic liquid crystal, where the molecules have some preferred orienta-

tion characterized by the nematic order parameter: if the molecule to be

inserted is randomly oriented, it is very likely that the repulsive interaction

with the other molecules would be too strong, and hence the trial move would

be rejected. Under these circumstances it is an obvious idea to choose an

‘orientational bias’. Of course, one has to be very careful that the algorithm

that is devised still satisfies detailed balance and provides a distribution with

Boltzmann weights in the sampling. In practice, this can be done by a suitable

modification of the transition probabilityW ðo! nÞ by which the move from
the old (o) to the new (n) configuration is accepted (see Frenkel and Smit

(1996) for an extensive discussion). Suppose now the a priori transition

probability (i.e. without consideration of the Boltzmann factor) depends on

the potential energy UðnÞ of the new configuration through a biasing func-
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Fig. 6.20 Snapshots of a system with 64 chains, each containing N ¼ 32 beads, in an L� L� D box with L ¼ 32, D ¼ 8.
There are periodic boundary conditions in x- and y-directions, while at z ¼ 0 and z ¼ D there are impenetrable hard walls; at

the bottom wall there is also an attractive square-well potential of strength " and range � ¼ 1=8. The chains are described by
a bead-spring model with a preferred bond length of 0.7. Note that the springs between the beads are not shown. From

Milchev and Binder (1997).



tion f ½UðnÞ�; Waprioriðn! oÞ ¼ f ½UðnÞ�: For the reverse move we would
have Waprioriðn! oÞ ¼ f ½UðoÞ�: Then the proper choice of transition prob-
ability is a modified Metropolis criterion

W ðo! nÞ ¼ min 1;
f ðUðnÞ�
f ½UðoÞ� exp �½UðnÞ �UðoÞ�=kBT

� �� �
: ð6:80Þ

This prescription is not only appropriate for the case of rigid molecules

where we choose a bias for the trial orientation of a molecule that is inserted,

but also holds for other cases too. For example, for flexible chain molecules

the insertion of a chain molecule in a multichain system, if it is done blindly,

very likely creates a configuration that is ‘forbidden’ because of the excluded

volume interaction. Thus one biases the configuration of the chain that is

inserted such that these unfavorable interactions are avoided. We emphasize

that the configurational bias Monte Carlo method is not only useful in the

off-lattice case, but similarly on lattices as well. In fact, for the lattice case

these methods were developed first (Siepmann and Frenkel, 1992). Here the

biased configuration of the chain that is inserted is stepwise grown by the

Rosenbluth scheme (Rosenbluth and Rosenbluth, 1955). There one ‘looks

ahead’ before a new bond is attached to the existing part of the chain, to see

for which directions of the new bond the excluded volume constraint would

be satisfied. Only from the subset of these ‘allowed’ bond directions is the

new bond direction then randomly chosen. As has been discussed in the

literature elsewhere (Kremer and Binder, 1988), we note that such biased

sampling methods have serious problems for very long chains, but for chains

of medium length (e.g. less than 100 steps on a lattice) the problem of

estimating the statistical errors resulting from such techniques is typically

under control. In this stepwise insertion of the polymer chain, one constructs

the Rosenbluth weightW ðnÞ of this chain – which is the analog of the biasing
function f mentioned above – according to the usual Rosenbluth scheme. In

order to be able to introduce the appropriate correction factorW ðnÞ=W ðoÞ in
the modified Metropolis criterion, one has to select one of the chains, that are

already in the system at random, and retrace it step by step from one end to

calculate its Rosenbluth weight. Of course, this type of algorithm can also be

extended to the off-lattice case. The configurational bias algorithm works

very well for polymer solutions but becomes less efficient as the monomer

density increases. For relatively dense polymer systems, an extension of the

configurational bias method termed ‘recoil growth’ (Consta et al., 1999) seems

rather promising. Alternative methods for dense polymer systems were

already treated in Section 4.7.

Still another type of biased sampling, that sometimes is useful, and can

even be applied to simple fluids, is force bias sampling (Ceperley et al., 1977;

Pangali et al., 1978): one does not choose the trial move of a chosen particle

completely blindly at random, but biases the trial move along the forces and

torques acting on the particles. One wishes to choose the transition prob-

abilityWij to move from state i to state j proportional to the Boltzmann factor

expðUj=kBTÞ: then detailed balance will be automatically satisfied. Assuming
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that states i and j are close by in phase space, differing only by center of mass

displacements Rmð jÞ � RmðiÞ of molecule m and by an angular displacement
:mð jÞ �:mðiÞ (in a formulation suitable for rigid molecules, such as water,
for instance). Then one can expand the energy of state j around the energy of

state i to first order, which yields

Wij ¼
WM

ij

ZðiÞ exp
"

kBT

�
FmðiÞ � ½Rmð jÞ � RmðiÞ� þNmðiÞ � ½:mð jÞ �:mðiÞ�

�� �
;

ð6:81Þ
where WM

ij is the usual Metropolis acceptance factor

minf1; exp½�ðUj �UiÞ=kBT �g, and FmðiÞ is the total force acting on mole-
cule m in state i, and NmðiÞ the corresponding torque. Here ZðiÞ is a normal-
ization factor and " is a parameter in the range 0 
 " 
 1: " ¼ 0 would be
the unbiased Metropolis algorithm, of course. Note that the displacements

have to be limited to fixed (small) domains around the initial values RmðiÞ and
:mðiÞ.
An alternative force bias scheme proposed by Rossky et al. (1978) was

inspired by the ‘Brownian dynamics’ algorithm (Ermak, 1975), where one

simulates a Langevin equation. For a point particle of mass m this Langevin

equation describes the balance of friction forces, deterministic and random

forces:

€rr ¼ �€rr þ ðFþ 	ðtÞÞ=m
where  is the friction coefficient, F ¼ �rU is the force due to the poten-
tial, and 	ðtÞ is a random force, which is linked to  in thermal equilibrium
by a fluctuation-dissipation relation. A simulation of this Langevin equation

could be done by discretizing the time derivatives _rr ¼ dr=dt as �r=�t to

find

�r ¼ ðD=kBTÞF�t þ�q; ð6:82Þ
where �r is the change of r in a time step �t, F is the force on the particle at

the beginning of the step, D is the diffusion constant of the particle in the

absence of interparticle interactions, and �q is the random displacement

corresponding to the random force. For a faithful description of the dynamics

that would follow from the Langevin equation, �t and �q would have to be

very small. However, if we are interested in static equilibrium properties

only, we can allow much larger �t, �q and use the corresponding new

state obtained from r 0 ¼ rþ�r as a trial move in a Metropolis Monte

Carlo sampling. This is the basic idea behind the algorithm proposed by

Rossky et al. (1978) and called ‘smart Monte Carlo’.

A very straightforward type of biased sampling is useful for dilute solu-

tions (Owicki and Scheraga, 1977): one does a preferential sampling of mole-

cules close to a solute molecule. In fact, this idea is similar to the preferential

selection of sites near external surfaces or internal interfaces which has

already been discussed for lattice models, e.g. in Section 5.7.1.
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There are many conditions where such biased Monte Carlo methods

produce equilibrium faster than do the standard Monte Carlo methods; but

often molecular dynamics (Chapter 12) is then even more efficient! Thus the

choice of ‘which algorithm and when’ remains a subtle problem.
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7 Reweighting methods

7.1 BACKGROUND

7.1.1 Distribution functions

One longstanding limitation on the resolution of Monte Carlo simulations

near phase transitions has been the need to perform many runs to precisely

characterize peaks in response functions such as the specific heat. Dramatic

improvements have become possible with the realization that entire distribu-

tions of properties, not just mean values, can be useful; in particular, they can

be used to predict the behavior of the system at a temperature other than that

at which the simulation was performed. There are several different ways in

which this may be done. The reweighting may be done after a simulation is

complete or it may become an integral part of the simulation process itself.

The fundamental basis for this approach is the realization that the properties

of the systems will be determined by a distribution function in an appropriate

ensemble. Thus, in the canonical ensemble, for example, the probability of

observing a particular state in a simple Ising ferromagnet with interaction

constant J at temperature T is proportional to the Boltzmann weight,

expð�KEÞ where we define K ¼ J=kBT as the dimensionless coupling.

The probability of simultaneously observing the system with total (dimen-

sionless) energy E ¼ �P
�i�j and total magnetization M ¼ P

�i is then

PKðE;MÞ ¼ W ðE;MÞ
ZðKÞ expð�KEÞ; ð7:1Þ

where W ðE;MÞ is the number of configurations (density of states) with

energy E and magnetization M, and ZðKÞ is the partition function of the

system. Thus, the density of states contains all the relevant information about

the systems and the effect of temperature can be straightforwardly included.

7.1.2 Umbrella sampling

In the following discussion we follow Frenkel and Smit (1996) by introducing

the ‘overlapping distribution method’ (Bennett, 1976) for the estimation of

the free energy difference �F between two systems, labeled 0 and 1, with

partition functions Z0 and Z1. At this point, we consider off-lattice systems

with N particles in a volume V at the same inverse temperature � (but
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differing in some other property, e.g. systems in different phases, or with

some parameter in the Hamiltonian being different). The free energy differ-

ence can then be written as (� � 1=kBT)

��F ¼ � lnðZ1=Z0Þ

¼ � ln

ð
drN exp½��U1ðrNÞ�

ð
drN exp½��U0ðrNÞ�

� �
;

� ð7:2Þ

where rN stands symbolically for the set of coordinates fr1; r2; . . . ; rNg of the

N particles, and U0, U1 are the potential energies of the two systems.

Suppose that a Monte Carlo sampling of the configuration space of system

1 is carried out. For every configuration ðrNÞ of system 1 generated in this

process the potential energy U0ðrNÞ of the system 0 can be computed, and

hence �U � U1ðrNÞ �U0ðrNÞ can be obtained for every configuration. We

use this information to generate a histogram that is proportional to the

probability density p1ð�UÞ that this energy difference �U is observed,

p1ð�UÞ ¼
ð
drN expð��U1Þ�ðU1 �U0 ��UÞ=Z1: ð7:3Þ

Substituting U1 ¼ U0 þ�U in the argument of the exponential function,

we find

p1ð�UÞ ¼ expð���UÞ
ð
drN expð��U0Þ�ðU1 �U0 ��UÞ=Z1;

¼ Z0

Z1

expð���UÞp0ð�UÞ; ð7:4Þ

where

p0ð�UÞ ¼
ð
drN expð��U0Þ�ðU1 �U0 ��UÞ=Z0 ð7:5Þ

is nothing but the probability density to find the same potential energy

difference �U between systems 1 and 0 in a Boltzmann sampling of the

configurations of system 0. Combining Eqns. (7.2) and (7.4) we readily obtain

ln p1ð�UÞ ¼ lnðZ0=Z1Þ � ��U þ ln p0ð�UÞ ¼ �ð�F ��UÞ þ ln p0ð�UÞ:
ð7:6Þ

Thus, if there is a range of values �U where both p1ð�UÞ and p0ð�UÞ can

be estimated from two separate simulations, one for system 0 and one for

system 1, one can try to obtain ��F from a fit of Eqn. (7.6) to the difference

between ln p0ð�UÞ and ½��U þ ln p1ð�UÞ�.
The sampling of the chemical potential �ex � �� �idðV Þ ð�idðV Þ being

the chemical potential of an ideal gas of N particles at temperature T in a

volume V ) can be understood readily in the following way (see the discussion

on particle insertion/removal techniques in Chapter 6). We simply assume

that system 1 has N interacting particles while system 0 contains N � 1

interacting particles and one non-interacting ideal gas particle. This yields

(Shing and Gubbins, 1983)

252 7 Reweighting methods



�ex ¼ ln p1ð�UÞ � ln p0ð�UÞ þ ��U : ð7:7Þ
Since Eqn. (7.6) can also be written as

p1ð�UÞ ¼ p0ð�UÞ exp½�ð�F ��UÞ�; ð7:8Þ
we conclude that, in principle, knowledge of either p1ð�UÞ or p0ð�UÞ
suffices to fix �F, since these probabilities are normalized, i.e.Ðþ1
�1 p1ð�UÞdð�UÞ ¼ 1,

Ðþ1
�1 p0ð�UÞ�U ¼ 1. Hence

1 ¼
ðþ1

�1
p0ð�UÞ exp½�ð�F ��UÞ�dð�UÞ ¼ expð��FÞhexpð���UÞi0:

ð7:9Þ
Thus, in principle ‘only’ the factor expð-��UÞ in the system 0 needs to be

sampled. However, this result already clearly reveals the pitfall of this

method: for the ‘typical’ configurations of system 0 the difference �U /
N and hence expð-��UÞ is very small, while larger contributions to this

average may come from regions of phase space where p0ð�UÞ is not so small.

As a result, the statistical accuracy of any estimate of �F based on Eqn. (7.9)

can be very poor.

Torrie and Valleau (1977) attempted to cure this problem by a scheme

called ‘umbrella sampling’. The basic idea is to improve the accuracy of the

estimation of the average in Eqn. (7.9) by modifying the Markov chain that is

constructed in the sampling in such a way that one samples both the part of

configuration space accessible to system 1 and the part accessible to system 0.

This is achieved by replacing the Boltzmann factor of the system by a (non-

negative) weight function �ðrNÞ. Using such a weight, and remembering that

�U � U1ðrNÞ �U0ðrNÞ, the desired average can be rewritten as

expð���FÞ ¼
ðþ1

�1
drN expð��U1Þ

� ðþ1

�1
drN expð��U0Þ

¼
ðþ1

�1
drN�ðrNÞ½expð��U1Þ=�ðrNÞ�

� ðþ1

�1
drN�ðrNÞ

½expð��U0Þ=�ðrNÞ�: ð7:10Þ
With the notation h. . .i� to denote an average over a probability distribution

�ðrN Þ one obtains

expð���FÞ ¼ hexpð��U1Þ=�i�=hexpð��U0Þ=�i�: ð7:11Þ
The distribution � must have an appreciable overlap with both the regions of

configuration space that are sampled by system 0 and by system 1, in order

that both the numerator and the denominator in Eqn. (7.11) are meaningful.

This ‘bridging’ property of � is alluded to in the name ‘umbrella sampling’.

Of course, a drawback of the method is that � is not known a priori; rather

one has to construct it using information about the Boltzmann weights of the
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two systems. It may also be advantageous not to bridge all the way from

system 0 to system 1 with a single overlapping distribution, but actually it

may be better to perform several ‘umbrella sampling’ runs in partially over-

lapping regions. This formulation of the method actually is closely related in

spirit to the ‘multicanonical sampling’, see Section 7.5.

Umbrella sampling has been used to determine absolute values of the free

energy in two-dimensional and three-dimensional Ising models by Mon

(1985). In two dimensions the nearest neighbor Ising ferromagnet was con-

sidered in two different situations: on a 2N � 2N square lattice with periodic

boundary conditions (and Hamiltonian H2N ), and with the lattice divided up

into four separate N �N square lattices, each with periodic boundaries (and

composite Hamiltonian HN .). The free energy difference is then

f2N � fN ¼
ln exp½��ðHN �H2NÞ�
� �

H2N

4N2
: ð7:12Þ

For three dimensions this difference can then be evaluated by umbrella

sampling by simulating a series of systems with Hamiltonian

H0 ¼ aH2N � bHN ; ð7:13Þ
where a and b vary from 0 to 1 with aþ b ¼ 1. The result in two dimensions

agrees quite well with the exact value and in three dimensions very precise

values were obtained for both simple cubic and body centered cubic models.

A very efficient implementation of umbrella sampling for gas-liquid sys-

tems or binary liquid mixtures, where errors resulting from this method can

be estimated precisely, has been introduced by Virnau and Müller (2004)

under the name of ‘Successive Umbrella Sampling’.

7.2 SINGLE HISTOGRAM METHOD: THE ISING
MODEL AS A CASE STUDY

The idea of using histograms to extract information from Monte Carlo simu-

lations is not new, but has only recently been applied with success to the

study of critical phenomena (Ferrenberg and Swendsen, 1988; Ferrenberg,

1991). Here we provide a brief description of the method and show some

characteristic analyses.

We first consider a Monte Carlo simulation performed at T ¼ To which

generates system configurations with a frequency proportional to the

Boltzmann weight, exp½�KoE�. Because the simulation generates config-

urations according to the equilibrium probability distribution, a histogram

HðE;MÞ of energy and magnetization values provides an estimate for the

equilibrium probability distribution; this estimate becomes exact in the limit

of an infinite-length run. For a real simulation, the histogram will suffer

from statistical errors, but HðE;MÞ=N, where N is the number of mea-

surements made, still provides an estimate for PKo
ðE;MÞ over the range of

E and M values generated during the simulation. Thus
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HðE;MÞ ¼ N

ZðKoÞ
~WW ðE;MÞe�KoE; ð7:14Þ

where ~WW ðE;MÞ is an estimate for the true density of states W ðE;MÞ:
Knowledge of the exact distribution at one value of K is thus sufficient to

determine it for any K. From the histogram HðE;MÞ; we can invert Eqn.

(7.13) to determine ~WW ðE;MÞ:
~WW ðE;MÞ ¼ ZðKoÞ

N
HðE;MÞeKoE: ð7:15Þ

If we now replace W ðE;MÞ in Eqn. (7.1) with the expression for ~WW ðE;MÞ
from Eqn. (7.15), and normalize the distribution, we find that the relationship

between the histogram measured at K ¼ Ko and the (estimated) probability

distribution for arbitrary K is

PKðE;MÞ ¼ HðE;MÞe�KEP
HðE;MÞe�KE

ð7:16Þ

with �K ¼ ðK0 � KÞ: From PKðE;MÞ; the average value of any function of

E and M, denoted f ðE;MÞ; can be calculated as a continuous function of K:

h f ðE;MÞiK ¼
X

f ðE;MÞPKðE;MÞ: ð7:17Þ
The ability to continuously vary K makes the histogram method ideal for

locating peaks, which occur at different locations, in different thermodynamic

derivatives, and provides the opportunity to study critical behavior with

unprecedented resolution.

As an example of the implementation of this method, we shall now discuss

results for the three-dimensional ferromagnetic Ising model. We remind the

reader that the Hamiltonian is

H ¼ �J
X
hi;ji

�i�j; ð7:18Þ

where the spins �i; �j take on the values �1 and the sum is over all nearest

neighbor pairs. As we saw in Chapter 4, in a finite system the phase transition

is rounded and shifted from its infinite lattice location (Eqn. (4.13)). If one

looks closely one sees that the difference between the true critical tempera-

ture and a ‘pseudocritical’ temperature of the finite system (estimated e.g.

from the specific heat maximum) is not simply given by a power of L but

rather includes correction terms as well. Obviously, great resolution is needed

if these correction terms are to be included properly. We use this Ising model

as an example to demonstrate the manner in which an accurate analysis can be

carried out.

A detailed Monte Carlo study was made for L� L� L simple cubic

lattices with fully periodic boundary conditions (Ferrenberg and Landau,

1991). Most of the simulations were performed at Ko ¼ 0:221 654, an earlier

estimate for the critical coupling Kc obtained by a Monte Carlo renormaliza-

tion group (MCRG) analysis (Pawley et al., 1984) of the kind which will be

described in Chapter 9. Data were obtained for lattices with 8 � L � 96, and
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between 3 � 106 and 1:2 � 107 MCS and measurements were made at inter-

vals of either 5 or 10 MCS after up to 105 MCS were discarded for equili-

brium. (For the largest lattice, the total run length was more than 5000 times

the relevant correlation time 	 (Wansleben and Landau, 1991), with 	 deter-

mined as described in Chapter 4.) Error estimates were obtained by dividing

the data from each simulation into a set of between 5 and 11 statistical

samples (bins) and considering the distribution of values obtained from

each bin. Because each histogram is used to determine multiple quantities,

some correlations are expected between the different results; however, these

were found to be smaller than the statistical errors, and the individual errors

could thus be treated as uncorrelated. An analysis was performed for bins of

different sizes choosing the final bin sizes so that systematic errors were

negligible compared to the statistical error.

Sufficiently far from Ko the histogram method yielded values which are

obviously wrong, because in the range of E that is then required the histo-

gram has so few entries that the method has broken down. As K is varied, the

peak in the reweighted distribution moves away from that of the measured

histogram and into the ‘‘wings’’ where the statistical uncertainty is high, thus

leading to unreliable results. This is because of the finite range of E and M

generated in a simulation of finite length as well as the finite precision of the

individual histogram entries. This problem is demonstrated in Fig. 7.1 which

shows the normalized (total) energy histogram for the L ¼ 16 lattice mea-

sured at Ko ¼ 0:221 654 along with the probability distributions for two

additional couplings (K ¼ 0:224 and K ¼ 0:228) calculated by reweighting

this histogram. The calculated distribution for K ¼ 0:224 is fairly smooth,

although the right side of the distribution, which occurs closer to the peak of

the measured histogram, is clearly smoother than the left side. The ‘thicken-

ing’ of the distribution on the side in the tail of the measured histogram is an

indication that the statistical errors are becoming amplified and that the

extrapolation is close to its limit of reliability. The distribution calculated
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Fig. 7.1 Probability

distribution of the

dimensionless energy

E for L ¼ 16. The

data from the

simulation were

obtained at

Ko ¼ 0:221 654; the

other distributions

come from

reweighting as

described in the text.

From Ferrenberg and

Landau (1991).



for K ¼ 0:228 is clearly unreliable. This limitation in �K must always be

kept in mind, particularly for large systems, because the reliable range of K

values decreases as the system size increases!

In the critical region a simple histogram covers a finite fraction of the

required region in finite size scaling irrespective of size. By performing a

small number of additional simulations at different values of K we can guar-

antee that the results obtained from the single-histogram equation do not

suffer from systematic errors. These were done for L ¼ 32 at Ko ¼ 0:2215,
and the location and value of the peaks in the thermodynamic derivatives

were determined. Simulations were also performed using two different sets of

the random number generator ‘magic numbers’. Within the observed statis-

tical errors, no systematic deviations are present. A further test for systematic

errors is to use the histogram measured at Ko ¼ 0:221 654 to predict the

behavior of the system at K ¼ 0:2215 and then compare the results with

those obtained directly from the simulation performed at Ko ¼ 0:2215. The

reweighted results agreed, within the calculated error, with the directly mea-

sured results for all quantities except the specific heat (which also agreed to

within 2�):

As described previously (Chapter 4), the critical exponent 
 can be esti-

mated without any consideration of the critical coupling Kc. For sufficiently

large systems it should be possible to ignore the correction term so that linear

fits of the logarithm of the derivatives as a function of lnL provide estimates

for 1=
. In fact, Lmin ¼ 24 was the smallest value that could be used except in

the case of the derivative of the magnetization cumulant where linear fits are

still satisfactory for Lmin ¼ 12. Combining all three estimates, the analysis

yielded 1=
 ¼ 1:594ð4Þ or 
 ¼ 0:627ð2Þ: By adding a correction term, data

from smaller systems can be included. Fits were made of the derivatives to

Eqn. (4.12) by fixing the values of 
 and w, determining the values of a and b

which minimize the �2 of the fit and then repeating the procedure for

different values of 
 and w. The errors are correlated and the minimum in

�2 is quite shallow. Scans over a region of ð
;wÞ space for the different

quantities revealed the global minimum where 
 ¼ 0:6289ð8Þ:
Once there is an accurate value for 
, Kc can be estimated quite accurately.

As discussed in Chapter 4, the locations of the maxima of various thermo-

dynamic derivatives provide estimates for effective transition couplings KcðLÞ
which scale with system size like Eqn. (4.13). These estimates for KcðLÞ are

plotted as a function of L for L < 96 in Fig. 7.2. The solid lines are second

order polynomial fits to the data and are drawn to guide the eye. The specific

heat peaks (open circles in Fig. 7.2), which occur further from the simulated

temperature than any other quantity considered here, fall just outside the

range of validity of the histogram analysis, especially for L ¼ 96: This sys-

tematic underestimation of the error, particularly pronounced for L ¼ 96,

can be compensated for by either increasing the error values, or by removing

the L = 96 result. In either case, the estimate for Kc is in agreement with that

from the other quantities but the error bar is much larger. The result for the

derivative of m on the L ¼ 96 system is just at the limit of reliability for the
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histogram analysis. There is noticeable curvature in the lines in Fig. 7.2

indicating that corrections to scaling are important for the smaller systems.

If only the results for L � 24 are analyzed, linear fits to Eqn. (4.12), with no

correction terms are obtained; i.e. for sufficiently large L, Kc should extra-

polate linearly with L�1=
 to Kc. Figure 7.2 shows noticeable curvature for

small system sizes so corrections must be included; these produce estimates

for w and K for each of the quantities which yield a value Kc ¼ 0:221 659 5

ð26Þ: The values of the correction exponent are again consistent with w ¼ 1

except for the finite-lattice susceptibility (which has the smallest correction

term). Fits performed by allowing both w and 
 to vary yield consistent

estimates for 
 and Kc but with larger errors due to the reduced number

of degrees of freedom of the fit.

The finite size scaling analysis was repeated using corrections to scaling

and the theoretically predicted forms with w ¼ 1 and the re-analysis of all

thermodynamic derivatives yielded 
 ¼ 0:6294ð2Þ: While the statistical error

in these values was small, the �2 of the fit, as a function of 1=
, has a broad

shallow minimum so that the actual statistical error, calculated by performing

a true non-linear fit would be larger. Unfortunately, neither the resolution

nor the number of different lattice sizes allows such a fit. With this value of 
,
Kc was estimated as Kc ¼ 0:221 657 4ð18Þ which is in excellent agreement

with the previous estimate.

Finite size scaling can also be used to estimate other exponents from

bulk properties at Kc. The value of 
 which was obtained from the derivative

of the magnetization cumulant and the logarithmic derivatives of m and m2

at Kc is identical to that obtained by scaling the maximum value of the

derivatives. The scaling behavior of m at Kc yields �=
 ¼ 0:518ð7Þ. (The

linear fit for L > 24 yields �=
 ¼ 0:505.) Combining this value for �=

with the estimate for 
, we obtain � ¼ 0:3258ð44Þ which agrees with the "-
expansion result 0:3270ð15Þ: Estimates for �=
 could be extracted from the

scaling behavior of the finite-lattice susceptibility yielding �=
 = 1:9828ð57Þ
or � ¼1:2470ð39Þ or from the true susceptibility at Kc which gave
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�=
 ¼ 1:970ð11Þ or � ¼ 1:2390ð71Þ; in excellent agreement with the "-
expansion value of 1:2390ð25Þ:

In Fig. 7.3 we show the results of this Monte Carlo study as well as other

high-resolution simultaneous estimates for 
 and Kc. The boxes present the

quoted error bars in both Kc and 
 assuming independent errors. To the best

of our knowledge, all error estimates represent 1 standard deviation. The

results from the Monte Carlo study are represented by the filled box and

agree well with some MCRG results (Blöte et al., 1989; Pawley et al., 1984),

but are outside the error bars of Baillie et al. (1992), which in turn have only

tenuous overlap with the other MCRG values. The value for 
 is also con-

sistent with the "-expansion result (LeGuillou and Zinn-Justin, 1980) and

some of the series expansion results (Nickel and Rehr, 1990; Adler, 1983) but

disagrees with others (Liu and Fisher, 1989) which also disagree with the

other series values. Transfer matrix Monte Carlo results (Nightingale and

Blöte, 1988) yield 
 = 0.631 with errors of either 0.006 or 0.002 depending on

the range of sizes considered in the analysis and a numerical lower bound

(Novotny, 1991), 
 = 0.6302 falls within 2� of the result. Other estimates for
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Fig. 7.3 High resolution estimates for Kc and 
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estimates including errors bars; horizontal and vertical lines show the range of independent

estimates for only one parameter): series expansions (Adler, 1983; Liu and Fisher, 1989; Nickel and
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Guillou and Zinn-Justin, 1980), Monte Carlo (Livet, 1991; Bloete and Kamieniarz, 1993). The

highest resolution studies, combining Monte Carlo with finite size scaling, are shown by the solid

box (Ferrenberg and Landau, 1991) and the cross-hatched box (Bloete et al., 1995). The

Rosengren conjecture (Rosengren, 1986) is shown by the vertical arrow.



Kc (Blöte et al., 1995; Livet, 1991), obtained by assuming fixed values for 
,
also lie outside these error bars. The estimate for Kc derived from the max-

imum slope of m differs substantially from that obtained from the other

quantities, although it does agree within 2 standard deviations. If we remove

it from the analysis, this estimate for Kc drops to 0.221 657 6(22) which is in

even better agreement with the other values presented above. Clearly the

question of precise error bar determination remains for all of these numerical

methods.

In another high resolution study (Blöte et al., 1995) high statistics runs

were made on many, smaller systems and the finite size scaling behavior was

carefully examined. Corrections were found beyond those caused by the

leading irrelevant scaling field, and with the inclusion of correction exponents

from renormalization group theory the critical point was estimated to be at

Kc ¼ 0:221 654 6ð10Þ:
Why do we expend so much effort to locate Kc ? In addition to testing the

limits of the method, one can also test the validity of a conjectured closed

form for Kc (Rosengren, 1986) obtained by attempting to generalize the com-

binatorial solution of the two-dimensional Ising model to three dimensions:

tanhKc ¼ ð
ffiffiffi
5

p
� 2Þ cosðp=8Þ: ð7:20Þ

This relation gives Kc ¼ 0:221 658 63 which agrees rather well with current

best estimates. However, Fisher (Fisher, 1995) argued quite convincingly

that this conjecture is not unique and most probably not valid.

The combination of high-statistics MC simulations of large systems, care-

ful selection of measured quantities and use of histogram techniques yields

results at least as good as those obtained by any other method. All of the

analysis techniques used here are applicable if yet higher quality data are

obtained and should help define the corrections to scaling. (These same

techniques have also been used to provide very high resolution results for

a continuous spin model, the three-dimensional classical Heisenberg model

(Chen et al., 1993). The size of the error bars on current estimates for Kc

indicate that even higher resolution will be required in order to unambigu-

ously test the correctness of the conjectured ‘exact’ value for Kc. Further

improvement will require substantially better data for some of the larger

lattice sizes already considered and very high quality data for substantially

larger lattices. In addition, since different thermodynamic derivatives have

peaks at different temperatures, multiple simulations are indeed needed for

each lattice size for the optimal extrapolation of effective critical temperatures

to the thermodynamic limit for more than one quantity. Such calculations

will be quite demanding of computer memory as well as cpu time and are

thus not trivial in scope.

In a recent review, Pelissetto and Vicari (2002) have compiled an extensive

list of the best numerical results available for the Ising and O(N) models. The

comparison of values for both critical temperatures and critical exponents by

Monte Carlo, series expansions and field theory place the current status of

both the methods and our knowledge in perspective. Drawing together
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estimates for critical exponents for different models believed to be in the same

universality class and studied by a variety of different methods, one can now

generally draw a rather good consensus. For specific, individual models the

agreement is less robust and the effects of small, but residual, systematic

errors are still problematic. Further recent discussions of the status of critical

exponents, and how they can be determined, can be found in reviews by

Zinn-Justin (2001) and Binder and Luijten (2001).

Problem 7.1 Consider an Ising square lattice with nearest neighbor ferro-
magnetic interactions. Carry out a simple, random sampling Monte Carlo
simulation of an 8 � 8 lattice with p.b.c. at T ¼ 1 and construct a histogram
of the resultant energy values. Use this histogram to calculate the specific
heat at finite temperature and compare your estimates with data from direct
importance sampling Monte Carlo simulation. Estimate the location of the
‘effective transition temperature’ from the histogram calculation. Then,
simulate the system at this temperature, construct a new histogram, and
recalculate the specific heat. Compare these new results with those obtained
by direct importance sampling Monte Carlo simulation. Estimate the tem-
perature at which you would have to simulate the system to get excellent
results near the ‘effective phase transition’ using the histogram method.

7.3 MULTI-HISTOGRAM METHOD

If data are taken at more than one value of the varying ‘field’, the resultant

histograms may be combined so as to take advantage of the regions where

each provides the best estimate for the density of states. The way in which

this can be done most efficiently was studied by Ferrenberg and Swendsen

(1989). Their approach relies on first determining the characteristic relaxation

time 	j for the jth simulation and using this to produce a weighting factor

gj ¼ 1 þ 2	j. The overall probability distribution at coupling K obtained

from n independent simulations, each with Nj configurations, is then given

by

PKðEÞ ¼

Xn

j¼1

g�1
j HjðEÞ

" #
eKE

Xn

j¼1

Njg
�1
j eKjE�fj

; ð7:21Þ

where HjðEÞ is the histogram for the jth simulations and the factors fj are

chosen self-consistently using Eqn. (7.21) and

e fj ¼
X
E

PKj
ðEÞ: ð7:22Þ
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Thermodynamic properties are determined, as before, using this probability

distribution, but now the results should be valid over a much wider range of

temperature than for any single histogram.

7.4 BROAD HISTOGRAM METHOD

The simulation methods which are generally used to produce the histograms

for the methods outlined above tend to yield histograms which become

increasingly narrower as the lattice size increases; as we saw in Section 7.2.

This can lead to such a narrow range over which the reweighting is valid that

the applicability of the method is seriously limited. The broad histogram

method (de Oliveira et al., 1996) is an attempt to produce histograms

which cover a greater range in energy space and which remain useful for

quite large systems. The broad histogram Monte Carlo (BHMC) method

produces a histogram which spans a wide energy range and differs from

other methods in that the Markov process for the method is based upon a

random walk dynamics. Although the original implementation of this method

appears to have been flawed, a modified version has proven to be quite

effective for the treatment of Potts glasses (Reuhl, 1997). There has been

extensive discussion of whether or not the method, in its various forms,

completely obeys detailed balance. Thus, until the broad histogram method

is examined more intensively it is premature to say if it will be viewed as an

interesting case study in statistical sampling methods or a truly useful

research tool.

7.5 TRANSITION MATRIX MONTE CARLO

A method with a similar perspective, but a different implementation, to the

broad histogram method is known as ‘transition matrix Monte Carlo’ (Wang

et al., 1999). The method determines a transition matrix, W ðEjE 0Þ, that gives

the time rate of change between states with energies E and E 0. For a given

configuration f�g one considers the number Nð�;�EÞ of cases that the

energy can change by an amount �E for all possible spin flips. Then for

non-zero �E,

W ðEþ�EjEÞ ¼ wð�EÞhNð�;�EÞiE; ð7:23Þ
where the average is over all configurations having energy E, and wð�EÞ is

some spin flip rate, e.g. the Glauber rate, that is used in a simulation to

determine the elements of the transition matrix. Note that the kinetics of

the transition matrix method differs from that of the ‘traditional’ single spin

flip approaches, but the method obeys detailed balance which, in turn, places

strong constraints on the matrix elements. Once the transition matrix is

determined it can be used to estimate canonical probabilities.
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7.6 MULTICANONICAL SAMPLING

7.6.1 The multicanonical approach and its relationship to
canonical sampling

In some cases the probability distribution for the states of the system will

contain multiple maxima which are widely spaced in configuration space.

(Examples include systems near first order phase transitions and spin glasses.)

Standard methods may ‘flow’ towards one of the maxima where they may be

easily ‘trapped’. Transitions between maxima may occur but, as long as they

are infrequent, both the relative weights of the multiple maxima as well as the

probability distribution between maxima will be ill determined. One effective

approach to such circumstances is to modify the traditional single spin-flip

probability to enhance the probability that those ‘unlikely’ states between the

maxima occur. This is not always easy to do and often multiple ‘trial runs’

must first be made in order to determine what is the best probability to use.

This method reformulates the problem in terms of an effective

Hamiltonian:

Heff ð�Þ ¼ Heff ð�Hð�ÞÞ: ð7:24Þ
The probability distribution for the energy can then be written as

PðEÞ ¼ expðSðEÞ � Heff ÞX
E

expðSðEÞ � Heff Þ
: ð7:25Þ

In the multicanonical algorithm (Berg and Neuhaus, 1991, 1992) the desired

form of the probability of states with energy E is determined self-consistently

by performing a simulation and using the resultant distribution as a prob-

ability estimate for a second simulation, etc. The ‘final’ probability found is

shown in Fig. 7.4, where we show the probability in the canonical ensemble

for comparison. Thus, a substantial fraction of the computer resources

needed to solve a problem with the multicanonical ensemble may be con-

sumed in the effort to find an optimum probability distribution. The resul-

tant estimate of a thermodynamic average is given by
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hAi� ¼ A expðHeff �HÞ� �
expðHeff �HÞ� � ; ð7:26Þ

and it is more likely to give correct answers in a situation where the energy

landscape is quite complicated than most canonical ensemble methods.

A practical approach to the determination of the effective Hamiltonian is to

first determine the probability distribution of states under conditions for

which it is easy to measure using a standard Monte Carlo method. Then,

use this distribution as an estimate for another run which is made closer to

the region of real interest. This process continues all the way to the

‘unknown’ region where standard sampling methods fail.

As an example of the applicability of the multicanonical algorithm, in Fig.

7.5 we show the results for a q ¼ 7 Potts model, a system which has a fairly

strong first order transition. The simulations were performed on L� L

square lattices with periodic boundary conditions. For L ¼ 20 the multi-

canonical distribution is quite flat even though the reweighted, canonical

distribution shows two clear peaks. For L ¼ 100, it is clearly difficult to

find a smooth multicanonical probability, but the resultant canonical distri-

bution shows two smooth and very pronounced peaks. Obtaining the relative

heights of these two maxima would have been quite difficult using canonical

sampling.

7.6.2 Near f|rst order transitions

Having made the above qualitative remarks and shown the example shown in

Fig. 7.5, intended to whet the appetite of the reader to learn more about

multicanonical sampling, we now proceed to examine the situation near a

standard first order transition in greater detail. The systems which we have in

mind are the q-state Potts models, which have thermally driven first order

transitions in d = 2 for q > 4, in d = 3 for q � 3, and – even simpler – the

transition of the Ising ferromagnet as a function of magnetic field H for

T < Tc. Remember (see, e.g. Sections 2.1.2.4, 2.3.2, 4.2.3.3, 4.2.5.4) that

at H = 0 the order parameter (i.e. the magnetization) jumps from a positive
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value (Mþ) to a negative value (M� ¼ �Mþ, cf. Fig. 2.10), and this is

accompanied by a dramatic (exponential!) increase of the relaxation time 	e
with lattice size for transitions between states of opposite magnetization in the

framework of a simulation with the Metropolis algorithm. Actually this ‘ergo-

dic time’ 	e was already roughly estimated in Eqn. (4.65). In the literature

(e.g. Berg, 1997) this exponential variation of 	e with L is sometimes called

‘supercritical slowing down’. By the multicanonical method, or its variants,

one is able to reduce the correlation time 	 to a power law of size dependence,

	 / Lp. While p is rather large, namely 2d � p � 5d=2 where d is the dimen-

sion of the lattice (Berg, 1997), the method is clearly useful for large L: while

in Fig. 7.5 the minimum and maximum values of PLðEÞ differ only by about a

factor of 10, there are other examples where maximum and minimum of the

distribution differ by astronomically large factors, e.g. in the study of sym-

metrical polymer mixtures (Müller et al., 1995) the difference was up to a

factor of 1045 at temperatures far below criticality! Variations of the multi-

canonical method have also proven to be effective including the ‘multimag-

netical method’ (Berg et al., 1993), where a flat distribution P1
LðMÞ of the

magnetization M is constructed in between M� and Mþ in analogy to the flat

distribution P1
LðEÞ shown in Fig. 7.4, and the ‘multibondic algorithm’ (Janke

and Kappler, 1995), where a combinationwith cluster algorithms is worked out.

We now consider how to make the step from the canonical distribution

PLðEÞ, in Fig. 7.4, to the multicanonical one, P1
LðEÞ, which has the property

P1
LðEÞ ¼ const. for Emin < E < Emax, with "min ¼ Emin=L

d < "max ¼
Emax=L

d being constants as L ! 1, by a first-principles approach (following

Berg, 1997). This task is achieved by reweighting the canonical distribution

PLðEÞ with a weight factor W ðEÞ which is related to the spectral density of

states nðEÞ or the (microcanonical) entropy SðEÞ,
W ðEÞ ¼ 1=nðEÞ ¼ exp½�SðEÞ� � exp½��ðEÞEþ �ðEÞ�: ð7:27Þ

In the last step we have introduced the inverse temperature 1=TðEÞ ¼ �ðEÞ
¼ @SðEÞ=@E and thus the problem is to construct the as yet unknown func-

tion �ðEÞ (at least up to an additive constant). This problem in principle can

be solved recursively. For a model where the energy spectrum is discrete

(such as Ising, Potts models, etc.), there is a minimum spacing between

energy levels, which we denote as �E here. Then the discrete analog of the

above partial derivative �ðEÞ ¼ @SðEÞ=@E becomes

�ðEÞ ¼ ½SðEþ �EÞ � SðEÞ�=�E; ð7:28Þ
and using the identity (from Eqn. (7.26)) SðEÞ ¼ �ðEÞE� �ðEÞ we can write

SðEÞ � SðE� �EÞ ¼ �ðEÞE� �ðE� �EÞðE� �EÞ � ½�ðEÞ � �ðE� �EÞ�:
ð7:29Þ

Eliminating now the entropy difference on the left-hand side of Eqn. (7.29)

with the help of Eqn. (7.28) we find the recursion

�ðE� �EÞ ¼ �ðEÞ þ ½�ðE� �EÞ � �ðEÞ�E; ð7:30Þ
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where �ðEmax ¼ 0Þ is a convenient choice of the additive constant.

In order to use Eqn. (7.29), we would have to do a very accurate set of

microcanonical runs in order to sample the relation � ¼ �ðEÞ from Emax to

Emin, and this requires of the order Ld=2 different states (which then can be

combined into one smooth function by multi-histogram methods, see above).

The multicanonical sampling of the flat distribution P1
LðEÞ itself (obtained by

reweighting with W ðEÞ in Eqn. (7.26), once the weights are estimated) is then

a random walk in the energy space, and hence implies a relaxation time 	 /
L2d since the ‘distance’ the random walker has to travel scales as

Emax � Emin / Ld . Actually, in practice the recursion in Eqn. (7.28) may

be avoided for a large system, because good enough weights �ðEÞ can often

be obtained from a finite size scaling-type extrapolation from results for small

systems. Still, the problem remains that 	 scales as L2d , a rather large power

of L. An alternative to the procedure outlined above involves using the

inverse of the histogram obtained between Emax and Emin at a higher tem-

perature as an estimate for the weighting function. A short multicanonical run

is made using this estimate and then the resultant distribution is used to

obtain an improved weight factor to be used for longer runs (Janke, 1997).

While the pioneering studies of finite size scaling at first order transitions

described in Section 4.2.3.3 used the Metropolis algorithm, and thus clearly

suffered from the problem of ‘supercritical slowing down’, rather accurate

studies of Potts models with the multicanonical algorithm are now available

(Berg, 1997). Various first order transitions in lattice gauge theory have also

been studied successfully with this method (see Berg, 1997 and Chapter 11 of

the present book).

7.6.3 Groundstates in complicated energy landscapes

We have encountered complicated energy landscapes in systems with ran-

domly quenched competing interactions, such as spin glasses (Section 5.4.3),

and related problems with conflicting constraints (e.g. the ‘traveling salesman

problem’, Section 5.4.3). It is also possible to treat such problems with a

variant of multicanonical methods, only the recursion is done slightly differ-

ently by starting high up in the disordered phase, where reliable canonical

simulations can be performed. In the extreme case Emax is chosen such that

the corresponding temperature is infinite, �0ðEmaxÞ ¼ 0 and then a recursion

is defined as (Berg, 1996, 1997)

�nþ1ðEÞ ¼ ð�EÞ�1 ln½Hn
0 ðEþ �EÞ=Hn

�ðEÞ�; ð7:31Þ
where Hk

0 ðEÞ is the (unnormalized) histogram obtained from a simulation at

�kðEÞ, while Hn
� contains combined information from all the runs with

�0ðEÞ; . . . ; �nðEÞ:

Hn
�ðEÞ ¼

Xn

k¼0

gkðEÞHn
�ðEÞ ð7:32Þ
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and the factors gkðEÞ weigh the runs suitably (see Berg, 1996, 1997 for

details). With these techniques, it has become possible to estimate rather

reliably both groundstate energy and entropy for �J nearest neighbor

Edwards–Anderson spin glasses in both d = 2 and d = 3 dimensions.

However, the slowing down encountered is very bad (	 / L4d or even

worse!) and thus the approach has not been able to finally clarify the con-

troversial aspects about the spin glass transition and the nature of the spin

glass order (two-fold degenerate only or a phase space with many ‘valleys’?)

so far.

At this point we draw attention to a related method, namely the method of

expanded ensembles (Lyubartsev et al., 1992), where one enlarges the con-

figuration space by introducing new dynamical variables such as the inverse

temperature (this method then is also called ‘simulated tempering’, see

Marinari and Parisi (1992)). A discrete set of weight factors is introduced

wk ¼ expð��kEþ �kÞ; k ¼ 1; . . . ; n; �1 < �2 < � � � < �n�1 < �n:

ð7:33Þ
The transitions ð�k; �kÞ ! ð�k�1; �k�1Þ or ð�kþ1; �kþ1Þ are now added to the

usual E ! E 0 transitions. Particularly attractive is the feature that this

method can be efficiently parallelized on n processors (‘parallel tempering’,

Hukusima and Nemoto, 1996).

Just as the multicanonical averaging can estimate the groundstate energy of

spin glass models, it also can find the minimum of cost functions in optimiza-

tion problems. Lee and Choi (1994) have studied the traveling salesman

problem with up to N ¼ 10 000 cities with this method.

7.6.4 Interface free energy estimation

Returning to the magnetization distribution PLðMÞ of the Ising model for

T < Tc, we remember (as already discussed in Section 4.2.5.4) that the

minimum of PLðMÞ which occurs for M � 0 is realized for a domain con-

figuration, where two domain walls (of area Ld�1 each) run parallel to each

other through the (hyper-cubic) simulation box, such that one half of the

volume Ld is in a domain with magnetization Mþ, and the other half of the

volume forms the domain with magnetization M� ¼ �Mþ. Thus, the

free energy cost of this configuration relative to a state with uniform

magnetization Mþ or M�, respectively) is estimated as 2�Ld�1, � being

the interfacial tension. Hence one predicts (Binder, 1982) that

PLðM ¼ 0Þ=PLðMþÞ ¼ expð�2��Ld�1Þ. Since this ratio, however, is noth-

ing but the weight W ðMÞ needed to convert PLðMÞ to the flat distribution

P1
LðMÞ, it follows that we can estimate � if we know this weight:

� ¼ � 1

2�Ld�1
lim½PLðM ¼ 0Þ=PLðMþÞ�: ð7:34Þ

While the first application of this idea for the Ising model (Binder, 1982)

using the Metropolis algorithm failed to obtain accurate results, combination
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with multicanonical methods did produce very good accuracy (Berg et al.,

1993). Meanwhile these techniques have been extended to estimate interfacial

tensions between the ordered and disordered phases of Potts models (Berg,

1997), coexisting phases in polymer mixtures (Müller et al., 1995), and

various models of lattice gauge theory (see Chapter 11).

At this point, we emphasize that the reweighting techniques described in

this section are still a rather recent development and form an active area of

research; thus we have not attempted to describe the algorithms in full detail

but rather give the flavor of the various approaches.

Problem 7.2 Use the multicanonical sampling method to determine
the energy histogram for a 16 � 16 Ising square lattice at kBT=J ¼ 2:0.
From these data determine the canonical ensemble distribution and
compare with the distribution obtained from Metropolis Monte Carlo
simulation.

7.7 A CASE STUDY: THE CASIMIR EFFECT IN
CRITICAL SYSTEMS

Before ending this chapter, we wish to briefly review a Monte Carlo study

which could not have been successful without use of the combination of

advanced sampling techniques discussed in Chapter 5 together with the

reweighting methods presented in this chapter. If a critical system is confined

between two walls, critical fluctuations of the order parameter generate effec-

tive long range interactions which are reminiscent of those due to zero point

fluctuations of the electromagnetic spectrum for a system of two closely

spaced magnetic plates. This phenomenon, known as the Casimir effect,

can be described in terms of universal amplitudes which determine the

strength of the contribution to the effective interface potential due to a

term proportional to �l�ðd�1Þ where l is the thickness of the film and � is

known as the Casimir amplitude. The direct determination of the Casimir

amplitudes is quite difficult since it demands the very careful measurement of

the small free energy difference between two systems with different boundary

conditions. A careful study of the Casimir amplitudes of two-dimensional and

three-dimensional Potts models with different boundary conditions was per-

formed by Krech and Landau (1996). The system was divided into two

pieces, e.g. in two dimensions an L�M system was divided into two strips

of width L=2 coupled through a seam Hamiltonian so that

H� ¼ Hþ �Hseam: ð7:35Þ
They used a hybrid Monte Carlo sampling algorithm which combined

Metropolis and Wolff steps and umbrella sampling to simulate L�M square

lattices. The difference in free energy with and without the seam gave the

combination of different Casimir amplitudes as L, M ! 1 but with fixed

aspect ratio s: In Fig. 7.6 the histograms produced by simulations for
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different values of � show just how little overlap there is between curves

unless their � values are quite close together. Even with the improved sam-

pling algorithm, extensive sampling was needed and 7:2 � 105 hybrid steps

were used to produce each of the histograms shown in Fig. 7.6. Note that the

spacing of the histograms changes with � and it is important to choose the

values of � which produce adequate overlap of the histograms! On the right

in this figure the results for three different Potts models are compared with

the exact answers. Other Casimir amplitudes were measured including some

for which the answer is not known.
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7.8 ‘WANG-LANDAU SAMPLING’

A different approach to Monte Carlo sampling was recently proposed (Wang

and Landau, 2001), and it has already been shown not only to be quite

powerful but also to have quite wide applicability. The method is related

in spirit to the multicanonical Monte Carlo and umbrella sampling techniques

and their variations (‘broad histogram Monte Carlo’, ‘flat histogram Monte

Carlo’, etc.) that were discussed earlier in this chapter. It also has the merit of

greater simplicity and, unlike other methods, it is rather straightforward to

implement and is, hence, potentially much more useful. This new Monte

Carlo method, the ‘Random walk in energy space with a flat histogram’, has

become broadly known as ‘Wang-Landau sampling’. In this approach we

recognize that the classical partition function can either be written as a

sum over all states or over all energies, i.e. we can rewrite Eqn. (2.1) in a

different, but equivalent, form

Z ¼
X
i

e�Ei=kBT �
X
E

gðEÞe�E=kBT ð7:36Þ

where gðEÞ is the density of states. Since gðEÞ is independent of temperature,

it can be used to find all properties of the system at all temperatures. Of

course, the density of states may be expressed as a function of multiple

variables, e.g. gðE;MÞ where M is the magnetization, but for pedagogical

purposes we shall restrict ourselves to the one-dimensional case in the follow-

ing discussion. Wang-Landau sampling is a flexible, powerful, iterative algo-

rithm to estimate gðEÞ directly instead of trying to extract it from the

probability distribution produced by ‘standard’ Monte Carlo simulations.

We begin with some simple ‘guess’ for the density of states, e.g. gðEÞ ¼ 1,

and improve it in the following way. Spins are flipped according to the

probability

pðE1 ! E2Þ ¼ min
gðE1Þ
gðE2Þ

; 1

� �
ð7:37Þ

where E1 is the energy before flipping and E2 is the energy that would result

if the spin were flipped. Following each spin-flip trial the density of states is

updated,

gðEÞ ! gðEÞ�fi ð7:38Þ
where E is the energy of the resultant state (i.e. whether the spin is flipped or

not) and fi is a ‘modification factor’ that is initially greater than 1, e.g. fo � e1.

A histogram of energies visited is maintained, and when it is ‘flat’ the process

is interrupted, f is reduced, e.g. fiþ1 ¼
ffiffiffi
fi

p
, all histogram entries are reset to

zero, and the random walk continues using the existing gðEÞ as the starting

point for further improvement. We emphasize here that the histogram of

energies visited does not have to be perfectly flat, and it typically suffices if

the minimum entry is � 80% of the mean value. In the early stages ‘detailed

balance’ is not satisfied, but as fi ! 1 it is recovered to better than statistical

precision. The extraordinary agreement with exact results for the Ising
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square lattice is shown in Fig. 7.7. The application to systems as large as

L ¼ 256, for which gðEÞ is not known, yielded excellent agreement with exact

values for thermodynamic properties. At this juncture we note that the

method allows the straightforward determination of entropy and free energy,

quantities that can only be obtained indirectly from standard, canonical

ensemble Monte Carlo methods.

In Fig. 7.7 we compare the values of gðEÞ obtained by this iterative method

with the exact values found for finite Ising square lattices. The agreement is

obviously excellent! The canonical probability that was determined in this

way for the 2-dim 10-state Potts model, which is known to have a strong 1st

order phase transition, has two peaks at Tc (corresponding to disordered and

ordered states) with very low probability in between. Standard Monte Carlo
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Wang-Landau Monte Carlo scheme

(1) Set gðEÞ ¼ 1; choose a modification factor (e.g. f0 ¼ e1)

(2) Choose an initial state

(3) Choose a site i

(4) Calculate the ratio of the density of states

� ¼ gðE1Þ
gðE2Þ

which results if the spin at site i is overturned

(5) Generate a random number r such that 0 < r < 1

(6) If r < �, flip the spin

(7) Set gðEiÞ ! gðEiÞ � f

(8) If the histogram is not ‘flat’, go to the next site and go to (4)

(9) If the histogram is ‘flat’, decrease f, e.g. f!þ1 ¼ f
1=2
i

(10) Repeat steps (3)–(9) until f ¼ fmin � expð10�8Þ
(11) Calculate properties using final density of states gðEÞ
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Fig. 7.7 Typical results from ‘Wang-Landau sampling’. (Left) Density of states for L� L Ising square lattices. The inset

shows the relative errors. (Right) Canonical probability for L� L q ¼ 10 Potts models. Final histograms are in the inset. Note

that for the q ¼ 10 Potts model with L ¼ 200 the energy range has been divided into multiple intervals and parallel walks

have taken place over each interval. (After Wang and Landau, 2001.)
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methods ‘tunnel’ between peaks poorly and the relative magnitudes of the

peaks cannot be estimated. In Fig. 7.7 we see that up to nine orders of

magnitude difference in probability was measurable with this method. For

the largest values of L the energy range was broken up into multiple sub-

intervals and independent random walks were performed over each energy

interval. The different pieces of gðEÞ were then joined together using the

condition that they needed to match at the boundaries of the energy ranges.

An even more stringent test of the ability of Wang-Landau sampling to

probe the complex energy landscape was the application to the 3-dim

Edwards-Anderson spin glass model. Here the sampling was carried out as

a two-dimensional random walk in energy-order parameter space where the

order parameter q was the spin glass order parameter and not the uniform

magnetization. Using the resultant gðE; qÞ and reweighting with the appro-

priate Boltzmann factor, Wang and Landau (2001) showed that up to 30

orders of magnitude in the canonical probability was accessible with this

method (see Fig. 7.8). This ‘feasibility test’ showed that the method was

also effective for a model with a quite rough energy landscape. Of course,

for the study of spin glasses it is necessary to use a large number of bond

configurations (typically 103), and the production of such averaged data of

high quality for a wide range of temperature (and thus energy) and linear

dimensions is still beyond reach.

Numerous applications of this method have already resulted, and it is

impossible to list all of them. We do wish to draw the reader’s attention to

improved sampling algorithms (Schulz et al., 2002, 2003; Yamaguchi and

Kawashima, 2002), and applications of the method to models with continuous

symmetries. Models of the latter type include proteins (e.g. Rathore et al.,

2003); polymer films (Jain and de Pablo, 2002), continuum (fluid) models

(e.g. Yan and de Pablo, 2003; Jain and de Pablo, 2003; Shell et al., 2002). By a

suitable reformulation of the problem Troyer et al. (2003) also showed how

Wang-Landau sampling could be used for quantum problems, and even the

Kondo problem has been examined (Koller et al., 2003). Some understanding

of the convergence and performance limitations of the method have already

been provided (Dayal et al., 2004; Zhou and Bhatt, 2004). The wide range of

types of problems for which Wang-Landau sampling has already proven to be

beneficial is extremely promising.
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7.9 A CASE STUDY: EVAPORATION/
CONDENSATION TRANSITION OF
DROPLETS

We conclude this chapter with another case study that brings together multi-

ple techniques of both simulation and analysis. The goal of this study is to

determine the existence of an evaporation/condensation transition of a liquid

droplet in a compressible, off-lattice fluid (MacDowell et al., 2004). For this

purpose a simple Lennard-Jones model (see Eqn. (6.4)) in three dimensions

was used with interactions that were truncated at a cutoff radius rc and shifted

so as to eliminate discontinuities in the force at rc. Fully periodic boundary

conditions were imposed. Trial Monte Carlo moves included both particle

insertions/deletions and particle moves. The probability PðNÞ of finding N

particles within the simulation cell was determined using Wang-Landau

sampling (see Sec. 7.8). Typically the total range of states was subdivided

into windows, and simulations within a window were carried out indepen-

dently and then linked together; however, near an evaporation transition a

two-dimensional random walk within a single window in both n and E space

proved to be most effective. In this way it was possible to obtain reliable,

precise data; however, the analysis turned out to be somewhat subtle and

yielded rather intriguing results. The finite size, i.e. N-particle, equation of

state as a function of the chemical potential � and particle number N was

determined using

d lnPðNÞ
dN

¼ �ðNÞ � � ð7:39Þ
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Fig. 7.9 Size dependence of the chemical potential-density loops for finite, Lennard-Jones systems.

The volume size for each curve increases as the curves are displaced downward, as indicated by

the arrow. Size range from L ¼ 11:3 to L ¼ 22:5. Solid curves are simulation data, while broken

curves result from a phenomenological, theoretical description, and the dash-dotted curve

represents the corresponding homogeneous phase. (After MacDowell et al., 2004.)



where � is the chemical potential imposed during the simulation. Quite

pronounced ‘van der Waals-type loops’ were found, but these shifted system-

atically towards coexistence densities as the size increased, as can be seen in

Fig. 7.9.

Unlike in mean field theory, those states to the left of the effective spinodal

density are stable since they have a lower free energy than an inhomoge-

neous state with the same number of particles. Correspondingly, to the right

of the effective spinodal density a stable, spherical droplet will coexist with

the vapor. The effective spinodal density converges to the macroscopic coex-

istence value only in the limit L ! 1, and in this limit �� ¼ 0 for all

� > �c, up to the liquid density, of course (the difference between the spi-

nodal density and the coexistence density scales as L�3=4). This figure shows

that in the presence of phase coexistence, finite size effects involving unex-

pected subtleties occur.
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8 Quantum Monte Carlo methods

8.1 INTRODUCTION

In most of the discussion presented so far in this book, the quantum character

of atoms and electrons has been ignored. The Ising spin models have been an

exception, but since the Ising Hamiltonian is diagonal (in the absence of a

transverse magnetic field!), all energy eigenvalues are known and the Monte

Carlo sampling can be carried out just as in the case of classical statistical

mechanics. Furthermore, the physical properties are in accord with the third

law of thermodynamics for Ising-type Hamiltonians (e.g. entropy S and

specific heat vanish for temperature T ! 0, etc.) in contrast to the other

truly classical models dealt with in previous chapters (e.g. classical

Heisenberg spin models, classical fluids and solids, etc.) which have many

unphysical low temperature properties. A case in point is a classical solid for

which the specific heat follows the Dulong–Petit law, C ¼ 3NkB, as T ! 0,

and the entropy has unphysical behavior since S!�1. Also, thermal

expansion coefficients tend to non-vanishing constants for T ! 0 while

the third law implies that they must be zero. While the position and momen-

tum of a particle can be specified precisely in classical mechanics, and hence

the groundstate of a solid is a perfectly rigid crystal lattice (motionless par-

ticles localized at the lattice points), in reality the Heisenberg uncertainty

principle forbids such a perfect rigid crystal, even at T ! 0; due to zero

point motions which ‘smear out’ the particles over some region around these

lattice points. This delocalization of quantum-mechanical particles increases

as the atomic mass is reduced; therefore, these quantum effects are most

pronounced for light atoms like hydrogen in metals, or liquid helium.

Spectacular phenomena like superfluidity are a consequence of the quantum

nature of the particles and have no classical counterpart at all. Even for

heavier atoms, which do not show superfluidity because the fluid–solid tran-

sition intervenes before a transition from normal fluid to superfluid could

occur, there are genuine effects of quantum nature. Examples include the

isotope effects (remember that in classical statistical mechanics the kinetic

energy part of the Boltzmann factor cancels out from all averages, and thus in

thermal equilibrium no property depends explicitly on the mass of the

particles).
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The quantum character of electrons is particularly important, of course,

since the mass of the electron is only about 1/2000 of the mass of a proton,

and phenomena like itinerant magnetism, metallic conductivity and super-

conductivity completely escape treatment within the framework of classical

statistical mechanics. Of course, electrons also play a role for many problems

of ‘chemical physics’ such as formation of hydrogen bonds in liquid water,

formation of solvation shells around ions, charge transfer in molten oxides,

etc. While some degrees of freedom in such problems can already be treated

classically, others would still need a quantum treatment. Similarly, for many

magnetic crystals it may be permissible to treat the positions of these ions

classically, but the quantum character of the spins is essential. Note, for

example, in low-dimensional quantum antiferromagnets the Néel state is

not the groundstate, and even understanding the groundstate of such quan-

tum spin systems may be a challenging problem.

There is no unique extension of the Monte Carlo method as applied in

classical statistical mechanics to quantum statistical mechanics that could deal

well with all these problems. Instead, different schemes have been developed

for different purposes: e.g. the path integral Monte Carlo (PIMC) technique

works well for atoms with masses which are not too small at temperatures

which are not too low, but it is not the method of choice if groundstate

properties are the target of the investigation. Variational Monte Carlo

(VMC), projector Monte Carlo (PMC) and Green’s function Monte Carlo

(GFMC) are all schemes for the study of properties of many-body systems at

zero temperature. Many of these schemes exist in versions appropriate to

both off-lattice problems and for lattice Hamiltonians. We emphasize at the

outset, however, that important aspects are still not yet satisfactorily solved,

most notably the famous ‘minus sign problem’ which appears for many

quantum problems such as fermions on a lattice. Thus many problems invol-

ving the quantum statistical mechanics of condensed matter exist, that cannot

yet be studied by simulational methods, and the further development of more

powerful variants of quantum Monte Carlo methods is still an active area of

research. (Indeed we are rather lucky that we can carry out specific quantum

Monte Carlo studies, such as path integral simulations described in the next

section, at all!) The recent literature is voluminous and has filled several

books (e.g. Kalos, 1984; Suzuki, 1986; Doll and Gubernatis, 1990; Suzuki,

1992), and review articles (Ceperley and Kalos, 1979; Schmidt and Kalos,

1984; De Raedt and Lagendijk, 1985; Berne and Thirumalai, 1986; Schmidt

and Ceperley, 1992; Gillan and Christodoulos, 1993; Ceperley, 1995, 1996;

Nielaba, 1997). Thus in this chapter we can by no means attempt an exhaus-

tive coverage of this rapidly developing field. Instead we present a

tutorial introduction to some basic aspects and then describe some simple

applications.
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8.2 FEYNMAN PATH INTEGRAL FORMULATION

8.2.1 Off-lattice problems: low-temperature properties of
crystals

We begin with the problem of evaluating thermal averages in the framework

of quantum statistical mechanics. The expectation value for some quantum

mechanical operator Â corresponding to the physical observable A, for a

system of N quantum particles in a volume V is given by

hÂAi ¼ Z�1Tr expð�H=kBTÞÂA ¼ Z�1
X
n

nj expð�H=kBTÞÂAjn
D E

; ð8:1Þ

with

Z ¼ Tr expð�H=kBTÞ ¼
X
n

nj expð�H=kBTÞjn
� �

; ð8:2Þ

where H is the Hamiltonian, and the states jni form a complete, orthonormal

basis set. In general, the eigenvalues E� of the Hamiltonian ðHj�i ¼ E�j�i
with eigenstate j�i) are not known, and we wish to evaluate the traces in

Eqns. (8.1) and (8.2) without attempting to diagonalize the Hamiltonian. This

task is possible with the Feynman path integral approach (Feynman and

Hibbs, 1965). The basic idea of this method can be explained for a single

particle of mass m in a potential V ðxÞ; for which the Hamiltonian (in position

representation) reads

H ¼ ÊEkin þ V̂V ¼ � �h2

2m

d2

dx2
þ V ðxÞ; ð8:3Þ

and using the states jxi as a basis set the trace Z becomes

Z ¼
ð
dxhxj expð�H=kBTÞjxi ¼

ð
dxhxj exp½�ðÊEkin þ V̂V Þ=kBT 
jxi: ð8:4Þ

If ÊEkin and V̂V commuted, we could replace exp½�ðÊEkin þ V̂V Þ=kBT 
 by

expð�ÊEkin=kBTÞ expð�V̂V=kBTÞ and, by inserting the identity

1̂1 ¼ Ð
dx 0jx 0ihx 0j, we would have solved the problem, since hx 0j exp½�V̂V ðxÞ

=kBT 
xi ¼ exp½�V ðxÞ=kBT 
�ðx� x 0Þ and hxj expð�ÊEkin=kBTÞjx 0i amounts

to dealing with the quantum mechanical propagator of a free particle.

However, by neglecting the non-commutativity of ÊEkin and V̂V , we reduce

the problem back to the realm of classical statistical mechanics, all quantum

effects would be lost.

A related recipe is provided by the exact Trotter product formula (Trotter,

1959; Suzuki, 1971) for two non-commuting operators ÂA and B̂B:

expðÂAþ B̂BÞ !
P!1

½expðÂA=PÞ expðB̂B=PÞ
P; ð8:5Þ

where P is an integer. In the specific case of a single particle moving in a

potential, the Trotter formula becomes

exp½�ðÊEkin þ V̂V Þ=kBT 
 ¼ lim
P!1

fexpð�ÊEkin=kBTPÞ expð�V̂V=kBTPÞgP:
ð8:6Þ
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As a result, we can rewrite the partition function Z as follows

Z ¼ lim
P!1

ð
dx1

ð
dx2 . . .

ð
dxPhx1j expð�ÊEkin=kBTPÞ expð�V̂V=kBTPÞjx2i

hx2j expð�ÊEkin=kBTPÞ expð�V̂V=kBTPÞjx3ihx3j . . . jxPi
hxPj expð�ÊEkin=kBTPÞ expð�V̂V=kBTPÞjx1i: ð8:7Þ

In practice, it will suffice to work with a large but finite P, and since the

matrix elements can be worked out as follows

hxj expð�ÊEkin=kBTPÞ expð�V̂V=kBTPÞjx 0i

¼ mkBTP

2p �h2

� 	1=2

exp �mkBTP

2 �h2
ðx� x 0Þ2


 �
exp �V ðxÞ þ V ðx 0Þ

2kBTP


 �
;
ð8:8Þ

we obtain the following approximate result for the partition function:

Z � mkBTP

2p �h2

� 	P=2ð
dx1 . . . dxP exp

(
� 1

kBT



�

2

XP
s¼1

ðxs � xsþ1Þ2

þ 1

P

XP
s¼1

V ðxsÞ
�)

;

ð8:9Þ

where the boundary condition xPþ1 ¼ x1 holds and the effective spring con-

stant is

� ¼ mPðkBTÞ2= �h2: ð8:10Þ
Equation (8.9) is equivalent to the classical configurational partition function

of P classical particles coupled with a harmonic potential V ðxÞ; in a kind of

‘ring polymer’. When one generalizes this to N particles interacting with a

pair potential in d dimensions,

H ¼
XN
i¼1

� �h2

2m
r2

i

� !
þ

X
i<j

V ðjri � rjjÞ; ð8:11Þ

one finds that the resulting ‘melt’ of cyclic polymers has somewhat unusual

properties, since monomer–monomer interactions occur only if the ‘Trotter

index’ is the same. Thus the partition function becomes (r
ðsÞ
i is the coordinate

of the ith particle in the sth slice of the imaginary time variable)

Z ¼ mkBTP

2p �h2

� 	dNP=2ð
dr
ð1Þ
1 . . .

ð
dr
ðPÞ
N exp

(
� 1

kBT



�

2

XN
i¼1

XP
s¼1

ðrðsÞi � r
ðsþ1Þ
i Þ2

þ 1

P

X
i<j

XP
s¼1

V jrðsÞi � r
ðsÞ
j j

� ��)

¼ mkBT

2� �h2

� 	dNP=2ð
dr
ð1Þ
1 . . .

ð
dr
ðPÞ
N exp �HðPÞ

eff =kBT
n o

: ð8:12Þ

280 8 Quantum Monte Carlo methods



This ‘ring polymer’ is shown schematically in Fig. 8.1. If the effect of the

potential V could be neglected, we could simply conclude from the equipar-

tition theorem (since Eqns. (8.9 and 8.12) can be viewed as a problem in

classical statistical mechanics, this theorem applies), that the potential energy

carried by each spring is ðd=2ÞkBT ¼ ð�=2ÞhðrðsÞi � r
ðsþ1Þ
i Þ2i, i.e. the typical

interparticle mean-square displacement of two neighboring particles along

the chain is ‘2 ¼ hðrðsÞi � r
ðsþ1Þ
i Þ2i ¼ dkBT=� ¼ �h2d=ðmkBTPÞ. Now the gyra-

tion radius of a ring polymer containing P monomers is hR2
gi ¼

‘2P=12 ¼ ðd=12Þð �h2=mkBTÞ. Thus we see that the diameter 2
ffiffiffiffiffiffiffiffiffi
hR2

gi
p

¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=ð3mkBTÞ

p
is of the same order as the thermal de Broglie wavelength


T ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
of a particle. This formalism brings out in a very direct

fashion the fact that in quantum mechanics the uncertainty principle forbids

the simultaneous precise specification of both momenta and positions of the

particles; and for free particles, integrating out the momenta then leaves the

particles delocalized in space in ‘cells’ of linear dimension 
T . The advantage

of the formalism written in Eqns. (8.9–12) is, of course, that it remains fully

valid in the presence of the potential V ðjri � rjjÞ – then the linear dimension

of the delocalization no longer is simply given by 
T , but depends on the

potential V as well. This fact is well known for harmonic crystals, of course:

the delocalization of an atom in a harmonic crystal can be expressed in terms

of the harmonic oscillator groundstate wave functions, summed over all

eigenfrequencies !q of the crystal. In other words, the mean-square displace-

ment of an atom around the position in the ideal rigid lattice for T ¼ 0 is

hr2i i ¼ ð1=2NmÞPqð �h!qÞ�1. On the other hand, one knows that the harmo-

nic approximation for crystals has many deficiencies, e.g. it does not describe

thermal expansion. As an example, Fig. 8.2 compares the lattice constant

aðTÞ of orthorhombic solid polyethylene, as deduced from a PIMC calcula-

tion (Martonak et al:, 1998), with the corresponding classical results and with
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Fig. 8.1 Schematic representation of two interacting quantum particles i, j in two dimensions: each

particle (i) is represented by a ‘ring polymer’ composed of P ¼ 10 effective monomers r
ðsÞ
i , with

s ¼ 1; . . . ;P. Harmonic springs (of strength �) only connect ‘monomers’ in the same ‘polymer’,

while interatomic forces join different monomers with the same Trotter index s, indicated by the

thin straight lines. In the absence of such interactions, the size of such a ring polymer coil would

be given by the thermal de Broglie wavelength, 
T ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
, where h is Planck’s constant.



experiment (Dadobaev and Slutsker, 1981). Clearly the classical Monte Carlo

result underestimates aðTÞ systematically at all temperatures from T ¼ 0 K

to room temperature, and yields a constant thermal expansion coefficient

� ¼ a�1da=dT as T ! 0, in contrast to the result �ðT ! 0Þ ! 0 required

by the third law of thermodynamics. The PIMC results are clearly in accord

with this law, as they should be, and even reproduce the experimental data

perfectly, although such good agreement is to some extent fortuitous in view

of the uncertainties about the potentials to be used for this polymer.

Now it is well known that one can go somewhat beyond the harmonic

approximation in the theory of the dynamics of crystal lattices, e.g. by taking

entropy into account via the quasi-harmonic approximation that uses a quad-

ratic expansion around the minimum of the free energy rather than the

potential energy, as is done in the standard harmonic approximation. In

fact, such a quasi-harmonic lattice dynamics study of orthorhombic polyethy-

lene has also been carried out (Rutledge et al., 1998), and the comparison

with the PIMC results shows that the two approaches do agree very nicely at

temperatures below room temperature. However, only the PIMC approach in

this example is reliable at room temperature and above, up to the melting

temperature, where quantum effects gradually die out and the system starts to

behave classically. Also, the PIMC method yields information on local prop-

erties involving more than two atoms in a very convenient way, e.g. the mean-

square fluctuation of the bond angle �CCC between two successive carbon-

carbon bonds along the backbone of the CnH2nþ2 chain (Fig. 8.3), which

would be rather cumbersome to obtain by lattice dynamics methods. While

according to classical statistical mechanics such a bond angle fluctuation

vanishes as T ! 0, i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð��CCCÞ2i

q
/ ffiffiffiffi

T
p

, so that in the groundstate

(T ¼ 0) a perfectly rigid zig-zag structure (Fig. 6.15) remains, this is not
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Fig. 8.2 Temperature

dependence of the

lattice constant for

orthorhombic

polyethylene. Results

of a PIMC calculation

are compared with the

value for a classical

system and with

experiment. After

Martonak et al. (1998).



true when one considers quantum mechanics and bond angles then fluctuate

by around 3 degrees! Even at room temperature the classical calculation

underestimates this fluctuation still by about 20%.

Now one point which deserves comment is the proper choice of the

Trotter dimension P. According to Eqn. (8.6), the method is only exact in

the limit P !1 . This presents a serious problem as does the extrapolation

to the thermodynamic limit, N !1. Just as one often wishes to work with

as small N as possible, for the sake of an economical use of computer

resources, one also does not wish to choose P unnecessarily large.

However, since the distance between points along the ring polymer in Fig.

8.1 scales as ‘2 / ðTPÞ�1, as argued above, and we have to keep this distance

small in comparison to the length scales characterizing the potential, it is

obvious that the product TP must be kept fixed so that ‘ is fixed. As the

temperature T is lowered, P must be chosen to be larger. Noting that for

operators ÂA, B̂B whose commutator is a complex number c, i.e. ½ÂA; B̂B
 ¼ c, we

have the formula

exp½ÂAþ B̂B
 ¼ expðÂAÞ expðB̂BÞ exp � 1
2
½ÂA; B̂B


� �
; ð8:13Þ

we conclude that for large P the error in replacing exp½�ðÊEkin þ V̂V Þ=PkBT 

by expð�ÊEkin=PkBTÞ expð�V̂V=PkBTÞ is of order 1=P2. This observation

suggests that simulations should be tried for several values of P and the data

extrapolated versus 1=P2. In favorable cases the asymptotic region of this

‘Trotter scaling’ is indeed reached, as Fig. 8.4 demonstrates. This figure also

shows that PIMC is able to identify typical quantum mechanical effects such

as ‘isotope effects’: the two isotopes 20Ne and 22Ne of the Lennard-Jones

system neon differ only by their mass, and in classical statistical mechanics

there would be no difference in static properties whatsoever. However, as

Fig. 8.4 shows, there is a clear distinction between the lattice constants of the
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Fig. 8.3 Temperature

dependence of the

average fluctuationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð��CCCÞ2i

q
of the

C — C — C bond

angle, according to the

classical Monte Carlo

calculation (full dots)

and according to

PIMC simulations

(open symbols), for

two choices of chain

length n (n ¼ 12 and

n ¼ 24, respectively).

From Martonak et al.

(1998).



two isotopes, and the difference observed in the simulation in fact is rather

close to the value found in the experiment (Batchelder et al., 1968). The

examples shown should not leave the reader in a too optimistic mood, how-

ever, since there are also examples in the literature where even Trotter

numbers as large as P ¼ 100 are insufficient to reach this Trotter scaling

limit. Indeed, not all quantities are equally well suited for such an extrapola-

tion. Particularly cumbersome, for instance, is the specific heat for an insulat-

ing crystal which is expected to vary like C / Td at low temperatures in d

dimensions (Debye law). However, the theory of lattice dynamics shows that

this behavior results from long wavelength acoustic phonons, with frequency

!q ¼ csjqj where cs is the speed of sound and q their wavevector. In a finite

cubic crystal of size L� L� L with periodic boundary conditions the smal-

lest jqj that fits is of order 2p=L, and hence the phonon spectrum is cut off at

a minimum frequency !min / cs=L. Due to this gap in the phonon spectrum

at low enough temperatures ðkBT < �h!minÞ the specific heat does not comply

with the Debye law, but rather behaves as C / expð� �h!min=kBTÞ. In order

to deal with such problems, Müser et al. (1995) proposed a combined Trotter

and finite size scaling. In this context, we also emphasize that the specific heat

cannot be found from computing fluctuations of the effective Hamiltonian

HðPÞ
eff , Eqn. (8.10), hHðPÞ2

eff i � hHðPÞ
eff i2. The reason is that the spring constant �,

Eqn. (8.8), is temperature-dependent, and this fact invalidates the standard

derivation of the fluctuation formula. For suitable estimators of the specific

heat and other response functions in Monte Carlo calculations we refer to the

more specialized literature quoted in Chapter 1, Introduction.

Problem 8.1 Consider a single particle in a harmonic potential well with
characteristic frequency of ! ¼ ðk=mÞ1=2. Perform a path integral Monte
Carlo simulation for P ¼ 1, P ¼ 2, and P ¼ 8 at an inverse temperature of

 ¼ 2:5. Carry out multiple runs for 10 000 MC steps and determine statisti-
cal error bars. Repeat the calculation for runs of 106 MC steps. Compare
the results and comment.
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Fig. 8.4 Trotter

scaling plot for the

lattice parameter a of

solid neon. The upper

curve corresponds to
20Ne at T ¼ 16 K.

From Müser et al.

(1995).



8.2.2 Bose statistics and superfluidity

We now mention another important problem: in making the jump from the

one-particle problem, Eqn. (8.6), to the N-particle problem, Eqn. (8.12), we

have disregarded the statistics of the particles (Bose–Einstein vs. Fermi–

Dirac statistics) and have treated them as distinguishable. For crystals of

not too light atoms, this approximation is acceptable, but it fails for quantum

crystals such as solid 3He and 4He, as well as for quantum fluids (Ceperley,

1995). For Bose systems, only totally symmetric eigenfunctions contribute to

the density matrix, and hence if we write symbolically R ¼ ðr1; r2; . . . ; rNÞ
and we define a permutation of particle labels by P̂PR where P̂P is the permu-

tation operator, we have for any eigenfunction ��ðRÞ

P̂P��ðRÞ ¼
1

N!

X
P

�ðP̂PRÞ; ð8:14Þ

where the sum is over all permutations of particle labels. The partition

function for a Bose system therefore takes the form (Ceperley, 1995)

ZB ¼
mkBTP

2p �h2

� 	dNP=2
1

N!

ð
dr
ð1Þ
1 . . .

ð
dr
ðPÞ
N exp �HðPÞ

eff =kBT
n o

; ð8:15Þ

where now the boundary condition is not r
ðPþ1Þ
i ¼ r

ð1Þ
i as in Eqn. (8.10), but

rather P̂PRðPþ1Þ ¼ Rð1Þ. This means that paths are allowed to close on any

permutation of their starting positions, and contributions from all N! closures

are contained in the partition function. At high temperatures the identity

permutation yields the dominating contribution, while at zero temperature all

permutations have equal weight. In the classical isomorphic system, this

means that ‘crosslinks’ form and open up again in the system of ring poly-

mers. (Of course, such behavior should not be confused with the actual

chemical kinetics of polymerization and crosslinking processes of real poly-

mers!) A two-atom system with P effective monomers can be in two possible

permutation states: either two separate ring polymers, each with P springs (as

shown in Fig. 8.1), or one larger ring polymer with 2P springs.

At this point, it is illuminating to ask what superfluidity (such as actually

occurs in 4He) implies in this formalism (Feynman, 1953): a macroscopic

polymer is formed which involves on the order of Natoms and stretches over

the entire system. From Fig. 8.1, it is clear that this ‘crosslinking’ among ring

polymers can set it only when the linear dimension of a ring polymer coil

becomes of the same order as the ‘interpolymer spacing’: in this way one can

get an order of magnitude estimate of the superfluid transition temperature

T
, by putting the thermal de Broglie wavelength 
T ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
equal

to the ‘interpolymer spacing’, ��1=d , where � is the density of the d-dimen-

sional system. The ‘degeneracy temperature’ TD found from 
T ¼ ��1=d , i.e.

TD ¼ �2=dh2=ð2pkBmÞ, sets the temperature scale on which important quan-

tum effects occur.

In practice, use of Eqns. (8.12) and (8.15) would not work for the study of

superfluidity in 4He – although the formalism is exact in principle, values of

8.2 Feynman path integral formulation 285



P which are unreasonably large would be required for satisfactory results. An

alternative approach is to use what is called an ‘improved action’ rather than

the ‘primitive action’ Heff=kBT given in Eqn. (8.12). However, we shall not

go into any detail here but rather refer the reader to the original literature

(e.g. Ceperley, 1995).

The treatment of fermions is even more cumbersome. The straightforward

application of PIMC to fermions means that odd permutations subtract from

the sum: this is an expression of the ‘minus sign problem’ that hampers all

Monte Carlo work on fermions. In fact, PIMC for fermions in practice

requires additional approximations and is less useful than for bosons or for

‘Boltzmannons’ (i.e. cases where the statistics of the particles can be neglected

altogether, as for the behavior of slightly anharmonic crystals formed from

rather heavy particles, as discussed in the beginning of this section). We refer

the reader to Ceperley (1996) for a recent review of this problem.

8.2.3 Path integral formulation for rotational degrees of
freedom

So far the discussion has tacitly assumed point-like particles and the kinetic

energy operator ÊEkin (Eqns. (8.3,4)) was meant to describe their translational

motion; however, rather than dealing with the effects due to non-commu-

tativity of position operator ðxÞ and momentum operator

ðpÞ; ½x̂x�; p̂p

 ¼ i �h��
, we may also consider effects due to the non-commu-

tativity of the components of the angular momentum operator, L̂L�: Such

effects are encountered for example in the description of molecular crystals,

where the essential degrees of freedom that one wishes to consider are the

polar angles ð�i; ’iÞ describing the orientation of a molecule (Müser, 1996).

Here we discuss only the simple special case where the rotation of the

molecules is confined to a particular plane. For example, in monolayers of

N2 adsorbed on graphite in the commensurate
ffiffiffi
3

p � ffiffiffi
3

p
structure (Marx and

Wiechert, 1996), one can ignore both the translational degree of freedom of

the N2 molecules and the out-of-plane rotation, i.e. the angle �i ¼ p=2 is not

fluctuating, the only degree of freedom that one wishes to consider is the

angle ’i describing the orientation in the xy-plane, parallel to the graphite

substrate. The Hamiltonian hence is (I is the moment of inertia of the

molecules, and V̂V the intermolecular potential)

H ¼
XN
j¼1

L̂L2
jZ

2I
þ

X
i 6¼j

V̂V ð’i; ’jÞ; ð8:16Þ

since the commutation relation ½L̂LjZ; ’̂’i
 ¼ �i �h�j;i is analogous to that of

momentum and position operator, one might think that the generalization

of the PIMC formalism (Eqns. (8.9–12)) to the present case is trivial, but this

is not true due to the rotation symmetry ’j ¼ ’j þ nj2p; with nj integer: if we

write the partition function as path integral we obtain (Marx and Nielaba,

1992)
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Z ¼ IkBTP

2p �h2

� 	NP=2YN
j¼1

Xþ1
nj¼�1

ð2p
0

d’ð1Þi

YP
s¼2

ðþ1
�1

d’ðsÞj

8<
:

9=
; exp½�HðPÞ

eff =kBT 
;

ð8:17Þ
with

HðPÞ
eff ¼

XP
s¼1

XN
j¼1

IPk2
BT

2

2 �h2
’ðsÞj � ’ðsþ1Þ

j þ 2pnj�S;P
h i2

þ
XN
hi;ji

1

P
V ð’ðsÞi ; ’ðsÞj Þ

( )
:

ð8:18Þ

Thus each quantum mechanical rotational degree of freedom is represented

in this path integral representation by P classical rotators, which form closed

loops and interact via harmonic type interactions. In addition there is the

potential V ð’ðsÞi ; ’ðsÞj Þ denoting the pair potential evaluated separately for the

configuration at each imaginary-time slice s ¼ 1; . . . ;P. However, in contrast

to path integrals for translational degrees of freedom, the loops need not be

closed using periodic boundary conditions, but only modulo 2p: the classical

angles are not confined to ½0; 2p
 but are allowed on the whole interval

½�1;þ1
. The resulting mismatch nj is called the ‘winding number’ of

the jth path and Eqns. (8.17) and (8.18) yield the ‘winding number repre-

sentation’ of the partition function. Only the Boltzmann-weighted summation

over all possible winding numbers in addition to the integration over all paths

having a certain winding number yields the correct quantum partition func-

tion in the Trotter limit P !1: Thus the Monte Carlo algorithm has to

include both moves that update the angular degrees of freedom f’ðsÞj ! ’ðsÞ
0

j g
and moves that attempt to change the winding number, nj ! n 0j .

As an example of problems that can be tackled with such techniques, Fig.

8.5 shows the order parameter � of a model for N2 on graphite. This order

parameter describes the ordering of the so-called herringbone structure, and
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Fig. 8.5 Herringbone

structure order

parameter for a model

of N2 plotted vs.

temperature. Quantum

simulation, full line;

classical simulation,

dotted line; quasi-

harmonic theory,

dashed line;

Feynman–Hibbs

quasi-classical

approximation,

triangles. From Marx

et al. (1993).



is calculated from the three order parameter components �� as

� ¼ P3
�¼1 �

2
�

h i1=2
! "

, with

�� ¼
1

N

1

P

XN
j¼1

XP
s¼1

sinð2’ðsÞj � 2��Þ exp½Q� � Rj
; ð8:19Þ

where Rj is the center of mass position of the jth molecule, the Q� are

wavevectors characteristic for the ordering fQ1 ¼ pð0; 2= ffiffiffi
3

p Þ; Q2

¼ pð�1;�1=
ffiffiffi
3

p Þ; Q3 ¼ pð1;�1=
ffiffiffi
3

p Þg and the phases �i are �1 ¼ 0, �2 ¼
2p=3 and �3 ¼ 4p=3. Using N ¼ 900 rotators, even forT > Tc we have the

characteristic ‘finite size tail’ in both the classical and in the quantum calcula-

tions. The critical temperature Tc of the classical model has been estimated as

38 K. While at high temperatures classical and quantum calculations merge,

near Tc the quantum mechanical result deviates from the classical one, since

in this model the quantum fluctuations reduce Tc by about 10%.

Furthermore, one can infer that the quantum system does not reach the

maximum herringbone ordering ð� ¼ 1Þ even at T ! 0: the quantum libra-

tions depress the saturation value by 10%. In Fig. 8.5 the order parameter, as

obtained from the full quantum simulation, is compared with two approx-

imate treatments valid at low and high temperatures: quasi-harmonic theory

can account for the data for T > 10 K but fails completely near the phase

transition; the Feynman–Hibbs quasi-classical approximation (based on a

quadratic expansion of the effective Hamiltonian around the classical path)

works very well at high temperatures, but it starts to deviate from the correct

curve just below Tc and completely breaks down as T ! 0. We see that all

these approximate treatments are uncontrolled, their accuracy can only be

judged a posteriori; only the PIMC simulation yields correct results over the

whole temperature range from the classical to the quantum regime.

8.3 LATTICE PROBLEMS

8.3.1 The Ising model in a transverse f|eld

The general idea that one follows to develop a useful path integral formula-

tion of quantum models on lattices is again the strategy to decompose the

Hamiltonian H of the interacting many-body system into sums of operators

that can be diagonalized separately. The Trotter formula can be then used in

analogy with Eqn. (8.6), for H ¼ H1 þH2 (Trotter, 1959; Suzuki, 1971)

exp½�ðH1 þH2Þ=kBT 
 ¼ lim
P!1

fexpð�H1=kBTPÞ expð�H2=kBTPÞgP:
ð8:20Þ

Note that there is no general recipe for how this division of H into parts

should be done - what is appropriate depends on the nature of the model.

Therefore, there are many different variants of calculations possible for cer-

tain models, and generalizations of Eqn. (8.20), where the error is not of order
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1=P2 but of even higher inverse order in P, have also been considered

(Suzuki, 1976, 1992).

To illustrate the general principles of the approach we consider a model

for which all calculations can be carried out exactly, namely the one-dimen-

sional Ising model in a transverse field. We take (de Raedt and Lagendijk,

1985)

H1 ¼ �J
XN
i¼1

�̂�z
i �̂�

z
iþ1; H2 ¼ �H\

XN
i¼1

�̂�x
i ; ð8:21Þ

where �̂��
i ð� ¼ x; y; zÞ denote the Pauli spin matrices at site i. We assume

periodic boundary conditions, �̂��
Nþ1 ¼ �̂��

1 . For the representation we choose

the eigenstates of �̂�z and label them by Ising spin variables, S ¼ �1, i.e.

�̂�zjSi ¼ SjSi. Of course, H1 is diagonal in this representation. We then find

for the Pth approximant to the partition function

Zp ¼ Tr½expð�H1=kBTPÞ expð�H2=kBTPÞ
P

¼
X
S
ðkÞ
i

# $
YP
k¼1

YN
i¼1

exp
J

kBTP
S
ðkÞ
i S

ðkÞ
iþ1


 �
S
ðkÞ
i exp

H\�̂�
x
i

kBTP

� 	%%%%
%%%%Sðkþ1Þ

i

! "
: ð8:22Þ

In this trace we have to take periodic boundary conditions in the imaginary

time direction as well, S
ðkÞ
i ¼ S

ðkþPÞ
i . Now the matrix element in Eqn. (8.22)

is evaluated as follows,

hSj expða�̂�xÞjS 0i ¼ 1
2
sinh 2a

& '1=2
exp 1

2
ln coth aÞSS 0:& ð8:23Þ

Substituting Eqn. (8.23) in Eqn. (8.22), we see that Zp looks like the

partition function of an anisotropic two-dimensional Ising model,

Zp ¼ Cp

X
S
ðkÞ
i

# $ exp
XP
k¼1

XN
i¼1

KpS
ðkÞ
i S

ðkþ1Þ
i þ J

kBTP
S
ðkÞ
i S

ðkÞ
iþ1

� 	" #
; ð8:24Þ

with

Cp ¼ 1
2
sinhð2H\=kBTPÞ

* +PN=2
; Kp ¼ 1

2
ln cothðH\=kBTPÞ: ð8:25Þ

At this point we can use the rigorous solution of the finite two-dimensional

Ising model (Onsager, 1944). Thus the one-dimensional quantum problem

could be mapped onto an (anisotropic) two-dimensional classical problem,

and this mapping extends to higher dimensions, as well. However, it is

important to note that the couplings depend on the linear dimension P in

the ‘Trotter direction’ and in this direction they also are temperature depen-

dent (analogous to the spring constant � in the polymer formalism derived

above).
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8.3.2 Anisotropic Heisenberg chain

A more complex and more illuminating application of the Trotter formula to

a simple lattice model is to the spin-1
2

anisotropic Heisenberg chain,

H ¼ �
X
i

ðJxŜSx
i ŜS

x
iþ1 þ JyŜS

y
i ŜS

y
iþ1 þ JzŜS

z
i ŜS

z
iþ1Þ: ð8:26Þ

For Jx ¼ Jy ¼ Jz this model is merely a simple quantum Heisenberg chain,

and for Jx ¼ Jy and Jz ¼ 0 it becomes the quantum XY-chain. There are

now several different ways in which the quantum Hamiltonian may be split

up. The procedure first suggested by Suzuki (1976b) and Barma and Shastry

(1978) was to divide the Hamiltonian by spin component, i.e.

H ¼ H0 þ VA þ VB ð8:27aÞ
where

H0 ¼ �
XN
i¼1

JzŜS
z
i ŜS

z
iþ1; ð8:27bÞ

VA ¼
X
i odd

Vi; ð8:27cÞ

VB ¼
X
i even

Vi; ð8:27dÞ

Vi ¼ �ðJxŜSx
i ŜS

x
iþ1 þ JyŜS

y
i ŜS

y
iþ1Þ: ð8:27eÞ

Applying Trotter’s formula to the partition function we obtain

Z ¼ lim
P!1

ZðPÞ ð8:28Þ

with

ZðPÞ ¼ Tr e�
H0=2Pe�
VA=Pe�
H0=2Pe�
VB=P
& 'P

; ð8:29Þ
where the limit P !1 and the trace have been interchanged. Introducing

2P complete sets of eigenstates of H0 (the Ising part) so that there is one

complete set between each exponential we obtain

ZðPÞ ¼
X

�1�2...�2P

exp
�

2P

X2P
r¼1

H0r � 

X
i2A

X2P
r¼1

hði; rÞ � 

X
i2B

X2P
r¼1

hði; rÞ
� !

ð8:30Þ
where

e�
hði;rÞ ¼ SirSðiþ1Þrje�
Vi=PjSiðrþ1ÞSðiþ1Þðrþ1Þ
� � ð8:31Þ

and Sir ¼ �1=2. Equation (8.30) can be interpreted as describing an N � 2P

lattice with periodic boundary conditions and with two-spin interactions in

the real space direction and temperature-dependent four-spin coupling on

alternating elementary plaquettes, which couple neighboring sites in both real

space and the Trotter direction, as shown in Fig. 8.6. Evaluation of the matrix

elements in Eqn. (8.31) shows that only those plaquettes which have an even
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number of spins in each direction have non-zero weight, and these are

enumerated in Fig. 8.7. (This result means that the classical model which

results from the general, anisotropic Heisenberg chain is equivalent to an 8-

vertex model; moreover, if Jx ¼ Jy it reduces further to a 6-vertex model.)

Only those spin-flips which overturn an even number of spins are allowed, to

insure that the trial state has non-zero weight, and the simplest possible such

moves are either overturning all spins along a vertical line in the Trotter

direction or those spins around a ‘local’ loop as shown in Fig. 8.8. We note

further that if Jx ¼ Jy all allowed extensive flips change the magnetization of

the system whereas the local flips do not. There is one additional complica-

tion that needs to be mentioned: because of the temperature dependent

interactions, the usual measures of the thermal properties are no longer

corrrect. Thus, for example, the Pth approximant to the thermal average

of the internal energy EðPÞ is

EðPÞ ¼ � @

@

lnZðPÞ

¼ 1

ZðPÞ
X
j

F
ðPÞ
j expð�
EðPÞj Þ;

ð8:32Þ
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Fig. 8.6 Schematic

view of the lattice

produced by the

Trotter–Suzuki

transformation for the

anisotropic Heisenberg

chain. Two-spin

interactions remain

between nearest

neighbors in the real

space (horizontal)

direction. The shaded

squares represent

four-spin couplings.

Fig. 8.7 The eight

spin plaquettes with

non-zero weight

corresponding to the

shaded squares in Fig.

8.6.



where the sum is over all states and the ‘energy function’ Fj is now non-

trivial. Similarly the calculation of the specific heat has an explicit contribu-

tion from the temperature dependence of the energy levels. Results for the

antiferromagnetic Heisenberg chain, shown in Fig. 8.9, clearly indicate how

the result for a fixed value of P approximates the quantum result only down

to some temperature below which the data quickly descend to the classical

value. This procedure has been vectorized by Okabe and Kikuchi (1986) who

assigned a plaquette number to each four-spin plaquette and noted that a

simple XOR operation could be used to effect the spin plaquette flips. When

this process was vectorized in an optimal fashion a speed of 34 million spin-

flip trials per second could be achieved, a very impressive performance for

the computers of that time.

Before we leave this section we wish to return to the question of how the

Hamiltonian should be divided up before applying the Trotter transforma-

tion. An alternative to the decomposition used in the above discussion would

have been to divide the system into two sets of non-interacting dimers, i.e.
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Fig. 8.8 Allowed spin-

flip patterns (bold

lines) for the lattice

shown in Fig. 8.6.

Fig. 8.9 Internal

energy for the S ¼ 1
2

antiferromagnetic

Heisenberg model.

The solid line is the

calculation of Bonner

and Fisher (1964) and

the dotted line is the

exact P ¼ 1 result

from Suzuki (1966).

From Cullen and

Landau (1983).



H ¼ H1 þH2; ð8:33aÞ
where

H1 ¼ �
X
i2odd

ðJxŜSx
i ŜS

x
iþ1 þ JyŜS

y
i ŜS

y
iþ1 þ JzŜS

z
i ŜS

z
iþ1Þ; ð8:33bÞ

H2 ¼ �
X
i2even

ðJxŜSx
i ŜS

x
iþ1 þ JyŜS

y
i ŜS

y
iþ1 þ JzŜS

z
i ŜS

z
iþ1Þ: ð8:33cÞ

When the same process is repeated for this decomposition an N � 2P lattice

is generated but the four-spin interactions have a different geometrical con-

nectivity, as is shown in Fig. 8.10. In general then some thought needs to be

given as to the best possible decomposition since there may be a number of

different possibilities which present themselves. This approach can be readily

extended to higher dimensions and, in general, a d-dimensional quantum

spin lattice will be transformed into a ðd þ 1Þ-dimensional lattice with both

two-spin couplings in the real space directions and four-spin interactions

which connect different ‘rows’ in the Trotter direction.

8.3.3 Fermions on a lattice

The one-dimensional spin models considered in the previous section provide

the opportunity to use the Trotter–Suzuki decomposition to help us under-

stand concepts, to check the convergence as P !1 and to test various

refinements. New, non-trivial problems quickly arise when considering

other relatively simple models such as spinless fermions in one dimension,

where the Hamiltonian H ¼ H1 þH2 is written as

H ¼ �t
XN
i¼1

ðĉcþi ĉciþ1 þ ĉcþiþ1ĉciÞ þ v1

XN
i¼1

n̂nin̂niþ1: ð8:34Þ

The fermion operator ĉcþi ðĉciÞ creates (annihilates) a particle at site i, and n̂ni �
ĉcþi ĉci is the particle number operator, N ¼PN

i¼1 ni being the total number of
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Fig. 8.10 Lattice

produced by the

alternate

decomposition, given

in Eqns. (8.33) for the

S ¼ 1=2

antiferromagnetic

Heisenberg model.



particles (� � N =N then is the particle density). The hopping energy t is

chosen to be unity, having the strength v1 of the nearest neighbor interaction

as a non-trivial energy scale in the model.

One of the standard tricks for dealing with quantum problems is to make

use of clever transformations that make the problem more tractable. In the

present situation, we first use Pauli matrices �̂��
i ð� ¼ x; y; zÞ to define spin-

raising and spin-lowering operators by �̂�þ‘ ¼ ð�̂�x
‘ þ i�̂�y

‘Þ=2 and

�̂��‘ ¼ ð�̂�x
‘ � i�̂�y

‘Þ=2, respectively, and express the ĉcþ‘ ; ĉc‘ in terms of the �̂�‘
operators by a Jordan–Wigner transformation, which has a non-local

character

ĉcþ‘ ¼ �̂�þ‘ exp
ip
2

X‘�1

p¼1

ð1þ �̂�z
p Þ

" #
; ĉc‘ ¼ �̂��‘ exp � ip

2

X‘�1

p¼1

ð1þ �̂�z
p Þ

" #
:

ð8:35Þ
With this transformation the spinless fermion model, Eqn. (8.34), can be

mapped exactly onto a spin-1
2

model, and neglecting boundary terms which

are unimportant for N !1,

H ¼ � t

2

XN
i¼1

�̂�x
i �̂�

x
iþ1 þ �̂�y

i �̂�
y
iþ1 �

v1

2t
�̂�z
i �̂�

z
iþ1 �

v1

t
�̂�z
i �

v1

2t

� �
: ð8:36Þ

Since the invention of the Bethe ansatz (Bethe, 1931), a huge number of

analytical treatments of the model Eqns. (8.34) and (8.36) and its general-

ization have appeared so that the groundstate properties are rather well

known. Here we discuss only the structure factor ða is the lattice spacing)

ST ðqÞ ¼
XN
j¼1

hn̂nin̂niþjiT � hn̂niiThn̂niþjiT
& '

cosð jqaÞ ð8:37Þ

for T ¼ 0 and half filling ð� ¼ 1=2Þ: At v1 ¼ 2t a metal–insulator transition

occurs (Ovchinnikov, 1973): for v1 < 2t there is no energy gap between the

groundstate energy and the first excited states, and the system is a metal; SðqÞ
then has a peak at q ¼ p=a with finite width. If v1 > 2t there is a gap and the

groundstate has long range order, which implies that SðqÞ has a delta function

(for N !1Þ at q ¼ p=a. For v1 !1 the groundstate approaches simply

that of the classical model where every second lattice site is occupied and

every other lattice site is empty. A related quantity of interest is the static

wavevector-dependent ‘susceptibility’ (’̂’q is the Fourier component of the

density operator n̂ni)

�ðqÞ ¼ 1

�h

ð�h=kBT

0

dx hexH’̂’qe
�xH’̂’�qiT � h’̂’q¼0i2T

* +
: ð8:38Þ

If ½H; �̂�q
 ¼ 0, we would simply recover the classical fluctuation relation

�ðqÞ ¼ ST ðqÞ=kBT since ST ðqÞ ¼ h�̂�q�̂��qiT � h�̂�q¼0i2T . Thus, in calculating

response functions (�ðqÞ describes the response of the density to a wave-

vector-dependent ‘field’ coupling linearly to the density) one must carefully
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consider the appropriate quantum mechanical generalizations of fluctuation

formulae, such as Eqn. (8.38).

In order to bring the problem, Eqn. (8.34) or Eqn. (8.36), into a form

where the application of the Trotter formula, Eqn. (8.20), is useful, we have

to find a suitable decomposition of H into H1 and H2. When we wish to

describe the states in the occupation number representation (or the corre-

sponding spin representation: jS1 . . .Si . . .SNi means that Si ¼ 1ð�1Þ if the

site i is occupied (empty)), we have the problem that the non-diagonal first

term in Eqn. (8.38) couples different sites. Thus, one uses a decomposition

where one introduces two sublattices, Hi;j ¼ �tðĉcþi ĉcj þ ĉcþj ĉciÞ þ v1n̂ninj, fol-

lowing Barma and Shastry (1977)

H1 ¼
XN=2

i¼1

H2i�1;2i; H2 ¼
XN=2

i¼1

H2i;2iþ1: ð8:39Þ

Of course, here we require N to be even (only then does the system admit an

antiferromagnetic ground state with no domain wall in the limit v1 !1Þ:
The idea of this partitioning of the Hamiltonian is that now the terms in H1

all commute with each other as do the terms in H2, due to the local character

of the Hamiltonian,

½H2i�1;2i;H2j�1;2j
 ¼ ½H2i;2iþ1;H2j;2jþ1
 ¼ 0; all i; j: ð8:40Þ
Therefore the corresponding Trotter approximation reads

ZP ¼ Tr expð�H1;2=kBTPÞ expð�H3;4=kBTPÞ . . . expð�HN�1;N=kBTPÞ
*

expð�H2;3=kBTPÞ . . . expð�HN�2;N�1=kBTPÞ expð�HN:1=kBTPÞ
+P
ð8:41Þ

since Eqn. (8.40) implies that expð�xĤH1Þ ¼
QN=2

i¼1 expð�xHi;iþ1Þ and simi-

larly forH2, for arbitrary x. Introducing the representation mentioned above,

we need to evaluate the matrix elements

TðSi;Sj; ~SSi; ~SSjÞ � hSi;Sjj expð�Hi;j=kBTPÞj ~SSi; ~SSji; ð8:42Þ
which yields

TðSi;Sj; ~SSi; ~SSjÞ

¼

1 0 0 0

0 coshðt=PkBTÞ sinhðt=PkBTÞ 0

0 sinhðt=PkBTÞ coshðt=PkBTÞ 0

0 0 0 expð�v1=PkBTÞ

0
BBB@

1
CCCA

ð8:43Þ

where the lines of the matrix are ordered according to the states j�1;�1i,
j1;�1i, j�1, 1i and j1; 1i, from above to below, respectively. Then the

Trotter approximation for the partition function becomes (de Raedt and

Lagendijk, 1985)
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ZP ¼
X
S
ðSÞ
i

# $0
X
~SS
ðSÞ
i

# $0
YP
s¼1

T S
ðsÞ
1 ;SðsÞ2 ; ~SS

ðsÞ
1 ; ~SSðsÞ2

� �
. . .

T S
ðsÞ
N�1;S

ðsÞ
N ; ~SS

ðsÞ
N�1;

~SS
ðsÞ
N

� �
� T ~SS

ðsÞ
2 ; ~SSðsÞ3 ; ~SS

ðsþ1Þ
2 ; ~SSðsþ1Þ

3

� �
. . .

T ~SS
ðsÞ
N�2;

~SS
ðsÞ
N�1;

~SS
ðsþ1Þ
N�2 ;

~SS
ðsþ1Þ
N�1

� �
� T ~SS

ðsÞ
N
~SS
ðsÞ
1 ; ~SS

ðsþ1Þ
N

~SS
ðsþ1Þ
1

� �
1� jSðsÞ1 � S

ðsÞ
N j

� �Nþ1

: ð8:44Þ

The primes on the summation signs in Eqn. (8.44) mean that the sums over

the variables S and ~SS are restricted, because the total number N of fermions

is fixed, i.e.
PN

i¼1 S
ðsÞ
i ¼

PN
i¼1

~SS
ðsÞ
i ¼ 2N �N for all s. The last line in Eqn.

(8.44) represents the physical situation in which a particle moves from site 1

to site N and vice versa. Such moves destroy the ordering in which the

fermions have been created from the vacuum state. Therefore the last factor

is a correction term which results from reordering the fermion operators,

taking into account the anticommutation rules. Obviously, there are only

negative contributions to ZP if N is even, and no minus signs would be

present if there were free boundary conditions, because then the entire last

line of Eqn. (8.34) would be missing.

8.3.4 An intermezzo: theminus sign problem

For an interpretation of ZP as the trace of an equivalent classical Hamiltonian,

ZP ¼ Tr expð�HðPÞ
eff =kBTÞ, it is clearly necessary that all terms that contri-

bute to this partition sum are non-negative, because for a real HðPÞ
eff the term

expð�HðPÞ
eff =kBTÞ is never negative. The anticommutation rule of fermion

operators leads to negative terms, as they occur in Eqn. (8.44) for even N, and

this problem hampers quantum Monte Carlo calculations, in a very severe

way. Of course, the same problem would occur if we simply tried to work

with the Fermi equivalent of ZB in Eqn. (8.15), since then the eigenfunctions

��ðRÞ are antisymmetric under the permutation of particles,

ÂA��ðRÞ ¼
1

N!

X
P

ð�1ÞP�ðP̂PRÞ; ð8:45Þ

where ð�1ÞP is negative if the permutation is odd, while Eqn. (8.14) did not

lead to any such sign problems.

Now it is possible to generalize the Metropolis importance sampling

method to cases where a quantity �ðxÞ in an average (x stands here symbo-

lically for a high-dimensional phase space)

hÂAi ¼
ð
AðxÞ�ðxÞdx

3ð
�ðxÞdx ð8:46Þ

is not positive semi-definite, and hence does not qualify for an interpretation

as a probability density. The standard trick (de Raedt and Lagendijk, 1981)

amounts to working with ~��ðxÞ ¼ j�ðxÞj= Ð j�ðxÞdx as probability density for
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which one can do importance sampling, and to absorb the sign of �ðxÞ in the

quantity that is sampled. Thus

hÂAi ¼
Ð
AðxÞsignð�ðxÞÞ ~��ðxÞdxÐ

signð�ðxÞÞ ~��ðxÞdx ¼ hÂAŝsihŝsi ; ð8:47Þ

where ŝs is the sign operator that corresponds to the function sign (�ðxÞ).
While Eqn. (8.47) seems like a general solution to this so-called ‘minus sign

problem’, in practice it is useful only for very small particle number N. The

problem is that all regions of phase space are important but have contribu-

tions which tend to cancel each other. In practice this leads to the problem

that hŝsi is extremely small, huge cancellations occur in both hÂAŝsi and hŝsi, the

statistical fluctuations then will render an accurate estimation of hÂAi almost

impossible. The reader may obtain some insight into this situation by exam-

ining a much simpler problem which presents the same difficulty, namely the

evaluation of the integral

Fð�; xÞ ¼
ð1
�1

e�x2

cosð�xÞdx ð8:48Þ

in the limit that �!1 . The argument of this integral oscillates rapidly for

large � and the determination of the value by Monte Carlo methods, see

Chapter 3, becomes problematical. In the example given below we show how

the determination of the value of the integral becomes increasingly imprecise

as � increases. For � ¼ 0 the estimate after 107 samples is good to better than

0.03% whereas for � ¼ 4 the fluctuations with increasing sampling are of the

order of 1%. For larger values of � the quality of the result deteriorates still

more.

Example

Use simple sampling Monte Carlo to estimate Fð�; xÞ for x ¼ 0, 1.0, 2.0, 4.0:

Number of

points

�

0 1.0 2.0 4.0

10 000 000 0.885 717 0 0.688 967 0 0.325 109 0 0.016 047 0

20 000 000 0.886 325 5 0.689 699 0 0.325 827 5 0.016 436 0

30 000 000 0.886 106 0 0.689 621 0 0.325 403 7 0.015 922 3

40 000 000 0.885 929 5 0.689 765 3 0.325 628 3 0.016 033 8

50 000 000 0.886 271 8 0.690 020 8 0.325 923 2 0.016 206 6

60 000 000 0.886 562 6 0.690 204 5 0.325 984 2 0.016 246 7

70 000 000 0.886 407 4 0.690 090 4 0.325 772 1 0.016 037 0

80 000 000 0.886 347 0 0.690 090 5 0.325 786 0 0.015 939 5

90 000 000 0.886 206 9 0.689 879 8 0.325 688 7 0.015 898 8

100 000 000 0.886 201 2 0.689 889 0 0.325 741 1 0.016 048 8

Exact 0.886 226 6 0.690 194 0 0.326 024 5 0.016 231 8



Another very important quantum problem in which progress has been

limited because of the minus sign problem is the Hubbard Hamiltonian

(Hubbard, 1963),

HHubbard ¼ t
X
hi;ji

ĉcþi;� ĉcj;� þ ĉcþj;� ĉci;�
& 'þU

X
i

n̂ni#n̂ni" ð8:49Þ

where ĉcþi;�ðĉci;�Þ creates (annihilates) a fermion of spin � ¼";# at site i, t is the

hopping matrix element analogously to Eqn. (8.34), while U represents the

on-site Coulomb interaction strength. The minus sign problem has been

studied in detail, and it was found that (Loh et al., 1990)

hŝsi / expð��NU=kBTÞ; ð8:50Þ
where � is a constant that depends strongly on the filling of the band. It is

obvious that the minus sign problem gets worse as N increases and as the

temperature is lowered. Finding methods to avoid this problem (or at least to

make � very small) is still an active area of research.

8.3.5 Spinless fermions revisited

While the minus sign problem is also a severe problem for the Hamiltonian

Eqn. (8.34) in d ¼ 2 and 3 dimensions, for d ¼ 1 the only remnant of this

problem is the last factor on the right-hand side of Eqn. (8.34), and this is

clearly not a big problem (note that this term would be completely absent for

the choice of free boundary conditions).

The first step in dealing with Eqn. (8.44) is the elimination of the ~SS
ðsÞ
i

variables, which can be done analytically. Note that TðSi;Sj; ~SSi; ~SSjÞ from

Eqn. (8.43) can be rewritten as

TðSi;Sj; ~SSi; ~SSjÞ ¼ �SiSj
~SSi; ~SSj

TSi;Sj
ðSi;Si

~SSiSjÞ ð8:51Þ
where the remaining (2 � 2) matrices T1ðS;SÞ and T�1ðS;SÞ are

T1ðS;SÞ � 1 coshðt=kBTPÞ
coshðt=kBTPÞ expð�v1=kBTPÞ

� 	
ð8:52Þ

where the upper line refers to state j�1i and the lower line to state j1i, and

T�1ðS;SÞ � �S;S sinhðt=kBTPÞ: ð8:53Þ
Summing over the ~SS

ðsÞ
i in Eqn. (8.44) then yields

ZP ¼
X
S
ðsÞ
i

# $
X
f�jg

YP
j¼1

T
�j�

ð jÞ
1

S
ð jÞ
1 ; �j�

ð jÞ
1 S

ð jÞ
2

� �
T
�j�

ð jÞ
2

�j�
ð jÞ
2 S

ð jÞ
2 ;Sð jþ1Þ

3

� �
. . .

T
�j�

ð jÞ
N�1

S
ð jÞ
N�1; �j�

ð jÞ
N�1S

ð jÞ
N

� �
T
�j�

ð jÞ
N

�j�N;jS
ð jÞ
N ;Sð jþ1Þ

1

� �
�Nþ1
j �

�ð jÞ
N
;1
; ð8:54Þ

where the f�ð jÞ‘ g are string-like variables formed from the fSðsÞi g,

�ð jÞ‘ ¼
Y‘
i¼1

S
ð jÞ
i S

ð jþ1Þ
i : ð8:55Þ
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Therefore, the effective lattice model, HðPÞ
eff that results from Eqn. (8.54),

ZP � Tr expð�HðPÞ
eff =kBTÞ, contains non-local interactions both along the

chain and in the Trotter imaginary time direction, unlike the Ising model

in a transverse field, that had non-local interactions in the Trotter direction

only. The total number of variables in Eqn. (8.54) is PðN þ 1Þ; namely the

PN spins fSðsÞi g and P variables �j ¼ �1. The extra sum over the latter is a

consequence of the use of periodic boundary conditions. If we work with free

boundary conditions, this sum can be omitted in Eqn. (8.54) and we can put

�j � 1 there and no negative terms occur. Even then a Monte Carlo process

that produces states proportional to the Boltzmann weight expð�HðPÞ
eff =kBTÞ

is difficult to construct. To avoid the non-local interaction in the spatial

direction generated in Eqn. (8.54), one can rather attempt to construct a

Monte Carlo scheme that realizes the Boltzmann weight for Eqn. (8.44), at

the expense that one has twice as many variables (S
ðsÞ
i and ~SS

ðsÞ
i , respectively).

However, the zero matrix elements in Eqn. (8.43) imply that many states

generated would have exactly zero weight if one chose trial configurations of

the fSðsÞi ; ~SSðsÞi g at random: rather the Monte Carlo moves have to be con-

structed such that the Kronecker delta in Eqn. (8.51) is never zero. This

constraint can be realized by two-particle moves in the checkerboard repre-

sentation, Fig. 8.11, as proposed by Hirsch et al. (1982). Figure 8.12 shows

the type of results that can be obtained from this method. One can see from
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Fig. 8.11 Example of the elementary two-particle jump procedure for the checkerboard lattice, for

a chain of four sites. Each shaded square represents a T-matrix and determines which particles can

interact with each other (only particles that sit on the corners of the same shaded square). The

variables S
ð jÞ
i are defined on the rows j ¼ 1, 2 whereas the variables ~SS

ð jÞ
i are defined on the rows

between the j ¼ 1 and j ¼ 2 rows (note we have chosen P ¼ 2 here, and we must impose periodic

boundary conditions in the Trotter direction because of the trace operation; the figure implies also

the choice of periodic boundary conditions in the spatial direction as well). The black dots indicate

a state of the lattice with non-zero weight, representing particles present in the occupation number

representation (the thick lines connecting them are the so-called ‘world lines’). A trial state is

generated by moving two particles from one vertical edge of an unshaded square to the other. From

de Raedt and Lagendijk (1985).
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Fig. 8.12 (a) Points

showing Monte Carlo

data for the structure

factor for a 40-site

lattice containing 20

non-interacting

electrons (t ¼ 1,

V ¼ 0) at low

temperature,

1=kBT ¼ 4. Solid line

is the analytical

solution for this

system. (b) Monte

Carlo results for the

structure factor for

t ¼ 1, and V ¼ 2 at

1=kBT ¼ 4. Note the

difference in scale

between parts (a) and

(b). (c) Structure

factor Sðq ¼ pÞ for the

half-filled case with

v=2t ¼ 1 vs. the lattice

size. From Hirsch et

al. (1982).



Fig. 8.12 that non-trivial results for this fermion model in d ¼ 1 dimensions

have been obtained, but even in this case it is difficult to go to large N (the

largest size included in Fig. 8.12 is N ¼ 100), and statistical errors are con-

siderable at low temperatures. Nevertheless Fig. 8.12 gives reasonable evi-

dence for the quite non-trivial scaling dependence SðpÞ / lnN:
This case of fermions in d ¼ 1 has again shown that the PIMC methods

always need some thought about how best to split the Hamiltonian into parts

so that, with the help of the Trotter formalism, one can derive a tractable Heff .

Finding efficient Monte Carlo moves also is a non-trivial problem. Of course,

since the steps described in the present section the subject has been pushed

much further. We direct the interested reader to the reviews quoted in the

introduction for more recent work and details about specialized directions.

8.3.6 Cluster methods for quantum lattice models

In Chapter 5 we saw that for many kinds of classical models there were some

specialized techniques that could be used to effectively reduce the correlation

times between configurations which have been generated. The constraints on

direct application of these methods to the classical models which result from

the Trotter–Suzuki transformation arise due to the special constraints on

which spins may be overturned. Evertz and coworkers (1993) have intro-

duced a form of the cluster algorithm, known as the ‘loop algorithm’ which

addresses these difficulties. It is basically a worldline formulation that employs

non-local changes. We have already mentioned that the transformed spin mod-

els are equivalent to vertex models in which every bond contains an arrow

which points parallel or anti-parallel to a direction along the bond. Thus, in two

dimensions each vertex is the intersection of four arrows which obey the

constraints that there must be an even number of arrows flowing into or out

of a vertex and that they cannot all point either towards or away from the

vertex. A ‘loop’ is then an oriented, closed, non-branching path of bonds all of

which contain arrows which point in the same direction. This path may be self-

intersecting. A ‘flip’ then reverses all arrows along the loop. How are the loops
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Fig. 8.13 Possible loop

structure for the lattice

produced using the

Trotter formula for a

one-dimensional S ¼ 1
2

Heisenberg model.

Note that there are

periodic boundary

conditions applied in

both the real space

and Trotter directions.

From Gubernatis and

Kawashima (1996).



chosen? One begins with a randomly chosen bond and looks to the vertex to

which it points. There will be two outgoing arrows and one then needs to

decide which arrow the loop will follow; this depends upon the model in

question. An example of a possible loop configuration is shown in Fig. 8.13.

For some models it is also possible to define improved estimators in terms of

the ‘cluster’ properties just as was done for simple classical spin models.

The method was further generalized to arbitrary spin value by Kawashima

and Gubernatis (1995) and we refer the reader there (or to Gubernatis and

Kawashima (1996), Kawashima (1997)) for more details.

8.3.7 Continuous time simulations

The lowest temperature that can be reached using the path integral/Trotter-

Suzuki decomposition methods is dependent upon the number of time slices

that are introduced. To go to the continuum limit in time, i.e. infinite Trotter

index, one needs to imagine producing increasingly fine granularity in time,

i.e. the plaquettes approach infinitesimal length in the time direction. A

continuous time algorithm is the limit of this process and offers the advantage

that one does not need to store all spins states in the time direction but rather

only the initial state (at time t ¼ 0) plus the transition times for each spin site

(Beard and Wiese, 1996). Thus, the continuous time algorithm eliminates one

of the most severe sources of systematic error and removes the excess burden

of performing multiple simulations with different numbers of time slices in

order to attempt to extrapolate to the infinite limit. Although the original

implementation was demonstrated for a Heisenberg antiferromagnet on a

square lattice, the continuous-time formulation can be applied to a wide

range of problems and does not rely on the use of a particular sampling

algorithm, e.g. ‘cluster flipping’.

8.3.8 Decoupled cell method

A different approach was proposed by Homma et al. (1984, 1986). The

system is divided into a set of ‘cells’ consisting of a center spin i and a

symmetric set of surrounding neighbors. The energies of the different states

of the cell are solved for as an eigenvalue problem of the cell portion of the

Hamiltonian and then Monte Carlo sampling is carried out, i.e. spin-flipping,

using relative probabilities of these cell states. The size of the cell is then

systematically increased to allow extrapolation to the full lattice.

To examine this method more formally we begin by expressing si as the

state of the central spin i in a cell, Si as the state of all other spins in the cell,

and Si as the state of all spins outside of the cell. The transition probability

between state S ¼ ðsi;Si;SiÞ and S 0 ¼ ð�si;Si;SiÞ is

qðSÞ ¼ PðSÞ
PðS 0Þ ¼

hSj expð�
HÞjSi
hS 0j expð�
HÞjS 0i ð8:56Þ
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and this is then approximated by

qð�ÞðSÞ ¼ hsiSij expð�
Hð�; iÞjsiSii
h�siSij expð�
Hð�; iÞj � siSii

ð8:57Þ

where Hð�; iÞ is the cell Hamiltonian for a cell of size �. The transition

probability is then simply

WDCð�si ! siÞ ¼ max½1; qð�ÞðSiÞ
: ð8:58Þ
This procedure has been used successfully for a number of different

quantum spin systems, but at very low temperatures detailed balance begins

to break down and the specific heat becomes negative. A modified version of

the decoupled cell method was introduced by Miyazawa et al. (1993) to

remedy this problem. The improvement consists of dividing the system

into overlapping cells such that every spin is at the center of some cell and

then using all cells which contain spin i to calculate the flipping probability

instead of just one cell in which the ith spin was the center. Miyazawa and

Homma (1995) provide a nice overview of the enhanced method and describe

a study of the J1�J2 model using this approach The decoupled cell method

was also used to study the quantum XY-model on a triangular lattice using

systems as large as 45� 45 and seven-spin cells. Typically 104 Monte Carlo

steps were used for equilibration and between 104 and 8� 104 were used for

averaging. Both groundstate properties and temperature-dependent thermal

properties were studied.

8.3.9 Handscomb’s method

An alternative method with a completely different philosophy was suggested

by Handscomb (1962, 1964). Although it has been used for a rather limited

range of problems, we mention it here for completeness. For simplicity, we

describe this approach in terms of a simple linear S ¼ 1
2

Heisenberg chain of

N spins whose Hamiltonian we re-express in terms of permutation operators

Eði; jÞ ¼ ð1þ ŜSi � ŜSjÞ=2

H ¼ �J
XN
i¼1

Eði; i þ 1Þ þ 1
2
JN: ð8:59Þ

The exponential in the partition function is then expanded in a power series

in 
H to yield

Z ¼
X1
n¼0

Trfð
HÞng

¼
X1
n¼0

X
Cn

1

n!
TrfHi1

. . .Hin
g

¼
X1
n¼0

X
Cn

Kn

n!
TrfPðCnÞg

ð8:60Þ

8.3 Lattice problems 303



where K ¼ 
J and the second sum is over all possible products PðCnÞ with n

operators Eði; i þ 1Þ. The distribution function can then be expressed as

pðCnÞ ¼
Kn

n!
TrfPðCnÞg: ð8:61Þ

The Monte Carlo process then begins with an arbitrary sequence of permu-

tation operators. A trial step then consists of either adding an operator to a

randomly chosen place in the sequence or deleting a randomly chosen opera-

tor from the sequence subject to the condition of detailed balance,

PðCnþ1 ! CnÞpðCnþ1Þ ¼ PðCn ! Cnþ1ÞpðCnÞ; ð8:62Þ
where Pi is the probability of choosing an operator. This approach has been

successfully applied to several quantum Heisenberg models by Lyklema

(1982), Lee et al. (1984), Gomez-Santos et al. (1989) and Manousakis and

Salvador (1989). Studies of Heisenberg chains used 2� 105 Monte Carlo

steps for equilibration and as many as 5� 106 Monte Carlo steps for statis-

tical averaging. Lee et al. (1984) have modified the approach by shifting the

zero of the energy with the result that only terms with an even number of

operators give non-zero trace, a modification which helps to largely overcome

the minus sign problem in antiferromagnetic quantum Heisenberg models

studied by this method. Note that this approach does not make the problem

trivial; the study of 32� 32 square lattice systems still required 6� 106

Monte Carlo steps! Sandvik and Kurkijärvi (1991) later introduced a further

generalization which is applicable to any spin length.

8.3.10 Wang-Landau sampling for quantummodels

Although the Wang-Landau sampling algorithm described in Chapter 5

would at first glance seem to be inapplicable for quantum systems, Troyer

et al. (2003) showed how a clever modification of perspective could enable use

of the method. They start by expressing the partition function as a high

temperature expansion

Z ¼
X1
n¼0


n

n!
Tr �Hð Þn�

X1
n¼0

gðnÞ
n ð8:63Þ

where 
 ¼ 1=kBT
. The nth order series coefficient gðnÞ will play the role of

the density of states in the original (classical) version of the algorithm. The

quantum algorithm then performs a random walk in the space of series

expansion coefficients, monitors the histogram in their orders n, and deter-

mines coefficients gðnÞ. When gðnÞ is determined to sufficient precision it is

then used, via Eqn. (8.63) to determine the thermodynamic properties. As an

example, in Fig. 8.14 we show the temperature dependence of the structure

factor at the Brillouin zone boundary (related to the staggered susceptibility)

for a Heisenberg antiferromagnet on an L� L� L simple cubic lattice. Quite

precise data can be obtained in this manner using modest computer resources

(a few days on an 800 MHz. Pentium-III CPU).
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This algorithm was also applied to the study of a first order transition in a

two-dimensional hard core Boson model. At low temperature and half filling

the ordered state consists of stripes that can run either horizontally or verti-

cally. The tunneling times between these two equivalent configurations can

be greatly reduced using the quantum version of Wang-Landau sampling, as

shown in Fig. 8.15.

A very different approach can be followed to allow study of quantum phase

transitions, i.e. at T ¼ 0. Instead of scanning a temperature range one can

vary the interactions at constant temperature. If we define the Hamiltonian by

H ¼ Ho þ 
V , we can rewrite the partition function

Z ¼
X1
n¼0


n

n!
Tr �Ho � 
Vð Þn¼

X1
n
¼0

~ggðn
Þ
n
 ð8:64Þ

and a very similar sampling approach can be used as for Eqn. (8.63).
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Fig. 8.14 Scaling plot

of the structure factor

at the Brillouin zone

boundary for a cubic

antiferromagnet

as a function of

temperature. The inset

shows the specific

heat. The cutoff
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the calculation to
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Troyer et al., 2003.)
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From the two examples discussed above, we see again, then, that an

intelligent use of algorithms is often far more powerful than brute force.

8.3.11 Fermion determinants

Since it is so hard to deal with fermionic degrees of freedom in quantum

Monte Carlo calculations directly, it is tempting to seek methods where one

integrates over fermionic degrees of freedom analytically, at the expense of

having to simulate a problem with a much more complicated Hamiltonian

(Blanckenbecler et al., 1981). This route is, for instance, followed in simula-

tions dealing with lattice gauge theory, see Chapter 11, where one has to deal

with a partition function

Z ¼
ð
DA�D�D� exp½SðA�;�;�Þ
 ð8:65Þ

where A� (� denotes Cartesian coordinates in the four-dimensional

Minkowski space) denote the gauge fields, and �, � stand for the particle

fields (indices f ¼ 1; . . . ; nf for the ‘flavors’ and c ¼ 1; . . . ; nc for the ‘colors’

of these quarks are suppressed). Now quantum chromodynamics (QCD)

implies that the action S is bilinear in �, � and hence can be written as

(M̂M is an operator that need not be specified here)

SðA�;�;�Þ ¼ 1

kBT
H0ðA�Þ �

Xnf

i¼1

�M̂M�: ð8:66Þ

Here we have written the part of the action that depends on gauge fields only

as ð1=kBTÞH0, to make the analogy of QCD with statistical mechanics expli-

cit. Note that this formulation is already approximate, since one uses one-

component fields (so-called ‘staggered fermions’ rather than four-component

Dirac spinors) here. Now it is well known that the path integration over the

fermionic fields (remember these are anticommuting variables) can be inte-

grated out to yield

Z ¼
ð
DA�ðdet M̂MÞnF exp½�H0ðA�Þ=kBT 


¼
ð
DA� exp½�Heff ðA�Þ=kBT 


Heff ðA�Þ ¼ H0ðA�Þ �
nf

2
ln½detðM̂MþM̂MÞ
: ð8:67Þ

In the last step (det M̂M) was replaced by ½detðM̂MþM̂MÞ
1=2, provided the deter-

minant is positive-definite. Unfortunately, this condition is satisfied only in

special cases with ‘particle-hole’ symmetry, e.g. QCD in a vacuum or the

simplest Hubbard model at half-filling! While H0ðA�Þ in the lattice formula-

tion of QCD is local, see Chapter 11, the above determinant introduces a

non-local interaction among the A�.

In condensed matter problems such as the Hubbard Hamiltonian this

method does not work directly, since in addition to the bilinear term in
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the fermion operators tĉcþi� ĉcj� (describing hopping of an electron with spin

� ¼";# from site i to site j) one also has the on-site interaction

Un̂ni"n̂ni# ¼ Uĉcþi"ĉci" ĉc
þ
i# ĉci#. However, it is still possible to eliminate the fermio-

nic degrees of freedom from the partition function by introducing auxiliary

(bosonic) fields. The key element of this step is the relation

ðþ1
�1

e�a�
2�b�d� ¼

ffiffiffi
p
a

r
e�b2=4a; a > 0: ð8:68Þ

Thus a variable b appearing quadratic in the argument of an exponential can

be reduced to a linear term (the term b� on the left-hand side of the above

equation) but on the expense of an integration over the auxiliary variable �.

This trick then yields for the on-site interaction of the Hubbard model for

U > 0

exp � U

kBTP

XN
‘¼1

n̂n‘"n̂n‘#

� !

/
YN
‘¼1

ðþ1
�1

d�‘ exp �PkBT�
2
‘

2U
� �‘ðn̂n‘" � n̂n‘#Þ �

Uðn̂n‘" þ n̂n‘#Þ
2kBTP

" #
:

ð8:69Þ

Using this expression in the framework of the Trotter decomposition, one

then can carry out the trace over the fermionic degrees of freedom and again

obtain a determinant contribution to the effective Hamiltonian that is for-

mulated in terms of the f�‘g, the auxiliary boson fields.

Of course, these remarks are only intended to give readers the flavor of the

approach, and direct them to the original literature or more thorough reviews

(e.g. de Raedt and von der Linden, 1992) for details.

8.4 MONTE CARLO METHODS FOR THE STUDY
OF GROUNDSTATE PROPERTIES

For some quantum mechanical many-body problems even understanding the

groundstate is a challenge. A famous example (which is of interest for the

understanding of high-Tc superconductivity in the CuO2 planes of these

perovskitic materials) is the groundstate of the spin-1
2

Heisenberg antiferro-

magnet on the square lattice. While for the Ising model the problem is

trivial – with a nearest neighbor interaction the lattice simply is split in

two ferromagnetic sublattices in a checkerboard fashion, on one sublattice

spins are up, on the other they are down. This so-called Néel state is not a

groundstate of the Heisenberg antiferromagnet.

Various methods have been devised to deal with problems of this kind, e.g.

variational Monte Carlo (VMC) methods, Green’s function Monte Carlo

(GFMC), and projector quantum Monte Carlo (PQMC). In the following,
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we only sketch some of the basic ideas, following de Raedt and von der

Linden (1992).

8.4.1 Variational Monte Carlo (VMC)

The starting point of any VMC calculation is a suitable trial wave function,

j�T fmgi, which depends on a set of variational parameters fmg. Using the fact

that the problem of Heisenberg antiferromagnets can be related to the hard-

core Boson problem, we describe the approach for the latter case. We write

(de Raedt and von der Linden, 1992)

j�itrial ¼
X
	

exp �
X
ij

�ij	i	j

( )
j	i; ð8:70Þ

where the summation extends over all real space configurations 	, with

	i ¼ 1 if site i is occupied and 	i ¼ 0 otherwise. The expectation value

for an arbitrary operator ÔO is then

hÔOi ¼ trialh�jÔOj�itrial

trialh�j�itrial

¼
X
	

Pð	ÞOð	Þ ¼ 1

M

XM
‘¼1

Oð	ð‘ÞÞ; ð8:71Þ

with

Oð	Þ ¼
X
	

h	jÔOj	 0i exp �
X
ij

�ijð	 0i	 0j � 	i	jÞ
( )

: ð8:72Þ

The Markov chain of real space configurations is denoted in Eqn. (8.71) as

	ð1Þ;	ð2Þ; . . . ;	ðMÞ, M being the total number of configurations over which is

sampled. Thus one can use an importance sampling method here, not with a

thermal probability density Z�1 expð�Heff=kBTÞ but with a probability den-

sity Pð	Þ given as

Pð	Þ ¼ ðZ 0Þ�1 exp �2
X
ij

�ij	i	j

� !
; Z 0 ¼

X
	

exp �2
X
ij

�ij	
0
i	

0
j

� !
:

ð8:73Þ
The energy is calculated using Eqn. (8.69) for the Hamiltonian H and it is

minimized upon the variational parameters f�ijg. Of course, in order that this

scheme is tractable, one needs a clever ansatz with as few such parameters as

possible. A short range interaction (SR) corresponds to a wave function

proposed a long time ago by Hulthén (1938), Kasteleijn (1952) and

Marschall (1955):

�SR
ij ¼

1; if i ¼ j (hard-core on-site interaction)

�; if i; j are nearest neighbors

0; otherwise.

8<
: ð8:74Þ

The variational principle of quantum mechanics implies hHi � E0, the

groundstate energy, as is well known. Therefore, the lower energy a trial
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wave function j�itrial yields the closer one can presumably approximate the

true groundstate. It turns out that lower energies are found when one

replaces the ‘zero’ in the last line by a long range part (Horsch and von

der Linden, 1988; Huse and Elser, 1988),

�LR
ij ¼ �jri � rjj�
; ð8:75Þ

if i; j are more distant than nearest neighbors, and �, 
 then are additional

varational parameters. All these trial wave functions lead to long range order

for the two-dimensional Heisenberg antiferromagnet which is more compli-

cated than the simple Néel state, namely the so-called ‘off-diagonal long

range order’ (ODLRO). Another famous trial function, the ‘resonant valence

bond’ state (RVB) originally proposed by Liang et al. (1988), corresponds to

the choice (Doniach et al. (1988); p is another variational parameter)

�ij ¼ p lnðjri � rjjÞ ð8:76Þ
in the case where (incomplete) long range order of Néel type is admitted.

Also other types of RVB trial functions exist (Liang et al. (1988)) which lead

only to a groundstate of ‘quantum liquid’ type with truly short range anti-

ferromagnetic order.

Problem 8.2 Show that the order parameter M̂M ¼P
i ŜSi of a quantum

Heisenberg ferromagnet (H ¼ �JPhi;ji ŜSi � ŜSj, for spin quantum number
S ¼ 1

2, J > 0) commuteswith theHamiltonian. Show that the staggeredmag-
netization (order parameter of the Ne¤ el state) does not commute with the
Hamiltonian of the corresponding antiferromagnet (J < 0). Interpret the
physical consequences of these results.

Problem 8.3 Transform the Heisenberg antiferromagnet on the square
lattice, H ¼ J

P
hi;ji Si � Sj, into the hard-core boson Hamiltonian,

H ¼ �JP hi;jib̂bþi b̂bj þ J
P
hi;ji n̂nin̂nj þ E0, by using the transformations

ŜSþi ¼ ŜSxi þ iŜSy ¼ ~̂bb~bb
þ
i ; ŜS

�
i ¼ ŜSxi � iŜSyi ¼ ~̂bb~bbi, and ŜSzi ¼ 1

2� ~̂bb~bb
þ
i
~̂bb~bbi, with the hard-

core constraint b̂bþ2
i ¼ 0 and b̂bi ¼ ei ~̂bb~bbi, with ei ¼ 1 on sublattice 1, ei ¼ �1

on sublattice 2, n̂ni ¼ b̂bþi b̂bi. Show that E0 ¼ �JðN� NbÞ, whereN is the num-
ber of spins andNb is related to the z-component of the total magnetization,
Nb ¼ N=2� SZ0 ðNb ¼

P
ihn̂nii is the total number of bosons).

8.4.2 Green’s functionMonte Carlo methods (GFMC)

The basic idea of GFMC (originally used to study the groundstate of the

interacting electron gas by Ceperley and Alder (1980); it has also been

extended to study the two-dimensional Heisenberg antiferromagnet,

Trivedi and Ceperley (1989)) is the repeated application of the

Hamiltonian H to an almost arbitrary state of the system, in order to ‘filter

out’ the groundstate component. To do this, one carries out an iterative

procedure
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j�ðnþ1Þi ¼ ½1� �ðH � �h!Þ
j�ðnÞi ¼ ĜGj�ðnÞi; ð8:77Þ
where we have written down the nth step of the iteration, and �h! is a guess

for the groundstate energy. Since ĜG can be viewed as the series expansion of

the imaginary time evolution operator exp½��ðH � �h!Þ
 or of the propagator

½1þ �ðH � �h!Þ
�1 for small steps of imaginary time �, the notion of a

Green’s function for ĜG becomes plausible.

Now the iteration converges to the groundstate only if � < 2=ðEmax � �h!Þ,
Emax being the highest energy eigenvalue of H, which shows that GFMC is

applicable only if the spectrum of energy eigenvalues is bounded. In addition,

this condition implies that � has to decrease as 1=N because Emax � Eo / N.

Therefore, one needs a large number of iterations with increasing system size.

In order to realize Eqn. (8.77), one expands the many-body wave function

j�i in a suitable set of many-body basis states jRi;
j�i ¼

X
R

�ðRÞjRi ð8:78Þ

which must be chosen such that the coefficients �ðRÞ are real and non-

negative, so that they can be regarded as probability densities. In the hard-

core boson problem described above (Problem 8.3), one can write explicitly

jRi ¼
YNb

‘¼1

~̂bb~bb
þ
r‘ j0i ð8:79Þ

where j0i is a state with no bosons, while b̂bþr‘ creates a boson at site r‘. Thus R

stands symbolically for the set fr‘g of lattice sites occupied by bosons. In this

representation, the iteration Eqn. (8.77) reads

�ðnþ1ÞðRÞ ¼
X
R 0

GðR;R 0Þ�ðnÞðR 0Þ; ð8:80Þ

where GðR;R0Þ are the matrix elements of ĜG propagating configuration R 0 to
R,

GðR;R 0Þ ¼ hRj½1� �ðH � �h!Þ
jR 0i ¼
1� �½UðRÞ � �h!
 if R ¼ R 0

�J=2 if R 2 NðR 0Þ
0 otherwise.

8<
:

ð8:81Þ
Here UðRÞ ¼ hRjHpotjRi is the expectation value of the potential energy of

this hard-core boson Hamiltonian, and the set NðR 0Þ contains all those con-

figurations that can be obtained from R 0 by moving one of the bosons to any

of the available nearest neighbor positions.

In order to introduce Monte Carlo sampling techniques into this iteration

scheme, one decomposes GðR;R 0Þ into a matrix PðR;R 0Þ and a residual

weight W ðR 0Þ; GðR;R 0Þ ¼ PðR;R 0ÞW ðR 0Þ such thatX
R

PðR;R 0Þ ¼ 1 and PðR;R 0Þ � 0: ð8:82Þ
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Starting with an initial state j�ð0Þi, the probability density after n iterations

becomes

�ðnÞðRÞ ¼ hRjĜGnj�ð0Þi
¼

X
R0;R1...Rn

�R;Rn
W ðRn�1ÞW ðRn�2Þ . . .W ðR0Þ

� PðRn;Rn�1ÞPðRn�1;Rn�2Þ . . .PðR1;R0Þ�ð0ÞðR0Þ: ð8:83Þ
One defines an n-step random walk on the possible configurations R. With

probability �ð0ÞðR0Þ the Markov chain begins with configuration R0 and the

random walk proceeds as R0 ! R1 ! R2 ! . . .Rn. The transition prob-

ability for the move R‘ ! R‘þ1 is given by PðR‘þ1;R‘Þ. For each walk the

cumulated weight is

W ðnÞ ¼
Yn�1

‘¼0

W ðR‘Þ: ð8:84Þ

Since the probability for one specific walk is
Qn

‘¼1 PðR‘;R‘�1Þ�ð0ÞðR0Þ, one

finds that the desired wave function can be constructed as the mean value of

the weights W
ðnÞ
k averaged over M independent walks labeled by index k,

�ðnÞðRÞ ¼ lim
M!1

1

M

XM
k¼1

W
ðnÞ
k �R;Rn;k

: ð8:85Þ

As it stands, the algorithm is not very practical since the variance of the

estimates increases exponentially with the number of iterations n. However,

one can reduce the variance by modifying the scheme through the introduc-

tion of a ‘guiding wave function’ j�Gi (Schmidt and Kalos, 1984) which leads

to a sort of importance sampling in the iteration process. However, this

technique as well as other techniques to reduce the variance (Trivedi and

Ceperley, 1989), are too specialized to be treated here.

We conclude this section by comparing the results for the order parameter

m of the nearest neighbor Heisenberg antiferromagnet on the square lattice

(in a normalization where m ¼ 1
2

for the Néel state): while Eqn. (8.60) yields

m ¼ 0:42 (Huse and Elser, 1988), Eqn. (8.50) yields 0:32  m  0:36
(Horsch and von der Linden, 1988; Huse and Elser, 1988; Trivedi and

Ceperley, 1989), GFMC yields 0:31  m  0:37 (Trivedi and Ceperley,

1989), while grand canonical ‘worldline’ quantum Monte Carlo (which is

based on the Trotter formulation, similar as described in the previous section,

and in the end uses an extrapolation to T ! 0) yields m ¼ 0:31 (Reger and

Young, 1988).

8.5 CONCLUDING REMARKS

In this chapter, we could not even attempt to cover the field exhaustively but

rather tried to convey to the reader the flavor of what can be accomplished
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and how it is done. Of course, many recent variations of the technique have

not been described at all, though they are quite important to deal with more

and more problems of solid state physics (such as lattice dynamics beyond the

harmonic approximation, electron–phonon coupling, spin–phonon coupling,

magnetism, superconductivity, magnetic impurities in metals, hydrogen and

other light interstitials in metals, tunneling phenomena in solids, hydrogen-

bonded crystals like ice, HF, HCl etc.). One particularly interesting recent

development has not been dealt with at all, namely the study of quantum

dynamical information. As is well known, Monte Carlo sampling readily

yields correlations in the ‘Trotter direction’, i.e. in imaginary time,

hÂAð0ÞÂAð�Þi: If we could undo the Wick rotation in the complex plane ðit=p!
�Þ the propagator expð��HÞ would again become the quantum mechanical

time evolution operator expð�itH=pÞ. If exact information on hÂAð0ÞÂAðtÞi
were available, one could find hÂAð0ÞÂAðtÞi by analytic continuation; however,

in practice this is extremely difficult to do directly because of statistical

errors. Gubernatis et al. (1991) have shown that using quantum Monte

Carlo in conjunction with the maximum entropy method (Skilling, 1989)

one can find hÂAð0ÞÂAðtÞi from hÂAð0ÞÂAðtÞi in favorable cases.
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9 Monte Carlo renormalization group

methods

9.1 INTRODUCTION TO RENORMALIZATION
GROUP THEORY

The concepts of scaling and universality presented in the second chapter of

this book can be given concrete foundation through the use of renormaliza-

tion group (RG) theory. The fundamental physical ideas underlying RG

theory were introduced by Kadanoff (Kadanoff, 1971) in terms of a simple

coarse-graining approach, and a mathematical basis for this viewpoint was

completed by Wilson (Wilson, 1971). Kadanoff divided the system up into

cells of characteristic size ba where a is the nearest neighbor spacing and

ba < � where � is the correlation length of the system (see Fig. 9.1). The

singular part of the free energy of the system can then be expressed in terms

of cell variables instead of the original site variables, i.e.

Fcellð ~""; ~HHÞ ¼ bdFsiteð";HÞ; ð9:1Þ
where " ¼ j1 � T=Tcj; ~"" and ~HH are cell variables, and d is the lattice dimen-

sionality. This is merely a statement of the homogeneity of the free energy

and yields the scaling expression

Fð�aT "; �aHHÞ ¼ �Fð";HÞ: ð9:2Þ
According to formal RG (renormalization group) theory the initial

Hamiltonian is transformed, or renormalized to produce a new Hamil-

tonian; this process may be repeated many times and the resultant

Hamiltonians, which may be given a characteristic index n to describe the

number of times the transformation has been applied, are related by

Hðnþ1Þ ¼ RbHðnÞ: ð9:3Þ
The renormalization group operator Rb acts to reduce the number of degrees

of freedom by bd where b is the spatial rescaling factor and d the spatial

dimensionality. (It is perhaps worthwhile pointing out that this generally

does not constitute a true group theory since Rb typically has no inverse.)

Note that the renormalized Hamiltonian may contain terms (i.e. additional

couplings) which were not originally present and which appear only as a

result of the renormalization transformation. Of course, the partition function

Z must not be changed by this process since it is only being expressed in
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terms of new variables. After the transformation has been applied many times

the Hamiltonian has reached an invariant or ‘fixed point’ form H� and no

longer changes, i.e.

H� ¼ RbH�: ð9:4Þ
This means that the Hamiltonian of a system at its critical point will move, or

‘flow’, towards the fixed point Hamiltonian upon successive applications of

the RG transformation until the form no longer changes. Conversely, if the

system is not initially at a critical point, upon renormalization the

Hamiltonian will ‘flow’ away from the fixed point of interest (see Fig. 9.2).

In a study of an Ising-type Hamiltonian for T > Tc one ultimately reaches a
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Fig. 9.1 Schematic

subdivision of the

lattice into cells. The

lattice constant is a,

the rescaling factor is

b, and the correlation

length is denoted as �.

Fig. 9.2 Schematic RG

flow diagram in a two-

dimensional parameter

space. The heavy

curve represents the

critical hypersurface.

Point 1 is the critical

value and the other

points labeled show

the flow towards the

fixed point (heavy

filled circle).



trivial fixed point corresponding to the ideal paramagnet at T ! 1. (After a

few rescalings the block size abn exceeds � and the different blocks are then

uncorrelated.) For T < Tc the flow is to a different, zero temperature fixed

point. The Hamiltonian is written in the same general framework at each

application of the transformation, e.g. an Ising-type Hamiltonian

H=kBT ¼ K1

X
i

Si þ K2

X
hi;ji

SiSj þ K3

X
hi;j;ki

SiSjSk

þ K4

X
hi;j;k;li

SiSjSkSl þ 
 
 
 :
ð9:5Þ

The space of coupling constants fK1;K2; . . .g is then the space in which the

flow is considered. A model Hamiltonian can generally be extended to include

other interactions such that an entire hypersurface of critical points is pro-

duced; in all cases in which we begin on the critical hypersurface, the system

Hamiltonian should move, or ‘flow’, towards the fixed point of interest. When

a system is at a multicritical point, it will flow towards a new ‘fixed point’

instead of towards the critical fixed point. Close to the multicritical point

there may be complex crossover behavior and the system may at first appear

to flow towards one fixed point, but upon further application of the RG

transformation it begins to flow towards a different fixed point. Thus, RG

theory very nicely illuminates the universality principle of critical phenom-

ena: each type of criticality is controlled by a particular fixed point of the RG

transformation that is considered (Fisher, 1974a).

Near the fixed point one can generally linearize the problem so that the

Hamiltonian H0 is related to the fixed point form by

H0 ¼ Rb½H�� þ hLQ ¼ H� þ hLQ þ 
 
 
 ; ð9:6Þ
where the linear operator L has the eigenvalue equation

LQj ¼ �jQ j ð9:7Þ
with �j being the eigenvalue and Q j the eigenvector. In terms of the spatial

rescaling factor b

�j ¼ byj ; ð9:8Þ
where yj is termed an ‘exponent eigenvalue’ which can be related to the usual

critical exponents, as we shall see later. We can then write an expression for

the transformed Hamiltonian in terms of these eigenvalues

H0 ¼ H� þ
X

hj�jQ j þ 
 
 
 : ð9:9Þ
From this equation we can immediately write down recursion relations for

the hj

h
ðkþ1Þ
j � �jh

ðkÞ
j ð9:10Þ

which may be solved to give values for the eigenvalues. The free energy in

terms of the original and renormalized variables is again unchanged:
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f ðh1; h2; h3; . . .Þ � b�df ðb�1h1; b
�2h2; . . .Þ ð9:11Þ

where we may identify h1 ¼ k1t, h2 ¼ k2H, etc. Choosing b so that b�1 t ¼ 1 ,

we can rewrite this equation with k1; k2 constants

f ðt;H; h3Þ � td=�1 f ðk1; k2;H=t�2=�1 ; . . .Þ: ð9:12Þ
Thus, if we identify d=�1 ¼ 2 � 	 and �2=�1 ¼ �; we have ‘derived’ scaling.

For completeness, we briefly mention the momentum space approach to

renormalization group theory. In this case the coarse-graining and rescaling

which occurs as part of the RG process is defined in k-space (momentum

space instead of real space). In terms of a Landau-like Hamiltonian, the

Fourier space form is

HðmÞ ¼ 1=2

ð
dkðk2 þ roÞjmðkÞj2 þ 
 
 
 : ð9:13Þ

A cutoff momentum 
 is then introduced, the k values which lie between 

and 
=b are integrated out, and then the variable of integration is rescaled by

k0 ¼ bk. The order parameter is then renormalized and one subsequently

repeats the same steps. A perturbation expansion is then realized which

leads to recursion relations for the effective interaction parameters. The

solution to these equations gives rise to the ‘fixed points’ in the problem.

Perturbation parameters may include the difference in lattice dimensionality

from the upper critical dimension " ¼ ðdu � dÞ or the inverse of the number

of components of the order parameter n. For simple magnetic systems with

isotropic, short range couplings the upper critical dimension is du ¼ 4 and

the leading order estimates for critical exponents are (Wilson and Fisher,

1972):

	 ¼ 4 � n

2ðnþ 8Þ "þ 
 
 
 where " ¼ 4 � d; ð9:14aÞ

� ¼ 1

2
� 3

2ðnþ 8Þ "þ 
 
 
 ; ð9:14bÞ

� ¼ 1 þ ðnþ 2Þ
2ðnþ 8Þ "þ 
 
 
 : ð9:14cÞ

Of course, for simple models of statistical mechanics higher order expressions

have been derived with the consequence that rather accurate estimates for

critical exponents have been extracted, see e.g. Brezin et al. (1973) and Zinn-

Justin and Le Guillou (1980). A rather sophisticated analysis of the expan-

sions is required in general. Renormalization group theory was used to suc-

cessfully understand the behavior of the tricritical point by Wegner and

Riedel (1973) who showed that Landau theory exponents are indeed correct

in three dimensions but that the critical behavior is modified by the presence

of logarithmic corrections. Further, a renormalization group analysis of bicri-

tical and related tetracritical points has been carried out by Nelson et al.

(1974). While the momentum space RG has yielded fairly accurate results for

the critical exponents of the n-vector model, the accuracy that was reached
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for other problems is far more modest, e.g. universal scaling functions

describing the equation of state, or describing the crossover from one uni-

versality class to another, typically are available in low-order "-expansion

only, and hence describe real systems qualitatively but not quantitatively.

Moreover, the momentum space RG in principle yields information on uni-

versal properties only, but neither information on the critical coupling con-

stants (Tc, etc.) nor on critical amplitudes (Chapter 2) is provided. The real

space RG can yield this information, and hence we turn to this approach now.

This work has been augmented by Monte Carlo simulations which have

examined tricritical behavior in the three-dimensional Ising model and

explored the four-dimensional phase diagram, i.e. in Hk;H?;H
þ
k ;T space,

of the anisotropic Heisenberg model.

Of course, RG theory is a huge subject with many subtle aspects which can

fill volumes (e.g. Domb and Green, 1976). Here we only wish to convey the

flavor of the approach to the reader and emphasize those aspects which are

absolutely indispensible for understanding the literature which uses Monte

Carlo renormalization group methods.

9.2 REAL SPACE RENORMALIZATION GROUP

A number of simple RG transformations have been used with generally good

success. By ‘simple’ we mean that the space of coupling constants that is

allowed for is kept low-dimensional: this is an arbitrary and uncontrolled

approximation, but it allows us to carry out the calculations needed for the

renormalization transformation in a fast and convenient way. One approach is

the ‘blockspin’ transformation in which a b� b block of spins is replaced by a

‘superspin’ whose state is determined by the state of the majority of spins in

the block. If the number of spins in a block is even, one site in each block is

designated as a ‘tie-breaker’. Another alternative is the ‘decimation’ process in

which the lattice is renormalized by taking every bth spin in all directions. In

a nearest neighbor antiferromagnet a simple majority rule over a ð2 � 2Þ
blockspin would give zero for all blockspins when the system was in the

groundstate. Thus a more natural and useful choice is to have the ‘blockspins’

composed of more complex structures where each block resides on a single

sublattice. Examples of several blockspin choices are shown in Fig. 9.3. Note

that the
ffiffiffi
5

p � ffiffiffi
5

p
transformation rotates the lattice through an angle

’ ¼ p=4 (this rotation effect is shown more clearly for the
ffiffiffi
7

p � ffiffiffi
7

p
trans-

formation on the right in Fig. 9.3) but preserves the square lattice symmetry.

If a second transformation is applied but chosen to rotate the lattice through

angle �’, the original orientation is recovered. The underlying ideas of RG

theory are demonstrated in Fig. 9.4 where we have taken Monte Carlo

generated configurations in a spin-1
2

Ising model on a 512 � 512 square

lattice with periodic boundaries at three different temperatures near Tc. A

b ¼ 2 blockspin transformation is applied and then the lattice is rescaled to

the original size. At 0:95Tc the system rapidly becomes almost completely
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ordered under application of the RG transformation. At Tc the system is

virtually invariant with successive application of the transformation. Since the

initial lattice was finite there is still a finite size effect and the total magnetiza-

tion is not zero for this particular configuration. At 1:05Tc the system is

disordered and the renormalized magnetization becomes even smaller. As

for the rescaling transformation in Eqn. (9.3), if one could carry this out

exactly an increasing number of couplings fKig in a Hamiltonian like Eqn.

(9.5) would be generated. However, in practice, as the rescaling is iterated the

space of coupling constants has to be truncated dramatically, and in an

analytic approach other uncontrolled approximations may be necessary to

relate the new couplings to the old couplings. These latter problems can

be avoided with the help of Monte Carlo renormalization group methods

which we wish to describe here.

9.3 MONTE CARLO RENORMALIZATION GROUP

9.3.1 Large cell renormalization

The large cell renormalization group transformation was used to study both

spin systems (Friedman and Felsteiner, 1977; Lewis, 1977) and the percola-

tion problem (Reynolds et al., 1980). In this discussion we shall consider the

method in the context of the two-dimensional Ising model with nearest

neighbor coupling only. A system of size L� 2L is considered and two

blockspins, �1 and �2, are created from application of the majority rule to

‘large’ cells of size L� L . The blockspins interact with Hamiltonian

H ¼ K 0� 0
1�

0
2; ð9:15Þ

where the magnitude of the new effective coupling constant K 0 is determined

from

h� 0
1�

0
2i ¼ tanhðqK 0Þ: ð9:16Þ

320 9 Monte Carlo renormalization group methods

Fig. 9.3 Examples of simple blockspins: (left) (2 � 2) blockspin arrangement for a ferromagnet; (center)
ffiffiffi
5

p � ffiffiffi
5

p
blockspin

for a nearest neighbor antiferromagnet in which each spin in a blockspin is on the same sublattice; (right)
ffiffiffi
7

p � ffiffiffi
7

p
blockspin

for a nearest neighbor antiferromagnet on a triangular lattice in which each spin in a blockspin is on the same sublattice.



Note that this corresponds to a transformation with scale factor b ¼ L. The

thermal eigenvalue yT is then determined from the expression

dK 0

dK
¼ LyT ; ð9:17Þ

where the derivative can be calculated via Monte Carlo simulation from

averages, i.e.
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Fig. 9.4 ‘Snapshots’ of

the two-dimensional

Ising model at: (a)

T ¼ 0:95Tc; (b)

T ¼ Tc; (c)

T ¼ 1:05Tc. The

upper row shows

Monte Carlo generated

configurations on a

512 � 512 lattice with

periodic boundaries.

Successive rows show

the configurations after

2 � 2 blockspin

transformations have

been applied and the

lattices rescaled to

their original size.



dK 0

dK
¼ h� 0

1�
0
2S1i � h� 0

1�
0
2ihS1i: ð9:18Þ

If L is increased with the system held at the critical coupling the estimates for

yT should converge to the correct value of 1=�.

Problem 9.1 Simulate a 16� 32 Ising square lattice at Tc and use the large
cell Monte Carlo renormalization method to estimate the value of the ther-
mal exponent yT.

9.3.2 Ma’s method: f|nding critical exponents and the f|xed
point Hamiltonian

The Monte Carlo method was first used within the framework of renorma-

lization group theory by Ma (1976) who applied it to the study of critical

exponents in a simple Ising model system. The basic idea of this approach is

to determine the behavior of the Hamiltonian upon renormalization and by

following the ‘flow’ towards the fixed point Hamiltonian to study critical

exponents. By measuring effective interaction parameters between coarse-

grained blocks of spins, one can extract exponent estimates from this infor-

mation. The method begins by generating a sequence of states. ‘Probes’ of

different sizes are then used to measure interactions by observing how a spin

behaves in a given environment. The length of time it takes for a spin to flip

in a given environment is a reflection of the interaction parameters as well as

the ‘local’ structure, and by examining different local environments one can

produce a set of linear equations that may be solved for the individual inter-

action constants. This process may be repeated by examining the behavior of

‘blockspins’, i.e. of a 2 � 2 set of spins whose ‘blockspin’ value is chosen to be
~SS ¼ 1 if a majority of the spins in the block are 1s and ~SS ¼ �1 if the majority

are �1s. Applying the same procedure outlined above provides a set of

interaction parameters at a scale which is twice as large as that defined by

the small probe.

The actual implementation demonstrated by Ma was for the Ising model

with a set of interaction parameters � ¼ ð J;K;LÞ which represent nearest

neighbor, next-nearest neighbor, and four-spin interaction parameters and

has much of the flavor of the N-fold way algorithm. The rate of flipping for

each spin is determined in the following way. The probability that no spin

flips during the time period t 0 (the ‘lifetime’ of the state) is expð�Ot 0Þ where

O is the total transition rate for the entire system. The probability that no

spin flips in the initial interval but then flips in the following dt 0 interval is

expð�Ot 0Þ � dt 0. The lifetime for a given spin is determined by generating

one random number to select a spin and then a second random number to

determine the lifetime through t 0 ¼ �ðln xÞ=O . The small probe looks at 3 �
3 blocks of spins and determines �þ and ��, i.e. the lifetimes of the states

where the spin is þ1 and �1 respectively. The ratio �þ=�� ¼ expðH �H 0Þ
gives an equation for J;K; and L. (For example, if all the spins in the probe
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are +1, then ðH �H 0Þ ¼ 4ð J þ K þ LÞ.) If the ratio of lifetimes is measured

for three different neighbor environments, a set of linear equations is

obtained which can be solved to extract each individual interaction parameter.

To determine the critical exponent we want to repeat this procedure with the

large probe and then construct the matrix ð@J 0
i =@JiÞ, the largest eigenvalue of

which is �T ¼ 21=� . Unfortunately, in actual practice it proves quite difficult

to determine the fixed point Hamiltonian with significant accuracy.

9.3.3 Swendsen’s method

Ma’s method proved difficult to implement with high accuracy because it was

very difficult to calculate the renormalized Hamiltonian accurately enough. A

very different approach, which is outlined below, proved to be more effective

in finding exponent estimates because it is never necessary to calculate the

renormalized couplings. For simplicity, in the discussion in this subsection

we shall express the Hamiltonian in the form

H ¼
X
	

K	S	; ð9:19Þ

where the S	 are sums of products of spin operators and the K	 are the

corresponding dimensionless coupling constants with factors of �1=kT
absorbed. Examples of spin products are:

S1 ¼
X

�i; ð9:20aÞ
S2 ¼

X
�i�j; ð9:20bÞ

S3 ¼
X

�i�j�k: ð9:20cÞ

Near the fixed point Hamiltonian H�ðK�Þ the linearized transformation takes

the form

Kðnþ1Þ
	 � K�

	 ¼
X
�

T�
	�ðKðnÞ

� � K�
�Þ; ð9:21Þ

where the sum is over all possible couplings. The eigenvalues �i of T�
	� are

related to eigenvalue exponents by

� ¼ by; ð9:22Þ
where the y are in turn related to the usual critical exponents, e.g. yT ¼ ��1 .

Equations (9.21) and (9.22) are still common to all real space RG methods,

and the challenge becomes how to find the matrix elements T�
	� at the fixed

point in practice. Perhaps the most accurate implementation of real space RG

methods has been through the use of Monte Carlo renormalization group

(MCRG) methods (Swendsen, 1982). In this approach the elements of the

linearized transformation matrix are written in terms of expectation values of

correlation functions at different levels of renormalization. Thus,
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T	� ¼ @Kðnþ1Þ
	

@KðnÞ
�

; ð9:23Þ

where the elements can be extracted from solution of the chain rule equation

@hSðnþ1Þ
� i=@K�

ðnÞ ¼
X

@Kðnþ1Þ
	 =@KðnÞ

�

n o
@hSðnþ1Þ

� i=@Kðnþ1Þ
	

n o
: ð9:24Þ

The derivatives can be obtained from correlation functions which can be

evaluated by Monte Carlo simulation, i.e.

@hSðnþ1Þ
� i=@KðnÞ

� ¼ hSðnþ1Þ
� S

ðnÞ
� i � hSðnþ1Þ

� ihSðnÞ� i ð9:25Þ
and

@hSðnÞ� i=@KðnÞ
	 ¼ hSðnÞ� S

ðnÞ
	 i � hSðnÞ

� ihSðnÞ	 i: ð9:26Þ
The T	� matrix is truncated in actual calculations and the number of renor-

malizations is, of course, limited as well. Results for the estimates for eigen-

values are then examined as a function of the number of couplings Nc used in

the analysis and the number of iterations Nr. Exact results are expected only

for Nr ! 1 and Nc ! 1, but in practice the convergence to this limit is

rather fast. By performing the calculations on different size lattices one can

also determine if finite lattice size is playing a role. As a simple example, in

Table 9.1 we show data for the thermal eigenvalue exponent for L� L square

lattice Ising models. As the number of iterations increases the exponent

rapidly converges to the exact value yT ¼ 1:0, but this is true only as long

as at least one additional coupling is generated. Finite size effects also begin to
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Table 9.1 Variation of the thermal eigenvalue exponent for the Ising square lattice
with the number of couplingsNc, the number of iterationsNr, and for di¡erent lattice
sizes. From Swendsen (1982).

Nr Nc L ¼ 64 L ¼ 32 L ¼ 16

1 1 0.912(2) 0.904(1) 0.897(3)

1 2 0.967(3) 0.966(2) 0.964(3)

1 3 0.968(2) 0.968(2) 0.966(3)

1 4 0.969(4) 0.968(2) 0.966(3)

2 1 0.963(4) 0.953(2) 0.937(3)

2 2 0.999(4) 0.998(2) 0.993(3)

2 3 1.001(4) 1.000(2) 0.994(3)

2 4 1.002(5) 0.998(2) 0.984(4)

3 1 0.957(2) 0.936(3) 0.921(5)

3 2 0.998(2) 0.991(3) 1.013(4)

3 3 0.999(2) 0.993(3) 1.020(3)

3 4 0.997(2) 0.987(4) . . .



appear slowly and become increasingly important as the iteration number

increases.

Experience with other models has shown that in general the convergence is

not as rapid as for the two-dimensional Ising model and great care must be

used to insure that a sufficient number of couplings and renormalizations

have been used. This also means, of course, that often rather large lattices

must be used to avoid finite size effects in the renormalized systems.

Problem 9.2 Simulate a 27� 27 Ising square lattice ferromagnet at Tc and
use Swendsen’s method with b ¼ 3 to estimate the thermal exponent yT.

9.3.4 Location of phase boundaries

9.3.4.1 Critical points

How do we determine the location of the critical point using the ideas of

MCRG? This may be accomplished by matching correlation functions for

transformed and untransformed systems: only at the critical point will they be

the same. Finite size effects can be subtle, however, so the preferred proce-

dure is to start with two different lattices which differ in size by the scale

factor b to be used in the transformation (see Fig. 9.5). In the vicinity of the

critical point we can use a linear approximation to relate the difference

between the original and renormalized correlation functions to the distance

to the critical point, i.e.

hSðnÞ	 iL � hSðn�1Þ
	 iS ¼

X
�

@hSðnÞ	 iL
@Kð0Þ

�

� @hSðn�1Þ
	 iS
@Kð0Þ

�

" #
�Kð0Þ

� : ð9:27Þ

The predicted ‘distance’ from the critical coupling �Kð0Þ
� can be extracted by

inverting Eqn. (9.27) for different values of n. Thus, an initial estimate for the

critical coupling is chosen and the above process is carried out. The simula-

tion is then repeated at the updated estimate and a check is made to see if this

is, in fact, a good value.
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Fig. 9.5 Schematic

view of the two lattice

comparison for the

determination of the

critical temperature.



9.3.4.2 Multicritical points

The methods described above can also be used to investigate multicritical

behavior (Griffiths, 1970; Fisher, 1974a). Such studies are usually complicated

by the fact that the multicritical point must be located in a two-dimensional

parameter space, and this process often involves an iterative procedure. In

addition there are usually additional critical eigenvalue exponents due to the

presence of additional scaling fields for the multicritical point. This process

has been carried out quite carefully by Landau and Swendsen (1986) for the

two-dimensional Blume–Capel ferromagnet and for the two-dimensional Ising

antiferromagnet with next-nearest neighbor interactions in a magnetic field.

Mean field predicts that for certain values of the interactions there is a tricri-

tical point on the phase boundary whereas beyond a certain value the tricritical

point is decomposed into a double critical point and a critical endpoint. The

MCRG study showed that for quite a wide range of couplings below the

predicted critical value there was only an ordinary tricritical point with no

indication of the predicted change. The numerical estimates obtained for both

the dominant and sub-dominant eigenvalue exponents also remained

unchanged with modifications in the couplings and were in good agreement

with the predicted values for an ordinary tricritical point. This study strongly

suggests that the fluctuations in the two-dimensional model destroy the mean-

field behavior and retain the normal tricritical behavior.

9.3.5 Dynamic problems: matching time-dependent
correlation functions

The ideas described above can be extended to the consideration of time-

dependent properties. The general idea behind this approach is to generate

a sequence of states which have been blocked at different levels and compute

the correlation functions as functions of time. Then attempt to ‘match’ these

correlation functions at different blocking levels at different times. The rela-

tionship between the blocking level and the time at which they match gives

the dynamic exponent z. Mathematically this can be expressed by

CðN;m;T2; tÞ ¼ CðNbd;mþ 1;T1; b
ztÞ; ð9:28Þ

where the critical temperature is given by T1 ¼ T2 ¼ Tc. It is necessary to

use two different size lattices for the comparison so that there are the same

number of spins in the large lattice after the blocking as in the smaller lattice

with one less blocking. Of course, we expect that the matching can be carried

out successfully only for some sufficiently large value of m for which the

effect of irrelevant variables has become small. This approach was first imple-

mented by Tobochnik et al. (1981) for simple one- and two-dimensional

Ising models. For best results multiple lattice sizes should be used so that

finite size effects can be determined and the procedure should be repeated for

different times to insure that the asymptotic, long time behavior is really

being probed (Katz et al., 1982).
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9.3.6 Inverse Monte Carlo renormalization group
transformations

The renormalization group approach is generally thought to be a semi-group

because it has no unique inverse. Nonetheless, there have been several

attempts made to implement a kind of inverse MCRG method for critical

phenomena. Brandt and Ron (2001) introduced a Renormalization Multigrid

method that used ‘coarse to fine’ acceleration. This approach relied upon

knowledge of the renormalized Hamiltonian and was thus limited by the

difficulty of estimating it. Ron et al. (2002) then devised a computationally

stable inverse Monte Carlo renormalization group transformation that was

built upon the Renormalization Group method and could simulate the fixed

point of a renormalization group for large systems without critical slowing

down. Using a seven-coupling Hamiltonian, as defined in Eqn. (9.19), they

were able to compute the ratio �=v for the two-dimensional Ising model to an

accuracy of 0.005%. In three dimensions the deviation was larger but was still

quite good. One striking feature of this approach is that corrections to scaling

were not visible, even on lattices as small as 42 and 43.
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10 Non-equilibrium and irreversible

processes

10.1 INTRODUCTION AND PERSPECTIVE

In the preceding chapters of this book we have dealt extensively with equili-

brium properties of a wide variety of models and materials. We have empha-

sized the importance of insuring that equilibrium has been reached, and we

have discussed the manner in which the system may approach the correct

distribution of states, i.e. behavior before it comes to equilibrium. This latter

topic has been treated from the perspective of helping us understand the

difficulties of achieving equilibrium. The theory of equilibrium behavior is

well developed and in many cases there is extensive, reliable experimental

information available.

In this chapter, however, we shall consider models which are inherently

non-equilibrium! This tends to be rather uncharted territory. For some cases

theory exists, but it has not been fully tested. In other situations there is

essentially no theory to rely upon. In some instances the simulation has

preceded the experiment and has really led the way in the development of

the field. As in the earlier chapters, for pedagogical reasons we shall concen-

trate on relatively simple models, but the presentation can be generalized to

more complex systems.

10.2 DRIVEN DIFFUSIVE SYSTEMS (DRIVEN
LATTICE GASES)

Over a decade ago a deceptively simple modification of the Ising-lattice gas

model was introduced (Katz et al., 1984) as part of an attempt to understand

the behavior of superionic conductors. In this ‘standard model’ a simple

Ising-lattice gas Hamiltonian describes the equilibrium behavior of a system,

i.e.

H ¼ �J
X
hi;ji

ninj; ni ¼ 0; 1: ð10:1Þ

In equilibrium the transition rate from state N to state N 0, W ðN ! N 0Þ ¼
wð��HÞ; is some function which satisfies detailed balance (see Section 4.2).

A simple, uniform driving field E is applied in one direction of the lattice and
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‘spins’ (or particle-hole pairs) are exchanged with a probability which is

biased by this driving field. This process drives the system away from equi-

librium regardless of which kinetic rule is used for the exchange, and the

transition rate then becomes

W ðN ! N 0Þ ¼ w½ð�Hþ lEÞ=kBT 
; ð10:2Þ
where l ¼ þ1; 0; or �1 is the distance the particle moved along E, and w is

the same function used for the transition in the absence of the driving field.

Periodic boundary conditions are applied and the system eventually reaches a

non-equilibrium steady state in which a current then flows in the direction

parallel to the driving field. These driven lattice gases are perhaps the sim-

plest examples of NESS (non-equilibrium steady state) in which the

Hamiltonian alone is not the governing feature of the resultant behavior.

Since the number of particles (in lattice gas language) is held fixed, the

procedure is carried out at constant magnetization (in Ising model language)

and spins are exchanged instead of flipped.

Patterns form and produce regions which are relatively free of particles

and other regions which are quite densely occupied. As an example, in Fig.

10.1 we show the development of a pattern in a simple Ising model at fixed

magnetization with a screw periodic boundary condition in the direction

parallel to the driving field. Depending upon the magnitude of the shift in

the boundary, different numbers of stripes appear in the steady state. Not

only are ‘snapshots’ of the system generated, but the usual bulk properties are

calculated as well. These may show indications of phase transitions just as

they would in the case of equilibrium behavior. In addition to the bulk

properties, the structure factor Sðk;LÞ provides important information

about the correlations. Indeed, phase transitions can be observed in these

systems and peaks in the structure factor offer convincing evidence of the

transitions. Because the driving field distinguishes one direction from all

others, the behavior is strongly anisotropic with the consequence that the

usual scaling relations must be modified, so that for an infinite system
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Fig. 10.1 Typical

configurations for the

‘standard model’

driven diffusive lattice

gas on a 100 � 100

lattice with a periodic

boundary condition in

the horizontal

direction and a shifted

periodic boundary

condition in the

vertical direction. The

shift is given by h,

where: (a) h ¼ 12; (b)

h ¼ 16. From

Schmittmann and Zia

(1995).



Sðk?; kkÞ ¼ k�2þ�
? S?ðkk=k1þD

? Þ; ð10:3Þ

where D characterizes the anomalous dimension of the longitudinal momenta

kk. Of course, modifications may be made in the nature of the interactions,

the lattice size, and the aspect ratio of the system. At this time there is still

some controversy about the values of the critical exponents in different

models, and it is likely that the question of anisotropy will prove to be

essential to the understanding of the behavior. In fact, a good framework

for the understanding of recent Monte Carlo data (Wang, 1996) has been

provided by an extension of finite size scaling which takes into account two

different correlation length exponents, �k and �?, in the directions parallel

and perpendicular to the flow, respectively (Binder and Wang, 1989; Leung,

1991).

Caracciolo et al. (2004) looked quite carefully at finite size scaling in the

high temperature phase of the driven lattice gas system in an infinite driving

field. Their results for the susceptibility and correlation length confirmed

field theoretic predictions (Janssen and Schmittmann, 1986; Leung and

Cardy, 1986), i.e. �? ¼ 1, �? ¼ 1=2. Finite size scaling of the magnetization

yielded �?=�? ¼ 1:023ð43Þ, in agreement with mean field predictions. Their

data confirmed the importance of anisotropic finite size scaling and showed

that the interplay between the time scale at which correlations are measured

and finite size effects may complicate the analysis.

Despite this progress, the driven lattice gas is still to a large extent ‘terra

incognita’ within the field of non-equilibrium statistical mechanics. This

statement may be drawn from surprising results from two studies which

we now briefly describe. First, a different study of the structure factor and

probability distribution of the driven diffusive system confirmed violations of

detailed balance and the breakdown of the ‘decoupling’ of stationary proper-

ties from the explicit dynamic rules for spin exchange (Kwak et al., 2004).

The secrets of these intriguing systems are slowly being uncovered through

the combination of careful Monte Carlo simulations and theoretically based

analyses. As a second example we draw the reader’s attention to an interesting

variation consisting of an Ising lattice gas driven to non-equilibrium steady

states by being coupled to two thermal baths as introduced by Praestgaard et

al. (2000). Monte Carlo methods were applied to a two-dimensional system in

which one of the baths was fixed at infinite temperature. Both generic long

range correlations in the disordered state and critical properties near the

second order transition were measured, and anisotropic scaling was used to

extract Tc and some critical exponents. On the theoretical front, a continuum

theory, in the spirit of Landau-Ginzburg, was presented. The critical beha-

vior of this system apparently belongs to a universality class which is quite

different from the uniformly driven Ising model.

Problem 10.1 Consider a 40 � 40 Ising lattice gas with periodic boundary
conditions and a field E in the y-direction. Calculate the structure factor
Sð1; 0Þ as a function of temperature for E=kB ¼ 0 and 10:0.
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10.3 CRYSTAL GROWTH

The growth of crystals from a melt or a vapor has been a topic of extensive

study because of the technological implications as well as because of a desire

to understand the theoretical nature of the growth phenomenon (e.g.

Kashchiev et al., 1997; Gilmer and Broughton, 1983). Microscopic simula-

tions of crystal growth have long been formulated in terms of solid-on-solid

Kossel models in which particles are treated as ‘building blocks’ which may

be stacked upon each other. (Although this model neglects the expected

deviations from a perfect lattice structure and the corresponding elastic ener-

gies, etc., it does provide the simplest approach to growth with the multiple

processes to be outlined below.) Particles may be ‘adsorbed’ from the vapor

or melt with some probability and may diffuse from one surface site to

another using a rule which is the equivalent of the spin-exchange mechanism

for spin systems. No voids or overhangs are allowed and the resultant growth

is ‘compact’. Three different processes are allowed: deposition, evaporation,

and diffusion, and the goal is to understand what the effect of varying the

respective rates for each mechanism is.

Three different kinds of ‘bonds’ are allowed between nearest neighbors,

��ss is the average potential energy of a solid–solid pair, ��sf is the average

potential energy of a solid–fluid pair, and ��ff is the average potential energy

of a fluid–fluid pair. Thus, the ‘cost’ of depositing an adatom on the surface

can be calculated by counting the number of bonds of each kind which are

created or destroyed and calculating the total energy change. From this

approach we can write the effective Hamiltonian for the system as

(" ¼ 1
2
ð�ss þ �ff Þ � �sf )

H ¼ � "

2

X
hi;ji


i
j ���
X
i


i þ V ðf
igÞ; ð10:4Þ

where the occupation variable 
i ¼ þ1 for an occupied site and 
i ¼ �1 for

an unoccupied site. �� ¼ ð�vapor � �solid). The potential V enforces the

solid-on-solid approximation and is infinite for unallowed configurations. In

the absence of supersaturation, the rates of deposition and evaporation are the

same, but in the case of a chemical potential difference between the solid and

liquid states of �� the relative rate of deposition is

kþ ¼ � expð��=kBTÞ; ð10:5Þ
where the prefactor � gives the ‘frequency rate’ and that for evaporation

becomes

k�n ¼ � expð�n�ss=kBTÞ; ð10:6Þ
where the number of bonds which must be broken is n. (Note, the chemical

potential required for equilibrium is determined by setting the deposition

rates and evaporation rates equal to each other for kink sites.) Diffusion of a

particle from a site with energyEA to a nearest neighbor site with energy EB is

given by
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kd ¼ �d exp½ðEB � EAÞ=kBT 
; ð10:7Þ

where �d is the ‘frequency rate’ for diffusion. As the crystal grows, the sur-

face begins to roughen, but the morphology depends upon the competition

between all three processes. Characteristic surfaces after growth has pro-

ceeded for a short time for both small supersaturation and large supersatura-

tion are shown in Fig. 10.2.

Spiral crystal growth was studied in a similar fashion (Swendsen et al.,

1976) but using a Kossel model which contained a dislocation along one

crystal edge. Under typical conditions for spiral growth, evaporation is

rapid except along the dislocation (growth) edge and heterogeneous nuclea-

tion plays essentially no role in the growth. Thus, a standard Monte Carlo

simulation of crystal growth used in the first part of this section would lead to

extremely slow growth because very few of the deposited atoms would remain

on the surface unless they encountered the spiral growth edge. Instead, in the

simulation the creation of isolated particles (or holes) in the surface layer was

excluded, leading to an increase in the speed of the simulation algorithm by a

factor of expð"=kBTÞ. This procedure allowed rather large surfaces to be used

so that the system could be followed for long enough to permit the formation

of multiple spirals. Typical spiral growth is shown in Fig. 10.3. (In some

earlier simulations rather small rectangular systems had been used to simulate

the growth along a small strip of the surface which cut through the spirals. In

these studies a number of ‘steps’ were placed on the strip and periodic

boundary conditions were applied. The resultant ‘growth’ resulted in ‘step

train’ behavior, but the spacing between steps was controlled by the number

of steps and the lattice size in the direction perpendicular to the steps. Results

from the spiral growth algorithm showed that the spacing between spiral

arms could become quite large. A ‘step train’ simulation with multiple
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Fig. 10.2 ‘Snapshots’

of crystal surfaces after

growth of 25% of a

monolayer: (a) L=kBT

¼ 12 (L is the binding

energy of a simple

cubic crystal) and

��=kBT ¼ 2 (only

1.8% of the deposited

atoms remained on the

surface); (b) L=kBT ¼
12 and ��=kBT ¼ 20

(100% of the

deposited atoms

remained on the

surface). From Gilmer

et al. (1974).



steps on a small lattice would thus probably impose an incorrect spacing

between the arms and provide results for a system which was inherently

non-steady state.)

10.4 DOMAIN GROWTH

The general area of the temporal development of domains spans a wide range

of different physical phenomena. Background information about phase

separation was provided in Section 2.3 where we saw that at a first order

transition regions of aligned spins, i.e. ‘domains’, would grow as phase

separation proceeds. Simple models may be used to study the properties of

domains, and the kinetics may be due either to ‘spin exchange’ or ‘spin flip’

mechanisms. The behavior may, in fact, be quite different for different

kinetics. For example, in an Ising model which has been quenched to

below Tc there will be many small domains formed immediately after the

quench, but if spin-flip kinetics are used, some domains will grow at the

edges and coalesce but others will shrink and simply disappear, even from

their interior. Eventually all ‘large’ domains except one will disappear with a

few overturned spin clusters remaining as a result of thermal excitation. With

spin-exchange kinetics the size of the domains is expected to grow with time,

but the overall magnetization remains constant; thus two equal size domains

will result in the long time limit.

The exponent which describes the domain growth is dependent upon the

kinetic mechanism, although a considerable amount of time may need to pass

before the asymptotic behavior appears. For non-conserved order parameter

models the mean domain radius R grows as

R ¼ Btx ð10:8Þ
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(a)

Fig. 10.3 Spiral crystal growth at high temperature for the center 200 � 200 sites of a simple cubic lattice surface: (a) large

chemical potential difference �� ¼ 0:6; (b) small chemical potential difference �� ¼ 0:1. From Swendsen et al. (1976).

(b)



where x ¼ 1
2
. In contrast for conserved order parameter, the domain growth is

much slower and proceeds as given in Eqn. (10.8) but with x ¼ 1
3
. Examples

of each kind of domain growth are shown in Fig. 10.4 for the Ising square

lattice (after Gunton et al., 1988). While in the Ising model shown in Fig.

10.4 there are just two types of domains (up and down are represented by

black and white as usual) and only one kind of domain wall exists, the

situation is more subtle when one considers generalizations to more compli-

cated lattice model problems like domain growth in the Potts model (Grest

and Srolovitz, 1985), or Ising antiferromagnets with competing nearest and

next-nearest neighbor exchange that exhibit a four-fold degenerate ground-

state (Sadiq and Binder, 1984), or Ising models with annealed or quenched

impurities (Mouritsen, 1990), etc. In many of these models the asymptotic
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growth laws for the domain radius RðtÞ and for the dynamic structure factor

Sðq; tÞ cf. Eqn. (2.103), are not yet sorted out with fully conclusive evidence

(and the situation is even worse for the analogous molecular dynamics studies

of domain growth for realistic off-lattice models of various pure fluids or fluid

mixtures, as briefly reviewed by Toxvaerd (1995)).

The reasons for these difficulties come from several sources: first of all,

neither the structure factor Sðq; tÞ nor the domain size – which in the non-

conserved case can simply be found from the order parameter square �2ðtÞ at
elapsed time t after the quench as RðtÞ ¼ ½�2ðtÞ=h�i2eq
1=dL in d dimensions,

where L is the linear dimension of the system – are self-averaging quantities

(Milchev et al., 1986). Thus, meaningful results are only obtained if one

averages the simulated ‘quenching experiment’ over a large number of inde-

pendent runs (which should be of the order of 102 to 103 runs). Secondly,

often several mechanisms of domain growth compete, such as evaporation

and condensation of single atoms on domains may compete with the diffusion

and coagulation of whole domains, etc., and thus there are slow transients

before one growth mechanism wins. As a consequence, it is necessary to

study times where RðtÞ is very much larger than the lattice spacing, but at

the same time RðtÞ must be very much smaller than L, because otherwise one

runs into finite size effects which invalidate the scaling behavior postulated in

Eqn. (2.97). From these remarks it is already clear that the computational

demands for obtaining meaningful results are huge. A further difficulty is that

random numbers of high quality are needed, since the ‘random’ fluctuations

contained in the initial disordered configuration are dramatically amplified. If

there are some hidden long range correlations in this initial state – or if the

random numbers used in the growth process would introduce such correla-

tions – the growth behavior could become disturbed in a rather artificial

manner. This caveat is not an academic one – in fact in their study of domain

growth for the �4 model on the square lattice Milchev et al. (1986) ran into

this problem.

Nevertheless, simulations of domain growth and of phase separation

kinetics have played a very stimulating role both for the development of

analytical concepts on the subject, as well as for experiments. For example,

scaling concepts on the subject such as Eqn. (2.103) were postulated some

time ago (Binder and Stauffer, 1974) in an attempt to interpret corresponding

early simulations. This type of scaling now can be derived from rather ela-

borate theory (Bray, 1994) and has also been seen in experiments both on

phase separation (Komura and Furukawa, 1988) and on the ordering kinetics

of monolayers adsorbed on surfaces (Tringides et al., 1987). Thus, the above

caveats are by no means intended to prevent the reader working on such

problems, but rather to make the pitfalls clear.

Problem 10.2 Consider a 40� 40 Isingmodelwith periodic boundary con-
ditions. Starting with a random spin configuration, use Kawasaki dynamics
to carry out a Monte Carlo simulation at T ¼ 1:5 J=kB. Measure the mean
domain size.
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10.5 POLYMER GROWTH

10.5.1 Linear polymers

The study of the growth of linear polymers from a solution may be easily

modeled using very simple models. We begin with a lattice filled with bi-

functional monomers, i.e. each monomer may form only two bonds. Each

monomer is allowed to randomly atttempt to form bonds with nearest neigh-

bors subject, of course, to the limitation in the number of bonds per mono-

mer. A series of linear polymers will result. If bonds are also allowed to break,

the model is appropriate for reversible polymerization, otherwise the poly-

merization is irreversible. If empty sites are included, they may play the role

of solvent atoms. As a result of the growth process a distribution of chain

lengths and radii of gyration will result.

10.5.2 Gelation

The formation of cross-linked polymers such as gels, is an extremely impor-

tant problem which is of particular interest for those who are developing new

‘designer materials’. The study of addition polymerization and the subse-

quent formation of gels is a problem which is well suited for simulation

(Family and Landau, 1984). We describe the kinetic gelation model for

irreversible, addition polymerization, see Manneville and de Seze (1981)

and Herrmann et al. (1983), in which we begin with a lattice which contains

a mixture of bi-functional and four-functional monomers. In addition, there

are a few randomly placed radicals (with concentration cI) which serve as

initiators for the growth process. When a bond is formed between a monomer

and an active site (initially an initiator site), the unpaired electron is trans-

ferred to the newly bonded site and it becomes ‘active’. In addition polymer-

ization, growth may only proceed from these active sites. Bi-functional

monomers can only participate in a self-avoiding walk process, whereas the

four-functional monomers may be involved in loop formation and cross-

linking between growing chains. Initially the solution of unconnected mono-

mers is called a ‘sol’, but as the growing chains link up they may form an

infinite cluster called a gel. This process may involve a phase transition

known as the sol–gel transition in which a finite fraction of the system is

in the largest cluster. This is analogous to the percolation transition discussed

in Chapter 4. Figure 10.5a shows a schematic view of a portion of a three-

dimensional system in which gelation is occuring (see Chhabra et al. (1986)).

The gel fraction G plays the role of the size of the largest cluster in percola-

tion, and its behavior can be analyzed using finite size scaling (see Fig. 10.5b)

just as in the case of percolation. Unlike percolation, however, the cluster size

distribution ns is not monotonically decreasing. As shown in Fig. 10.5c there

are distinct peaks in the distribution at characteristic values of s. These peaks

result from the approximately uniform growth of each cluster until two

clusters of size so combine to form a single cluster of size 2so þ 1. Since
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the characteristic size of the smallest ‘unit’ of the system as it approaches the

sol–gel transition becomes a cluster, rather than a monomer, very large

lattices are needed for the simulations.

10.6 GROWTHOF STRUCTURES AND PATTERNS

The formation of structures due to diverse growth mechanisms offers a rich

and rapidly growing area of investigation (Herrmann, 1986a) which we can

only briefly treat here.

10.6.1 Edenmodel of cluster growth

First designed as a simple model for cancer growth, the Eden model (Eden,

1961) allows the study of growing compact clusters. Growth begins with a

seed particle, one neighboring site of which is then randomly occupied.

Then, one neighboring site of the enlarged cluster is occupied, and the

process continues in the same fashion. Perhaps the most interesting question

about the growth process is the nature of the surface after growth has pro-

ceeded for a long time, i.e. how does the width of the surface depend upon

the total number of particles which have been added?

In the actual implementation, one may construct a list of the ‘growth sites’,

i.e. a list of perimeter sites which are adjacent to the cluster and at which new

particles may be added. A separate array is used to keep track of those sites

which have never been touched. At each step of the growth process a site is

randomly chosen from the perimeter list. (The alternative approach, of

searching for nearest neighbors of ‘surface sites’ has the danger that some

sites may be chosen with too high a probability, i.e. a site may be the nearest
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Fig. 10.5 Kinetic gelation model: (a) schematic view of growth within a single layer of a three-dimensional model just before

and just after two growing clusters link up, the solid dots show the initial positions of the initiators and data for the cluster

size distribution; (b) finite size scaling plot for the gel fraction for cI ¼ 3� 10�2; (c) cluster size distribution for cI ¼ 3� 10�4

and p ¼ 0:16. From Chhabra et al. (1986).



neighbor of two different surface sites.) This site is removed from the peri-

meter list and one must then check to see if any of its neighboring sites have

not been touched. If so, they are added to the perimeter list before the next

particle is added.

10.6.2 Diffusion limited aggregation

Diffusion limited aggregation (DLA) was first proposed as a simple model for

the description of the formation of soot (Witten and Sander, 1981). It has

played an extraordinary role, not only in the development of the examination

of fractal matter, but also in the use of color coding to effectively portray a

third dimension, time, in the development of the system. The fundamental

idea of DLA growth is quite simple. A ‘seed’ particle is placed in the center of

the system and another particle is turned loose from a randomly chosen point

on a large ‘launch circle’ which surrounds the seed. This new particle exe-

cutes a random walk until it encounters the seed particle and then sticks to it.

At this point another particle is turned loose from the launch circle and the

process is repeated. A beautiful, fractal object results from this procedure and

we find that the outer arms of the growth object shield the inner ‘fjords’ from

the particles which are released at later times. Particles may be color coded

according to the time at which they were released, and the distribution of

adsorbed particles of different colors provides information about the effective

‘shielding’ of different portions of the cluster. The fractal dimension df of the

DLA cluster can be determined by measuring the mass M of the cluster

within a radius R of the seed and using the relation

M / Rdf ð10:9Þ
to extract an estimate. The effective fractal dimension as a function of cluster

size and dimension has been the object of extensive study (Barabási and

Stanley, 1995); in two dimensions, DLA clusters with more than 107 particles

have been grown and the fractal dimension has been estimated at

df ¼ 1:71� 0:01. It was realized fairly quickly that for large systems on a

lattice, effects of the anisotropy imposed by the lattice structure began to

affect the properties of the cluster. Thus, DLA clusters have been grown in

continuous space (‘off-lattice’) as well as on a variety of lattices.

10.6.2.1 On-lattice DLA

As is often the case, the restriction of a model to a lattice simplifies the

situation and enables the use of time saving tricks. In the most straightfor-

ward implementation of the DLA algorithm, the particles execute a simple

random walk on the lattice with each step being of unit length in a random

direction. Each particle is started from a random position on a circle which

has the seed at its center. (As the DLA cluster grows, the radius of this

‘launch circle’ is increased so that it remains larger than the greatest extent

of the cluster.) The random walk process is very slow in reaching the growing
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cluster and can be accelerated in a very simple fashion. The lattice sites

surrounding the growing cluster are each assigned an integer which is

large far away from the cluster and becomes smaller as the distance to the

cluster decreases. This integer specifies the size of the random step that the

particle will take when it moves from that site. In the immediate vicinity of

the growing DLA cluster the movement reverts to a simple nearest neighbor

random walk. An example of the structure which results from this procedure

is shown in Fig. 10.6a. For comparison, in Fig. 10.6b we show a pattern
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Fig. 10.6 (a) DLA

cluster of 50 000 atoms

grown on a square

lattice (Feder, 1988);

(b) Hele–Shaw cell

pattern resulting from

air displacing liquid

epoxy in a monolayer

of glass spheres

(Måløy et al., 1985).



which was produced in a Hele–Shaw cell by pumping air into liquid epoxy

which filled the spaces between a monolayer of glass balls, all between two

parallel glass plates. As the size of the cluster increases, the shape of the

cluster begins to reflect the underlying lattice. This effect can be made even

more pronounced by using the technique of ‘noise smoothing’: a particle is

finally absorbed only after it has experienced N-collisions, where the integer

N becomes a parameter of the simulation and may be varied. The result is a

structure which is much more anisotropic than for a simple DLA.

10.6.2.2 Off-lattice DLA

Growth on a lattice is intrinsically affected by the presence of the underlying

lattice structure. Any such effects can be removed simply by avoiding the use

of a lattice. Eliminating the use of a lattice complicates the simulation and, in

particular, the determination of when a particle actually encounters the clus-

ter becomes non-trivial, but it does also remove any effects attributable to any

underlying anisotropy. It becomes necessary to compute a trajectory for each

step of the random walk and check to see if the particle touches the cluster at

some point along its path. If so, the particle is attached to the cluster at that

point and a new particle is released from the launch circle so that the growth

process proceeds just as for the on-lattice case.

Problem 10.3 Grow a DLA cluster on a square lattice with 10000 part-
icles. Then grow a DLA cluster of the same size on a triangular lattice.
Comment on the similarities and the differences between the two clusters.

10.6.3 Cluster^cluster aggregation

An alternative growth mechanism involves the simultaneous activity of many

‘seeds’ through the consideration of an initial state which consists of many

small clusters (Jullien et al., 1984). Each cluster is allowed to diffuse ran-

domly, but if two clusters touch at any point, they stick and begin to move as

a single cluster. This model is expected to be well suited to the study of

colloid formation and the coagulation processes in for example aerosols. In

the simplest case, the clusters all move at the same speed. A more realistic

approach is to allow the speed of a cluster to depend upon the inverse of the

mass of the cluster, i.e. � m
: The choice of the exponent 
 does not affect

the fractal dimension of the resulting aggregates except at very low con-

centrations but it does enter the distribution function and the dynamical

behavior.

10.6.4 Cellular automata

Cellular automata are simple lattice or ‘cell’ models with deterministic time

dependence. The time development can, however, be applied to many of the

same systems as Monte Carlo processes, and methods of analysis of cellular
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automata have impacted stochastic simulations. For completeness, we shall

thus say a few words about cellular automata. A more complete treatment of

this topic is available in Herrmann (1992). These models are defined by a

collection of ‘spins’ or ‘cells’ on a d-dimensional lattice where each cell

contains either a ‘0’ or a ‘1’. Time is discretized and the value of a cell, 
i,
at time ðt þ 1Þ is determined by a simple ‘rule’ which involves the local

environment of the ith cell at time t. A simple example is the XOR (exclu-

sive-or) rule in which 
iðt þ 1Þ = 
i�1ðtÞ.XOR.
iþ1ðtÞ. Different rules result

in quite different dynamic features; some produce patterns which are simple

and others produce quite complex structures in time. An example of the

‘growth’ of a one-dimensional cellular automaton, i.e. the time development,

with an XOR-rule is shown in Fig. 10.7. The application of the rule to a

single site is shown along with the full configurations at times t and ðt þ 1Þ.
The major question to be answered is ‘what is the nature of the behavior after

a long time has elapsed?’ One very simple approach is to study the ‘damage

spreading’ (Stauffer, 1987). Consider two cellular automata which follow the

same rule. Choose initial states which are identical except for some small

region which is different, i.e. ‘damaged’ in one system. Allow both systems

to propagate forward in time and then see what happens to the damage. The

damage may disappear completely with the passage of time, may remain

localized or may spread throughout the system. This latter behavior is indi-

cative of the onset of chaos as is only observed for a small fraction of the rules.

An equivalent approach can be taken in Monte Carlo simulations by con-

sidering two systems with almost identical initial states. The same random

number sequence is then used in a simulation of each system, and the differ-

ences in the configurations for the two systems are then followed as a function

of time. The critical dynamics of a cellular automata rule called Q2R in two

dimensions appears to be consistent with model A Ising behavior (or possibly

model C), but in three dimensions the behavior appears to be quite different

(Stauffer, 1997).

Using a random initial configuration, one can model the Ising model by a

Q2R cellular automaton in which a spin is flipped only if it involves no

change in energy (Herrmann, 1986b). This can be carried out quite efficiently

if the checkerboard decomposition is used. Unfortunately the cellular auto-

maton algorithm is not ergodic. A solution to this problem is to randomly flip

a spin occasionally while maintaining the energy within a narrow band of

energies.

Probabilistic rules, e.g. the Hamiltonian formulation of the Kauffman

model, may also be used.
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Problem 10.3 Use the nearest neighborXORrule described in Fig. 10.7 to
follow a 32-bit cellular automaton with p.b.c. in time with the following
initial conditions: (a) a single bit is 1 and all other bits are 0; (b) 16 of the
bits (randomly chosen) are 1 and the other bits are 0.

10.7 MODELS FOR FILM GROWTH

10.7.1 Background

The growth of films and the characterization of the resultant surface has

formed a topic of great experimental, theoretical and simulational interest.

One standard measure of the nature of this growth surface, whose local

position at time t is hðr; tÞ, is given by the long-time dependence of the

interfacial or surface width W ,

W 2ðtÞ ¼ hh2i � hhi2 ð10:10Þ
which diverges as t ! 1: Note that the mean position of the surface hhi is

given merely by the rate at which particles are deposited and is uninteresting,

The manner in which the surface width diverges can be described by a

‘critical’ or growth exponent which places the systems into ‘universality

classes’ which are analogous to the classes which have been identified for

static critical behavior. Thus, the temporal variation of the surface width after

growth has proceeded for a long time may be given by

W ðt ! 1Þ ¼ Bt�; ð10:11Þ
where the prefactor B is relatively unimportant but the growth exponent �
defines the nature of the growth. In a finite system the surface width saturates

at long times and instead it is the size dependence of the saturated width

which is of interest:

W ðL ! 1Þ ¼ AL
 ð10:12Þ
where 
 is termed the ‘roughening’ exponent. The ratio of the exponents

defines a dynamic exponent z , i.e.

z ¼ 
=�: ð10:13Þ
The time-dependent and size-dependent behavior can be condensed into a

dynamic scaling relation (Vicsek and Family, 1985)

W ¼ L
FðtLzÞ ð10:14Þ
which should be valid in a general case. Since both relations, Eqns. (10.11)

and (10.12), hold only in the asymptotic limit of large substrate size and long

times, the extraction of accurate estimates for these exponents is non-trivial.

These relations are expected to be generally valid, so we may attempt to

analyze the behavior of many growth models using this formalism.
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10.7.2 Ballistic deposition

Growth models such as ballistic deposition (see Barabási and Stanley, 1995)

are relatively easy to study and the results can be displayed and interpreted

graphically. In the simplest case particles are dropped from random positions

above a surface and fall in a straight line until they either land on the surface

or encounter a particle which has already been deposited. In the latter case,

the new particle sticks to the old one either on the top or on the side. Particles

are dropped sequentially and a very perforated structure grows. From a

computational perspective ballistic deposition is very easy to simulate. For

deposition onto a line, we randomly choose a horizontal position xn and check

to find the height of the uppermost occupied site yn in the column above xn
and that of its two neighbor columns, i.e. yn�1, ynþ1. If yn is the largest of

these numbers, the particle is deposited at height (yn þ 1Þ; if one of the

neighboring columns is higher, the particle is deposited at a height which

is the highest of (yn�1 þ 1Þ or (ynþ1 þ 1Þ. For deposition using a point seed,

the process proceeds exactly the same as for the line ‘substrate’, but most of

the particles never strike the seed, at least at early times. As an example, in

Fig. 10.8 we show a ballistic deposition cluster which has resulted from

growth with a point seed.

10.7.3 Sedimentation

In an effort to describe growing surfaces which are more compact than those

described by ballistic deposition, Edwards and Wilkinson (1982) introduced a

simple model which could be solved exactly. In this EW model, a particle is

dropped from a random position above a growing surface. The particle lands

on top of the column below the point from which it is dropped and then

diffuses once to the neighboring site which is lowest lying. Another particle is

then dropped and the process is repeated. Edwards and Wilkinson (1982)

map this model onto a simple differential growth equation in which the

variable hi is the height of the growing surface above the mean position and
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@h

@t
¼ �r2hþ �ðr; tÞ ð10:15Þ

where �ðr; tÞ is �-correlated noise in both space and time. The solution to this

differential equation yields a dynamic exponent z ¼ 2:0. However, in the

simulation of the atomistic model an interesting question arises: what does

one do when there is more than one neighboring site of the same ‘lowest’

depth? While it might seem intuitive to make a choice between the different

possibilities by generating a random number, this procedure in fact leads to

an additional source of (correlated) noise and changes the value of z! If a

particle with multiple choices does not diffuse at all, diffusion becomes

deterministic and z ¼ 2 is recovered. This finding points out the subtleties

involved in obtaining a complete understanding of film growth (Pal and

Landau, 1999; Pal et al., 2003).

There are variations of this model, e.g. by Wolf and Villain (1990), which

use different rules for hopping and which result in different behavior. (For

example, in the WV model, particles hop to the nearest neighbor site in which

they will have the greatest number of bonds rather than the lowest height.)

All of these models may be compared with the KPZ model (Kardar et al.,

1986) which is defined by a differential equation which includes the tilt of the

surface and the surface curvature. One issue that remains to be resolved is the

delineation of the criteria which determine non-equilibrium universality

classes.

Problem 10.4 Grow a 1þ 1 dimensional Edwards^Wilkinson film for sub-
strates of size L ¼ 20; 40; and 80. Measure the interfacial widths and plot
them as a function of time. Estimate 
, �, and z.

10.7.4 Kinetic Monte Carlo andMBE growth

More recently, attention has turned to the simulation of thin films grown by

molecular beam epitaxy (MBE). The growth of films by molecular beam

epitaxy (MBE) requires the inclusion of both deposition and diffusion pro-

cesses. Some efforts have been directed at fully understanding the behavior of

relatively realistic models for small films using empirical potentials for short

times, and other studies have been directed at the scaling behavior of simpler

models. In this section we shall concentrate on the simplest, lattice models for

MBE growth. This approach is also in terms of solid on solid models with

nearest neighbor interactions. Particles are deposited with some fixed flux F.

Any of the particles may then undergo activated diffusion with probability

p ¼ expð�EA=kTÞ: ð10:16Þ
For simple models with nearest neighbor coupling, the activation energy may

be simply dependent upon the number of occupied nearest neighbors, i.e.

EA ¼ J�nj. An atom which has been activated may then hop to a nearest

neighbor site either randomly or with a probability which depends upon the

energy that the atom will have in that site. Thus, the rate of hopping does not
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depend merely upon the relative energies of the configuration before and

after hopping as it would in a simple ‘spin-exchange’ Monte Carlo process

but rather the barrier plays an essential role. Diffusion thus proceeds via a

two-step process and the simulation technique which matches this process is

called kinetic Monte Carlo. Kinetic Monte Carlo methods also find wide-

spread application for the study of surface diffusion in adsorbed monolayers

(see e.g. Uebing and Gomer, 1991, 1994). This application is also discussed at

the end of Section 4.4.3 on diffusion and in the references quoted there. The

differences between the two processes are shown schematically in Fig. 10.9.

The nature of the growth depends upon the magnitude of the flux as well as

the temperature. At very low temperatures there is little diffusion and the

surface width grows monotonically as shown in Fig. 10.10. As the tempera-

ture is raised oscillations in the data indicate layer-by-layer like growth, i.e.

atoms which land on a ‘plateau’ diffuse off the edge and nucleation of a new

layer begins only after the layer below is filled. (Calculations of the RHEED

intensity from the surface configuration generated show that even at the very

lowest temperature studied there are small oscillations remaining, and at

sufficiently long times the width diverges for the higher temperatures

shown in Fig. 10.10 for preferential hopping. Thus, there is no true transition

10.7 Models for film growth 345

Fig. 10.9 Schematic

comparison between

Monte Carlo and

kinetic Monte Carlo

methods for diffusion

of surface adatoms

between two sites with

energy E1 and E2,

respectively. EA is the

activation energy for

KMC.

Fig. 10.10 Time

dependence of the

surface width for

MBE models on L�
L substrates with

p.b.c. Values of the

surface width for

equilibrium are shown

by the arrows to the

right. After Pal and

Landau (1994).



between layer-by-layer growth and rough growth.) Note that Fig. 10.10

compares the equilibrium surface width with that obtained for the MBE

growth model: the trends for the variation of the mean surface width are

exactly reversed because the equilibrium surface width is quite small at low

temperatures. The growth process may be repeated multiple times with

different random number sequences. Each of the resultant ‘growth histories’

is independent, so that statistical accuracy can be improved by simply taking

the average over many runs and the error bars are then straightforward to

calculate. Of course, data for successive times for a given simulation will be

correlated, so care must be exercised in analyzing ‘structure’ which is seen in

a single run or a small number of runs. The long time behavior can be

difficult to ascertain, because the ‘asymptotic region’ appears for quite dif-

ferent times for different values of the relevant parameters. Extensive simula-

tions have shown that it is possible to find quite different ‘effective’ growth

exponents for different fluxes, and we recommend that a particular exponent

be observed to describe the data over at least two decades in time before being

deemed acceptable. Finite size effects also become important at long time and

dynamic finite size scaling, Eqn. (10.14), can be used to analyze the data and

extract exponent estimates. A typical finite size scaling plot for the surface

width of a 2þ 1 dimensional MBE growth model is shown in Fig. 10.11.

Note that scaling of the surface width can be made to include the temperature

dependence.

Problem 10.5 Grow a 1þ 1 dimensional MBE film using a KMC method
with a deposition rate of 1 layer/sec and a prefactor for activation of 0.1.
Plot the interfacial width, averaged over multiple runs, as a function of time
for L ¼ 20, 40, and 80. How does the time at which finite size effects become
obvious vary with L?
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Fig. 10.11 Dynamic

finite size scaling of

the surface width for

2þ 1 dimensional

MBE models. The

growth exponent

� ¼ 0 and the

dynamic exponent

z ¼ 1:63 for this plot.

From Pal and Landau

(1999).



Problem 10.6 Grow a 1þ 1 dimensional MBE film using ‘spin exchange’
Monte Carlo with a deposition rate of 1 layer/sec and a diffusion rate con-
stant of 0:1. Plot the interfacial width as a function of time for L ¼ 20.
Compare your result with that obtained by kinetic Monte Carlo in
Problem 10.5.

10.8 TRANSITION PATH SAMPLING

While standard Metropolis-type importance sampling Monte Carlo is

designed to generate statistical information about a state point of a statistical

mechanical system, a different problem not addressed by this algorithm is the

nature of a transition path from one state, A, of the system to another state, B.

Such a transition may be a phase transition caused by a sudden change of

external variables such that the state A is now only metastable while the state

B is the stable one. A generic example for this problem is the Ising (or lattice

gas) model, where we begin with a positive magnetization but at time t ¼ 0

apply a weak negative magnetic field to the system. Roughly speaking one

knows that the kinetic pathway by which the new phase (with negative

magnetization) appears involves nucleation and growth. Within the frame-

work of a kinetic Ising model description, the task is to generate a statistical

sample of the transition paths by which the system may develop. Of course,

the nucleation of critical clusters, corresponding to a saddle point configura-

tion in the (free) energy landscape of the model, is a rare event; and hence a

naı̈ve sampling (along the lines of simulations of critical relaxation of kinetic

Ising models as described in Sec. 4.2.5) of these kinetic pathways would be

impractical.

The problem mentioned above is addressed by ‘transition path sampling’

(Dellago et al., 2001; Bolhuis et al., 2002) which avoids spending a large part

of the total simulation effort on simulating the initial metastable state (as the

naı̈ve straightforward simulation approach to the problem would do), but

instead attempts to sample almost exclusively the ‘reactive parts’ of the tra-

jectories. Although the notion of a ‘reaction coordinate’ (e.g. the size of the

nucleated cluster or nucleation event) is implicit, no reaction coordinate is

required a priori. The idea is to use one trajectory which leads from A to B as

an initial trajectory to generate new trajectories in much the same spirit as in

the standard Metropolis method where one state point is used to construct a

new state point by a suitable transition probability. In this way one can find a

‘transition state ensemble’: e.g., in nucleation it is not a simple cluster con-

figuration which defines the transition state but an entire ensemble of cluster

configurations (because the ‘critical nuclei’ are randomly fluctuating in their

shape). Thus, two ‘cluster coordinates’, such as volume and surface area of

the cluster, may not be adequate, as pointed out already by Binder and

Stauffer (1976). Transition path sampling provides an elegant framework to

address not only this problem but a whole class of related problems. Since the

10.8 Transition Path Sampling 347



implementation of this new method is still under development, and is some-

what technical, we refer the interested reader to the quoted literature for

details.

10.9 OUTLOOK: VARIATIONS ON A THEME

In this chapter we have only mentioned a small fraction of the problems that

have been considered in the literature. There are many related problems of

non-equilibrium growth phenomena for which Monte Carlo simulation is an

extremely useful tool. In this regard, we wish to cite just one more example,

that of random sequential adsorption (e.g. Evans, 1993): consider the growth

of coverage of a monolayer formed by dimers (or n-mers) which are randomly

adsorbed but which obey excluded volume constraints. A special ‘jamming

coverage’ then appears where further adsorption becomes impossible. Near

this jamming coverage, slow dynamics is observed. This simple model and its

extensions form another rich area for investigation that we have not really

examined here.
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11 Lattice gauge models: a brief

introduction

11.1 INTRODUCTION: GAUGE INVARIANCE AND
LATTICE GAUGE THEORY

Lattice gauge theories have played an important role in the theoretical

description of phenomena in particle physics, and Monte Carlo methods

have proven to be very effective in their study. In the lattice gauge approach

a field theory is defined on a lattice by replacing partial derivatives in the

Lagrangian by finite difference operators. For physical systems a quantum

field theory on a four-dimensional space–time lattice is used, but simpler

models in lower dimension have also been studied in hope of gaining some

understanding of more complicated models as well as for the development of

computational techniques.

We begin by describing the potential A�
�ðxÞ in terms of the position x in

space–time. The rotation U of the frame which relates neighboring space–

time points x� and x� þ dx� is given by

U ¼ expfigA�
�ðxÞ��dx�g; ð11:1Þ

where g is the coupling constant and the �� are the infinitesimal generators of

the gauge group. When the field is placed on a lattice, an element Uij of the

gauge group is assigned to each link between neighboring sites i and j of the

lattice, subject to the condition that

Uij ! U�1
ji : ð11:2Þ

Gauge transformations are then defined by

Uji ! U 0
ji ¼ giUjig

�1
i ð11:3Þ

where gi is a group element. There will be some elementary closed path on

the lattice which plays the role of the infinitesimal rectangular closed path

which defines the transporter; for example, the path around an elementary

square on a hypercubical lattice (or ‘plaquette’) is

Up ¼ UiUjUkUi; ð11:4Þ
where the ‘action’ associated with a plaquette is

SP ¼ �f ðUPÞ: ð11:5Þ
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f ðUPÞ is commonly referred to as the (internal) energy of the plaquette, and

the choice

f ðUPÞ ¼ 1 � 1
2
TrUP ¼ 1 � cos �P ð11:6Þ

is termed the Wilson action, although many other forms for the action have

been studied.

By first making a Wick rotation to imaginary time, we can define the

observables in a Euclidean four-dimensional space, i.e.

hOi ¼ 1

Z

ð
DA�OðA�Þ exp½�SðA�Þ� !

1

Z

X
fUijg

OðUijÞ expf�SðUijÞg; ð11:7Þ

where

Z ¼
ð
dA expð�SðAÞÞ !

X
fUijg

expf�SðUjiÞg; ð11:8Þ

where the sums are over the dynamic variables Uij . Note that the above

equations are equivalent, in a formal sense, to those which describe the

behavior of an interacting particle system within the framework of statistical

mechanics. In this view, � becomes equivalent to the inverse temperature and

f ðUPÞ plays the role of the Hamiltonian. With the analogy to statistical

mechanics, one can carry out Monte Carlo simulations by updating the

link variables, e.g. using a Metropolis method, and then calculating expecta-

tion values of quantities of interest. Thus, all of the tools needed for the study

of lattice gauge models are already in place. In order to recover a non-trivial

continuum field theory, the lattice constant must be allowed to go to zero, but

the product a�ðgÞ must remain constant. The critical point gcr for which this

occurs must then have scaling properties, and in the language of statistical

mechanics this means that a phase transition must occur. For any ‘interesting’

behavior to remain, this means that the equivalent of the correlation length

must diverge, i.e. a second order phase transition appears. Thus, one impor-

tant goal is to determine the phase diagram of the theory. As a consequence,

many of the methods of analysis of the Monte Carlo data are identical to those

of the systems discussed in earlier chapters, although the interpretation of the

various quantities is completely different.

Note that the same problems with finite size effects, boundary conditions,

etc. which we encountered in Chapters 4 and 5 in the study of spin systems

apply here and we refer the reader back to these earlier chapters for a detailed

discussion. Indeed, the problems are even more severe for the four-dimen-

sional lattice gauge theories of real interest since there is a much higher

percentage of ‘spins’ on the boundary than for lower dimensional magnetic

systems. Furthermore, the determination of new link values may be very

complicated, particularly for groups such as SU(2) and SU(3), so special

sampling methods have been devised.
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11.2 SOME TECHNICAL MATTERS

Various specialized techniques have been devised to try to make Monte Carlo

sampling more efficient for lattice gauge theories The special problem which

one encounters in lattice gauge studies is that the determination of the new

configuration and its energy are often extremely time consuming. As a result

the ‘standard’ importance sampling methods often become inefficient. Among

the techniques that are used are:

(1) The heatbath method. Here a new link U 0
ji is chosen with probability

expf�SðU 0
jiÞg regardless of the previous value of the link.

(2) Multi-hit methods. Here the Metropolis algorithm is used, but the

entire process is repeated on a single link n-times before another link

is chosen for consideration. This is efficient because the complexity

of the interaction makes the computation of the possible new states

considerably more complex than for spin models.

(3) Mixed initial states. To overcome problems with metastability, one

can begin with a state in which half of the system is in a ‘cold’ state

and half in a disordered state. The time development is followed for

different values of � to see towards which state the entire system

evolves.

Another simplification which has also been used is to use a discrete subgroup

as an approximation to the full group; in such cases the computation of the

action is simplified although the model is obviously being modified and the

consequences of these changes must be carefully examined.

11.3 RESULTS FOR ZðNÞ LATTICE GAUGE MODELS

Perhaps the simplest lattice gauge theories are those in which the variables of

interest are ‘spins’ which assume a finite number N of values distributed on a

unit circle. While such models are not expected to be relevant to the descrip-

tion of physical systems, they play a useful role in the study of the phase

structure of lattice gauge models since their relative simplicity allows them to

be simulated rather straightforwardly. For the discrete ZðNÞ group the spe-

cial case of N ¼ 2 corresponds to a gauge invariant version of the Ising

model. (The Uð1Þ theory, which will be discussed in the next section, corre-

sponds to the N ¼ 1 limit of ZðNÞ.) Creutz et al. (1979) examined the four-

dimensional Zð2Þ gauge model and found evidence for a first order transition.

In particular, sweeps in � exhibit strong hysteresis, and starts from either

ordered or disordered states at the transition coupling show very different

metastable states (see Fig. 11.1).

The critical behavior for the ð2 þ 1Þ-dimensional Zð2Þ lattice gauge model

at finite temperatures (Wansleben and Zittartz, 1987) was calculated by look-

ing at the block size dependence of the fourth order cumulant. 128 � 128 �
NT lattices were examined where the number of lattice points in the tem-
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perature direction, NT , was varied. The value of � is apparently unity, but the

estimate for �=� depended on NT .

Problem 11.1 Write a Monte Carlo program for the Zð2Þ lattice gauge
model in four dimensions. Determine the behavior of the energy as a func-
tion of � for L ¼ 3. Estimate the value of � at which the transition occurs.
Compare your results with the data given in Fig.11.1 and comment.

11.4 COMPACT Uð1ÞGAUGE THEORY

The U(1) model has also been extensively studied and is a prime example of

the difficulties associated with obtaining clear answers for lattice gauge mod-

els. Initial Monte Carlo examinations of the simple action

S ¼ �
X
P

½� cos �P� ð11:9aÞ

could not determine if the transition was first or second order. The reason for

the uncertainty became clear when an adjoint coupling was added so that the

total action became

S ¼ �
X
P

½� cos �P þ 
 cosð2�PÞ�; ð11:9bÞ

where �P is the plaquette angle, i.e. the argument of the product of Uð1Þ
variables around a plaquette P. The phase diagram in this expanded para-

meter space then showed that the transition actually changed order for a value

of the adjoint coupling 
 which was close to zero, and crossover phenomena

make the interpretation for the pure U(1) model problematic. The most

detailed study of this model (Jersák et al., 1996a,b) simulated spherical lattices

and used reweighting techniques together with finite size scaling to conclude

that for 
 � 0 the transition is indeed second order and belongs to the
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Fig. 11.1 The average

energy per plaquette

as a function of � for

the four-dimensional

Zð2Þ lattice gauge

theory. A hypercubic

lattice with Lx ¼ Ly ¼
Lz ¼ 8 and Lt ¼ 20

with periodic

boundary conditions

was used. The

‘temperature’ was

swept up and then

back down. From

Creutz et al. (1979).



universality class of a non-Gaussian fixed point with the exponent � in the

range 0.35–0.40 (the best estimate is � ¼ 0:365ð8Þ).
Problem 11.2 Perform aMonteCarlo simulation for the simpleU(1) gauge
model (i.e. 
 ¼ 0) in four dimensions. Determine the variation of the energy
as a function of � for L ¼ 3. Estimate the location of the phase transition.

11.5 SUð2Þ LATTICE GAUGE THEORY

The transition between the weak coupling and strong coupling regimes for

SU(2) lattice gauge theories at finite temperature has also been a topic of

extensive study.

The Glashow–Weinberg–Salam (GWS) theory of electroweak interactions

assumes the existence of a Higgs mechanism. This can be studied in the

context of an SU(2) lattice gauge theory in which ‘spins’ are added to the

lattice site and the Hamiltonian includes both gauge field and Higgs field

variables:

S ¼� �

4

X
P

TrðUP þUt
PÞ � �

X
x

X4

�¼1

ReðTr�t
xUx;��xþ�Þ

þ �
X
x

1

2
Trð�t

x�x � 1Þ2 þ
X
x

Tr�t
x�x:

ð11:10Þ

For fixed � there is a confinement region for � < �c and a Higgs region for

� > �c. Even if � is fixed at a physically reasonable value, the resultant phase

diagram is in a two-dimensional parameter space and the nature of the

transition appears to change order (Bock et al., 1990). This can be seen in

Fig. 11.2 where two equal peaks in the distribution develop with a very deep
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Fig. 11.2 A sequence

of distribution

functions NðEÞ near

the transition at � ¼
2:25 for different

lattice sizes in the

SU(2) model with

Higgs fields. From

Bock et al. (1990).



well between them as the lattice size is increased. The use of histograms and

finite size scaling aids in the analysis, but the location of a tricritical point was

not possible with data for lattices up to 164 in size.

11.6 INTRODUCTION: QUANTUM
CHROMODYNAMICS (QCD) AND PHASE
TRANSITIONS OF NUCLEAR MATTER

According to our current understanding of high energy physics the basic

constituents of elementary particles are quarks and gluons. Quantum chro-

modynamics (QCD) is the relativistically invariant quantum field theory,

formulated in four-dimensional space ðx; � ¼ itÞ; note that we choose here

the standard units of elementary particle physics, �h ¼ c ¼ 1. Since for this

problem of strong interactions perturbation theory is of limited value, non-

perturbative theoretical approaches must be sought. A formulation in terms

of path integrals is the method of choice (Creutz et al., 1983; Kogut, 1983;

Montvay and Münster, 1994). In this approach, the vacuum expectation

value of a quantum observable O is written as (Meyer-Ortmanns, 1996)

hOi ¼ 1

Z

ð
DA�D�D�OðA�; �;�Þ exp½�SðA�; �;�; g;miÞ�; ð11:11Þ

where A� denotes the gauge fields, �;� stand for the particle fields (indices

f ¼ 1; . . . ;Nf for the ‘flavors’ and c ¼ 1; . . . ;Nc for the ‘colors’ classifying

these quarks we suppressed, to simplify the notation). The action functional

S also contains the gauge coupling and the quark masses mi as parameters,

and is the space–time integral of the Lagrange density of QCD,

S ¼
ð
d�

ð
dxLQCDðA�; �;�; g;miÞ; ð11:12Þ

the explicit form of LQCD in full generality is rather complicated, but will not

be needed here. Finally, the normalizing factor Z in Eqn. (11.11), the

vacuum-to-vacuum amplitude, is

Z ¼
ð
DA�D�D� exp½�S�: ð11:13Þ

The formal analogy of Eqns. (11.11–11.13) with problems in statistical

mechanics is rather obvious: If we interpret LQCD as a density of an effective

free energy functional, multiplied by inverse temperature �, the action can be

interpreted as effective Hamiltonian �H, and Z is analogous to a partition

function. Now it is already well known for the path integral formulation of

simple non-relativistic quantum mechanics (Feynman and Hibbs, 1965) that

a precise mathematical meaning must be given to all these functional integrals

over gauge and matter fields. One very attractive way to do this is the lattice

formulation in which the (3 þ 1)-dimensional space–time continuum is dis-

cretized on a hypercubic lattice. A gauge-invariant lattice action must be
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chosen, which then provides a gauge-invariant scheme to regularize the path

integral: in the limit where the lattice linear dimensions become large, the

continuum limit is recovered.

In practice such a lattice action can be chosen following Wilson (1974)

associating matter variables �x; �x with the sites of the lattice and gauge

variables with the links, U�
x being associated with a link leaving a site x in

direction �̂�. These link variables are elements of the gauge group SUðNÞ
and replace the continuum gauge fields A�: One can then show that a

gauge action that produces the correct continuum limit (namely

ð4g2Þ�1
Ð
dt
Ð
dxTrF2

�� where F�� is the Yang–Mills field strength) can be

expressed in terms of products of these link variables over closed elementary

plaquettes of the hypercubic lattice,

S ¼ 2N

g2

X
x

�<�

p��x ; p��x ¼ 1 � 1

N
TrU�

xU
�
xþ�̂�U

�þ
xþ�̂�U

�þ
x ; ð11:14Þ

Tr denoting the trace in color space (normally N ¼ 3, quarks exist in three

colors, but corresponding studies using the SU(2) group are also made).

If one treats pure gauge fields, the problem closely resembles the treatment

of spin problems in the lattice as encountered in previous chapters – the only

difference being that � then correponds to g�2, and rather than a bilinear

Hamiltonian in terms of spins on lattice sites one has to deal with a

Hamiltonian containing those products of link variables around elementary

plaquettes.

The problem becomes far more involved if the matter fields �ðxÞ; �ðxÞ
describing the quarks are included: after all, quarks are fermions, and hence

these fields really are operators obeying anticommutation rules (so-called

Grassmann variables). There is no practical way to deal with such fermionic

fields explicitly in the context of Monte Carlo simulations!

Fortunately, this aspect of QCD is somewhat simpler than the many-

fermion problems encountered in condensed matter physics (such as the

Hubbard Hamiltonian, etc., see Chapter 8): the Lagrangian of QCD contains

� and � only in bilinear form, and thus one can integrate out the matter

fields exactly! The price that has to be paid is that a complicated determinant

appears, which is very cumbersome to handle and requires special methods,

which are beyond consideration here (Herrmann and Karsch, 1991). Thus,

sometimes this determinant is simply ignored (i.e. set equal to unity), but this

so-called ‘quenched approximation’ is clearly uncontrolled, although there is

hope that the errors are relatively small.

What do we wish to achieve with this lattice formulation of QCD? One

very fundamental problem that the theory should master is the prediction of

the masses of the hadrons, using the quark mass as an input. Very promising

results for the mass of the nucleon, the pion, the delta baryon, etc., have

indeed been obtained (Butler et al., 1993), although the results are still to be

considered somewhat preliminary due to the use of the ‘quenched approx-

imation’ mentioned above.

356 11 Lattice gauge models: a brief introduction



There are many more problems in QCD where the analogy with problems

encountered in condensed matter physics is even closer, namely phase transi-

tions occurring in nuclear matter of very high energy (or in other words, at

very high ‘temperature’: 100MeV corresponds to 1:16 � 1012 K)! While the

phase transitions in condensed matter physics occur at the scale from 1K to

103 K, at Tc � ð2:32 � 0:6Þ � 1012 K one expects a ‘melting’ of nuclear mat-

ter – quarks and gluons cease to be confined inside hadrons and begin to

move freely (Meyer-Ortmanns, 1996). According to the big bang theory of

the early universe, this deconfinement transition should have happened at

about 10�6 sec after the big bang.

We now turn to some special aspects of the average in Eqn. (11.11). Due to

the Wick rotation ðit ! �Þ inverse temperature appears as an integration

limit of the � integration,

S ¼
ð�
0

d�

ð
dxLðA�; �;�; g;miÞ ð11:15Þ

and in addition boundary conditions have to be obeyed,

A�ðx; 0Þ ¼ A�ðx; �Þ; �ðx; 0Þ ¼ ��ðx; �Þ; �ðx; 0Þ ¼ ��ðx; �Þ:
ð11:16Þ

Thus, while one has periodic boundary conditions in pseudo-time direction

for the gauge fields, as is familiar from condensed matter physics problems,

the particle fields require antiperiodic boundary conditions. As we shall dis-

cuss in the next section, there is intense interest in understanding the order of

this deconfinement transition, and the problems in its analysis have many

parallels with studies of the Potts model in statistical mechanics.

11.7 THE DECONFINEMENT TRANSITION OF
QCD

The deconfinement transition of a pure gauge model employing the SU(3)

symmetry can be considered as the limit of QCD in which all quark masses

tend to infinity. Real physics, of course, occurs at finite quark masses

(remember that there exist two light quarks, called ‘up’ and ‘down’, and

one heavier one, the so-called ‘strange quark’). This case is difficult to

treat, and therefore another simplified limit of QCD has been considered,

where the quark masses are put all equal to zero. This limit is called the

‘chiral limit’, because a Lagrange density applies which exhibits the so-called

‘chiral symmetry’ and is reminiscent of Landau theory, Eqn. (2.44), the

central distinction being that the scalar order parameter field mðxÞ is now

replaced by a Nf �Nf matrix field � (Pisarski and Wilczek, 1984)
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L ¼ 1

2
Tr

@�þ

@x�

� �
@�

@x�

� �
� f

2
Trð�þ�Þ � p2

3
f1ðTr�þ�Þ2 þ f2Trð�þ�Þ2� �

þ gðdet�þ det�þÞ:
ð11:17Þ

Here f ; f1; f2 and g are constants. At zero temperature there is a symmetry-

broken state, i.e. the vacuum expectation value h�i (which is also called the

‘quark condensate’) is now zero but exhibits SU(Nf ) symmetry. This spon-

taneous breaking of chiral symmetry is associated with the occurrence of a

multiplet of Goldstone bosons (i.e. massless excitations, loosely analogous to

spin wave excitations in a Heisenberg ferromagnet).

At finite temperature this model is believed to undergo a phase transition

to a phase where the chiral symmetry is restored. One believes that for g of

order unity this transition is of second order for Nf ¼ 2 but of first order for

Nf ¼ 3. The obvious problem is that QCD leads to rather different phase

transitions in the limit of quark masses m! 1 and m! 0: Note that the

order parameter for the deconfinement transition is rather subtle, namely the

expectation value of a Wilson loop, hLðxÞi, where LðxÞ is defined by

LðxÞ � TrT̂T exp

ð�
0

dtA0ðx; tÞ
� �

; ð11:18Þ

where T̂T is the time-ordering operator. One can interpret hLðxÞi in terms of

the free energy FðxÞ of a free test quark inserted into the system at x,

hLðxÞi ¼ exp½��FðxÞ� ¼ 0 in the phase exhibiting quark confinement,

while hLðxÞi is non-zero if we have deconfinement. This behavior qualifies

hLðxÞi as an order parameter of the deconfinement transition.

The question now is what happens when we consider intermediate quark

masses: are the deconfinement transition at Td and the chiral transition at Tch

simply limits of the same transition within QCD which smoothly changes its

character when the quark masses are varied, or are these transitions unrelated

to each other (and then ending at critical points somewhere in the ðT;mÞ
plane), Fig. 11.3? If scenario (b) applies and if the physically relevant quark

masses lie in the range in between mcrit
ch < m < mcrit

d , no phase transition
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Fig. 11.3 Hypothetical phase diagrams of QCD in the (m;T) plane, where T is the temperature,

and m stands for generic quark masses. (a) The transitions persist for finite non-zero m and

coincide. (b) Both transitions terminate at critical points for intermediate mass values. After Meyer-

Ortmanns (1996).



occurs but rather the change of nuclear matter to the quark–gluon plasma is a

gradual, smooth crossover (as the change of a gas of neutral atoms in a plasma

of ions and electrons when the temperature of the gas is raised).

From Fig. 11.3 we recognize that a crucial problem of QCD is the clar-

ification of a phase diagram (whether or not a sharp phase transition occurs,

and if the answer is yes, what is the order of the transition). If there were a

first order transition, this should have experimentally observable conse-

quences for heavy-ion collisions. Also the abundance of light elements in

the universe has been attributed to consequences of the first order scenario,

but one must consider this idea rather as an unproven speculation.

Before one can address the behavior of QCD for intermediate quark

masses, it clearly is of central importance to clarify the phase transitions in

the two limiting cases of Fig. 11.3, m! 0 and m! 1. Even this problem

has led to longstanding controversies, e.g. the order of the deconfinement

transition (m! 1) has been under debate for some time, but now the

controversy seems to be settled (Meyer-Ortmanns, 1996) by the finding of

a (relatively weak) first order transition. The equation of state

� ¼ ð"� 3pÞ=T4 of a pure SU(3) gauge model is plotted in Fig. 11.4

(Karsch, 1995). Here " is the energy density f" ¼ �ð1=V Þ@ðlnZÞ=@ð1=TÞg
and p is the pressure fp ¼ Tð@=@V Þ lnZg of nuclear matter. These definitions

are just the usual ones in the continuum limit, of course. In order to evaluate

such derivatives in the framework of lattice gauge theory one has to introduce

the lattice spacing for the ‘temporal’ direction ða�Þ and spatial directions ða�Þ
as explicit variables (the volume then is V ¼ a3�N

3
�a�N� for a lattice of linear

size N� in the spatial directions and N� in the ‘time’ direction). Treating a�
and a� as continuous variables, one can write @=@T ¼ N�1

� @=@a�, and

@=@V ¼ ð3a2�N3
�Þ@=@a�. After performing the appropriate lattice derivatives

of lnZ, one can set the lattice spacings equal again, a� ¼ a� ¼ a, and use a as

the unit of length. However, when one wishes to extrapolate towards the

continuum limit, one needs to let N� ! 1, a� ! 0 keeping the temperature

ðN�a�Þ�1 ¼ T fixed at the physical scale of interest (MeV units). Therefore

one needs to study the dependence of the data on N� carefully, as shown in

Fig. 11.4. A detailed analysis of the steep rise of "� 3p at Tc shows that there

indeed occurs a first order phase transition, with a latent heat of �"=T4
c ¼

2:44 � 0:24 ðN� ¼ 4Þ or �"=T4
c ¼ 1:80 � 0:18 ðN� ¼ 6Þ, respectively. An

important conclusion from the equation of state as shown in Fig. 11.4 also

is the fact that interaction effects are still present at temperatures far above Tc

(for a non-interacting ideal gas one would have " ¼ 3p, of course).

Another quantity which has found much attention is the interface tension

between low temperature and high temperature phases at the deconfinement

transition, since this quantity plays a role in some of the scenarios that

describe the evolution of the early universe. This interface tension was mea-

sured by Iwasaki et al. (1994) by an extension of the finite size analysis of

distribution functions originally proposed for the Ising model (Binder, 1982).

The result is �=T3
c ¼ 0:0292 � 0:0022 and for N� ¼ 4 and �=T3

c ¼ 0:0218 �
0:0033 for N� ¼ 6. Note that all these calculations are extremely time-con-
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suming and difficult – early estimates for �=T3
c applying different methods

ended up with estimates that were nearly an order of magnitude too large.

For a description of the dynamics of the early universe, this interface tension

controls the extent to which the quark–gluon plasma at the deconfinement

transition could be supercooled, before hadrons are nucleated. For the esti-

mates of �=T3
c quoted above, one ends up finally with the result that the

average distance between hadronic bubbles should have been 22 � 5 mm

(Meyer-Ortmanns, 1996).

11.8 WHERE ARE WE NOW?

Lattice QCD has continued to evolve because of improved models, new

simulation methods and faster computers. Indeed this area is arguably the

one in which reliance on special purpose computers is greatest. The last few

years have seen a continued evolution away from the use of the quenched

approximation to included dynamical fermions. The removal of this

quenched constraint removes a barrier to more realistic estimates. System

sizes as large as 32 � 32 � 32 � 100 lattice spacings have been simulated,

with the major computational roadblocks being critical slowing down and

the inversion of the fermion propagator for small masses. A rather complete

description of these advances can be found in the review by DeGrand (2004).

Lattice QCD can produce more precise data and treat smaller quark

masses, so that it is now possible to make quantitative comparisons with

experiment. There are now high quality Monte Carlo simulations available

that include vacuum-polarization effects for three (dynamical) light quarks.

Corrections were made for finite volume effects (�1%) and finite lattice

spacing effects (�2–3%). Final ‘best’ estimates for nine different quantities

are shown in Fig. 11.5. The determination was limited to a restricted set of

(‘gold plated’) parameters, but it nonetheless provides a good indication of

the current ‘state of the art’.
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Fig. 11.4 Interaction

measure "� 3p

normalized to T4

(dimensionless units)

plotted vs. T=Tc for a

pure SU(3) gauge

theory for different

lattice sizes. From

Karsch (1995).



Another relatively recent development is the use of Monte Carlo simula-

tions to study QCD at finite density, i.e. to extend the simulations to non-

zero baryonic chemical potential � (Fodor and Katz, 2002, 2004). This is not

straightforward to do since the determinant of the Euclidean Dirac operator

is complex and thus complex weights result for the probability that would be

used for Monte Carlo sampling. (This is reminiscent of the ‘sign problem’

that was mentioned in Chapter 8.3.4 for quantum Monte Carlo studies.) The

key to their approach was to perform Monte Carlo simulations for � ¼ 0 and

then use two-dimensional histogram reweighting (see Chapter 7.2) to extra-

polate to non-zero �. They found a first order phase boundary extending into

the �� T plane and terminating at a critical point at � ¼ 360ð40ÞMeV and

T ¼ 162ð2ÞMeV. This boundary is depicted in Fig. 11.6. Beyond the critical

point there is only a rapid but non-singular change in properties so that there

is no true transition between the hadronic phase and the quark-gluon plasma.

(Alternatively, data could be generated for complex m and then attempt to

analytically continue the phase diagram to real chemical potential.) This is but

one further example of how methods first applied in one sub-field of physics

can be transferred successfully into another area.
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Fig. 11.5 Ratio of

lattice QCD estimates

from Monte Carlo

simulations for

different quantities to

the experimental

values: (left) with

vacuum polarization,

(right) without

vacuum polarization.

(From Davies et al.,

2004.)

Fig. 11.6 Phase

diagram for dynamical

QCD obtained by

using two-dimensional

histogram reweighting

of Monte Carlo data

generated at � ¼ 0.

The small square

shows the location of

the endpoint to the

line of first order

transitions which is a

critical point. (From

Fodor and Katz,

2004.)



Of course, this brief introduction was not intended to give a representative

coverage of the extensive literature on Monte Carlo applications in lattice

gauge theory; we only want to give the reader a feeling for the ideas under-

lying the approach and to make the connections with Monte Carlo applica-

tions in the statistical mechanics of condensed matter transparent.
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12 A brief review of other methods of

computer simulation

12.1 INTRODUCTION

In the previous chapters of this text we have examined a wide variety of

Monte Carlo methods in depth. Although these are exceedingly useful for

many different problems in statistical physics, there are some circumstances

in which the systems of interest are not well suited to Monte Carlo study.

Indeed there are some problems which may not be treatable by stochastic

methods at all, since the time-dependent properties as constrained by deter-

ministic equations of motion are the subject of the study. The purpose of this

chapter is thus to provide a very brief overview of some of the other impor-

tant simulation techniques in statistical physics. Our goal is not to present a

complete list of other methods or even a thorough discussion of these meth-

ods which are included but rather to offer sufficient background to enable the

reader to compare some of the different approaches and better understand

the strengths and limitations of Monte Carlo simulations.

12.2 MOLECULAR DYNAMICS

12.2.1 Integration methods (microcanonical ensemble)

Molecular dynamics methods are those techniques which are used to numeri-

cally integrate coupled equations of motion for a system which may be

derived, e.g. in the simplest case from Lagrange’s equations or Hamilton’s

equations. Thus, the approach chosen is to deal with many interacting atoms

or molecules within the framework of classical mechanics. We begin this

discussion with consideration of systems in which the number of particles

N, the system volume V , and the total energy of the system E are held

constant This is known as the NVE ensemble. In the first approach,

Lagrange’s equations for N particles produce a set of 3N equations to be

solved:

mi €rri ¼ Fi ¼ �;ri
V; ð12:1Þ

where mi is the particle mass and Fi the total net force acting on each particle

(V is the appropriate potential). For N particles in three spatial dimensions

(d ¼ 3) this entails the solution of 3N second order equations. (The reader
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will recognize Eqn. (12.1) as Newton’s second law.) If instead, Hamilton’s

equations are used to derive the system dynamics, a set of 6N first order

equations will result:

_rri ¼ pi=mi; ð12:2aÞ
_ppi ¼ Fi: ð12:2bÞ

where pi is the momentum of the particle. Either set of equations can be

solved by simple finite difference methods using a time interval D which must

be made sufficiently small to maintain accuracy. It is clear from the

Hamilton’s equation approach that the energy of the system is invariant

with time so that solution of these equations produces states in the micro-

canonical ensemble. The simplest numerical solution is obtained by making a

Taylor expansion of the position and velocity about the current time t, i.e.

riðt þ DÞ ¼ riðtÞ þ vðtÞDþ 1
2
aðtÞD2 þ � � � ð12:3aÞ

viðt þ DÞ ¼ viðtÞ þ aiðtÞDþ � � � : ð12:3bÞ
These equations are truncated after a small number of terms so that the

calculation of the properties of each particle at the next time is straightfor-

ward, but errors tend to build up rather quickly after many time steps have

passed. In order to minimize truncation errors two-step predictor–corrector

methods may be implemented. In these approaches a prediction is made for

the new positions, velocities, etc. using the current and previous values of

these quantities, and then the predicted acceleration is used to calculate

improved (or corrected) positions, velocities, etc. A number of different

predictor–corrector methods have been considered and the comparison has

been made elsewhere, see e.g. Berendsen and van Gunsteren (1986).

No discussion of molecular dynamics methods, not even an introductory

one, would be complete without some presentation of the Verlet algorithm

(Verlet, 1967). The position ri is expanded using increments þD and �D and

the resultant equations are then added to yield

riðt þ DÞ ¼ riðtÞ � riðt � DÞ þ aiðtÞD2 þ � � � : ð12:4Þ
The velocities are then determined by taking numerical time derivatives of

the position coordinates

viðtÞ ¼
riðt þ DÞ � riðt � DÞ

2D
: ð12:5Þ

Note that the error in Eqn. (12.4) has been reduced to order D4 but the error

in the velocity is of order D2. There are a number of other schemes for

carrying out the integration over time that have been developed and these

are discussed by Allen and Tildesley(1987) and Rapaport (1995). Molecular

dynamics studies have played an extremely important role in the develop-

ment of computer simulations, and indeed the discovery of long time tails

(algebraic decay) of the velocity autocorrelation function in a simple hard

sphere model was a seminal work that provided important insights into liquid

behavior (Alder and Wainwright, 1970).
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In these microcanonical simulations both the kinetic energy and the poten-

tial energy will vary, but in such a way as to keep the total energy fixed. Since

the temperature is proportional to the mean kinetic energy, i.e.

1

2

X
i

mi_rr
2
i ¼

3

2
NkBT; ð12:6Þ

it will fluctuate during the course of the simulation on a finite system.

Similarly, the potential energy will vary as the particles move, but these

variations can be determined by direct measurement. Obviously the use of

such techniques for obtaining averages in thermal equilibrium relies on the

ergodicity property of the system. Typical time steps are in the sub-pico-

second range and molecular dynamics simulations can generally follow a

system for only tens or hundreds of nanoseconds. Therefore, it is only

possible to study problems where equilibrium is reached on such a short

time scale. Characteristic of the kinds of studies that can be performed

using molecular dynamics are investigations of classical fluid models in

which the particles interact via a Lennard-Jones potential (see Eqn. (6.4)).

Figure 12.1 shows the equilibrium correlations obtained for a dense fluid of

864 particles (Verlet, 1968).

More recently there have been improvements made in the use of higher

order decompositions, which are based on the Trotter formula, for the inte-

gration of coupled equations of motion which describe different kinds of

motions with very different time scales (Tuckerman et al., 1992). In this

approach the ‘slow’ degrees of freedom are frozen while the others are

updated using a rather fine time scale; the ‘slow’ degrees of freedom are

then updated using a coarse time scale.

Some time integration methods are better at conserving energy, or other

‘constants of the motion’ while some methods are capable of determining

other physical properties with greater accuracy or speed even though the

exact preservation of conservation properties is lost. One important consid-

eration is the conservation of phase space volume. Only integration methods

which have time reversible symmetry will conserve a given volume in phase

space, and algorithms which are time reversible generally have less long term

drift of conserved quantities than those which are not time reversal invariant.

Molecular dynamics methods have been well suited to vectorization and,
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Fig. 12.1 Pair

correlation function
~hhðkÞ for a classical
fluid: (dots) molecular

dynamics data for a

Lennard-Jones

potential with T ¼
1:326; � ¼ 0:5426;

(solid curve) hard-

sphere model;

(crosses) x-ray

experiment on argon.

From Verlet (1968).



more recently, efficient parallel algorithms have been constructed that allow

the study of quite large systems. For example, in Fig. 12.2 we show recent

results of fracture in a system of about 2� 106 particles interacting with a

modified Lennard-Jones potential. We emphasize that such a large number of

particles by no means is the ‘world record’ for size. As far back as 2000, Roth

et al. (2000) ran some 5 billion atoms on a CRAY T3E using 512 processors,

albeit only for five integration time steps. More recently, more than 19 billion

particles were run for 50 MD time steps on the QSC machine of Los Alamos

(Kadau et al., 2004), also demonstrating the very good scalability properties

of the SPaSM code (Beazley and Lomdahl, 1994) that was used. For such

large problems, the analysis of configurations needs to be done ‘on the fly’,

due to the large number of coordinates and momenta that need to be handled;

and, furthermore, the use of visualization tools presents special problems. It is

clear that such feasibility studies have not yet produced useful results on

physics problems, but they do demonstrate the prospect that, in a few years,

materials science problems on the �m scale may become accessible to direct

atomistic simulation. Historically, the choice of algorithm was often deter-

mined in large part by the amount of computer memory needed, i.e. the

number of variables that needed to be kept track of. Given the large memories

available today, this concern has been largely ameliorated. Two features that

we do want to mention here which were introduced to make molecular

dynamics simulations faster are potential ‘cutoffs’ and ‘neighbor lists’.

(These labor saving devices can also be used for Monte Carlo simulations

of systems with continuous symmetry.) As the particles move, the forces

acting on them change and need to be continuously recomputed. A way to

speed up the calculation with only a modest reduction in accuracy is to cut off
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Fig. 12.2 Results of a

molecular dynamics

study of the time

evolution of crack

propagation in a model

with modified

Lennard-Jones

interactions. The top

row shows time

sequences for initial

motion in the stiff

direction, and in the

bottom row the initial

motion is in the soft

direction. From

Abraham (1996).



the interaction at some suitable range and then make a list of all neighbors

which are within some slightly larger radius. As time progresses, only the

forces caused by neighbors within the ‘cutoff radius’ need to be recomputed,

and for large systems the reduction in effort can be substantial. (The list

includes neighbors which are initially beyond the cutoff but which are near

enough that they might enter the ‘interacting region’ within the number of

time steps, typically 10–20 which elapse before the list is updated.) With the

advent of parallel computers, molecular dynamics algorithms have been

devised that will distribute the system over multiple processors and allow

treatment of quite large numbers of particles. One major constraint which

remains is the limitation in maximum integration time and algorithmic

improvement in this area is an important challenge for the future. There

are a number of important details and we refer the reader elsewhere (Allen

and Tildesley, 1987; Rapaport, 1995) for the entire story.

Problem 12.1 Consider a cubic box of fixed volume V and containing
N ¼ 256 particles which interact with a Lennard-Jones potential suitable
for argon: � ¼ 0:3405 nm, �=kB ¼ 119:8K, m ¼ 6:63382� 10�26 kg
ðT	 ¼ kBT=", �

	 ¼ ��3). Use a simple Verlet algorithm with a cutoff of
r ¼ 2:5� to carry out a molecular dynamics simulation with a density of
�	 ¼ 0:636 and a total (reduced) energy E	 of 101.79. Please answer the fol-
lowing questions.
a. What is the average temperature T	 for the system?
b.What is the time dependence of the kinetic energy for the system?
c. What is the time dependence of the potential energy for the system?

12.2.2 Other ensembles (constant temperature, constant
pressure, etc.)

Often the properties of the system being studied are desired for a different set

of constraints. For example, it is often preferable to have information at

constant temperature rather than at constant energy. This can be accom-

plished in several different ways. The crudest approach is to periodically

simply rescale all of the velocities so that the total kinetic energy of the

systems remains constant. This basic approach can also be implemented in

a stochastic manner in which the velocity of a randomly chosen particle is

reset using a Maxwell–Boltzmann distribution. A very popular method is that

of ‘thermostats’ in which an additional degree of freedom is added to play the

role of a reservoir (Nosé, 1984; Hoover, 1985). The time integration is then

carried out for this extended system and energy is extracted from the reser-

voir or inputted to it from the system so as to maintain a constant system

temperature. The equations of motion which must then be solved are differ-

ent from the original expressions; if we denote the particle position by r and

the ‘new’ degree of freedom by s, the equations to be solved for a particle of

mass m become
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€rri ¼ Fi=mis
2 � 2_ss_rri=s; ð12:7aÞ

Q €ss ¼
X
i

mi_rr
2
i s� ð f þ 1ÞkBT=s; ð12:7bÞ

where f is the number of degrees of freedom, T is the desired temperature,

and Q represents the size of the ‘thermal ballast’. There will, of course, be

some thermal lag and/or overshoot if this process is not carried out carefully,

i.e. if Q is not chosen wisely, but when care is exercised the net result is

usually quite good.

Molecular dynamics simulations can also be carried at constant pressure

using several different techniques including ‘pressurestat’ methods which are

the equivalent of the thermostats described above (Andersen, 1980). Constant

pressure may also be maintained by changing the box size, and more sophis-

ticated algorithms even allow for a change in the shape of the simulation box.

This latter capability may be important for the study of solids which exhibit

structural phase changes which may be masked or inhibited by a fixed shape

for the simulation box. Obviously it is possible to include both thermostats

and pressurestats to work in the NPT ensemble.

A rather different approach to molecular dynamics may be taken by con-

sidering a system of perfectly ‘hard’ particles which only interact when they

actually collide. The purpose of this simplification is to enable rather large

numbers of particles in relatively low density systems to be simulated with

relatively modest resources. For studies of hard particles the algorithms must

be modified rather substantially. The (straight line) trajectories of each of the

particles are calculated and the time and location of the next collision are

determined. The new velocities of the colliding particles are calculated using

conservation of energy and momentum for elastic collisions and the process is

resumed. Thus, instead of being a time step-driven process hard particle

molecular dynamics becomes an event-driven method. Such simulations

have been quite successful in producing macroscopic phenomena such as

the Rayleigh–Bénard instability, shown in Fig. 12.3, in a two-dimensional

system (Rapaport, 1988) confined between two horizontal plates held at

different temperatures. The data show that the formation of the final,

steady-state roll pattern takes quite some time to develop.

Problem 12.2 Take the system which you used in Problem 12.1 and carry
out a constant temperature MD simulation at the temperature which you
found from Problem 12.1. Determine:
a. the average kinetic energy for the system;
b. the average potential energy for the system;
c. the average total energy for the system. Compare with the value of E	 in
Problem 12.1.

In the example shown in Fig. 12.1 we have used the pair correlation

function, i.e. a static quantity in thermal equilibrium, which could have

been evaluated with Monte Carlo methods as well (see Chapter 6). In fact,

molecular dynamics often is used to address static equilibrium properties
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only, ignoring the additional bonus that dynamical properties could be

obtained as well. This approach makes sense in cases where molecular

dynamics actually produces statistically independent equilibrium configura-

tions faster than corresponding Monte Carlo simulations. Such situations

have been reported, e.g. in the simulation of molten SiO2 (due to strong

covalent bonds Monte Carlo moves where the random movement of single

atoms to new positions has a low acceptance rate), models of polymer melts

near their glass transition, etc. For problems of this type, the decision

whether Monte Carlo or molecular dynamics algorithms should be used is

non-trivial, because the judgment of efficiency is subtle. Sometimes Monte

Carlo is superior due to non-local moves, such as pivot rotations of large parts

of long polymer chains (see Chapter 6).

12.2.3 Non-equilibrium molecular dynamics

In the entire discussion given above, the goal was to produce and study the

behavior of an interacting system of particles in equilibrium. For systems

which are not in equilibrium, e.g. systems subject to a large perturbation, the

techniques used must be altered. In methods of non-equilibrium molecular

dynamics a large perturbation is introduced and transport coefficients are

then measured directly. Either the perturbation may be applied at time

t ¼ 0 and the correlation functions are measured and integrated to give

transport coefficients, or an oscillating perturbation is applied and the real

and imaginary responses are measured by Laplace transform of the correla-

tion functions.

12.2.4 Hybrid methods (MD + MC)

For some complex systems Monte Carlo simulations have very low accep-

tance rates except for very small trial moves and hence become quite ineffi-

cient. Molecular dynamics simulations may not allow the system to develop

sufficiently in time to be useful, however, molecular dynamics methods may

actually improve a Monte Carlo investigation of the system. A trial move is

produced by allowing the molecular dynamics equations of motion to pro-

gress the system through a rather large time step. Although such a develop-

ment may no longer be accurate as a molecular dynamics step, it will produce

a Monte Carlo trial move which will have a much higher chance of success

than a randomly chosen trial move. In the actual implementation of this

method some testing is generally advisable to determine an effective value

of the time step (Duane et al., 1987).

One example of the utility of this technique was given by Tavazza et al.

(2004) who used a hybrid MC-MD algorithm for the study of islands and

step edges on semiconductor surfaces. Because of the dimerization that

occurs at Si surfaces, the diffusion of adatoms is accompanied by significant

reconstruction and local energy changes. One consequence of this behavior is

that standard single particle Monte Carlo moves are virtually never accepted.

370 12 A brief review of other methods of computer simulation



But by adapting the hybrid MC-MD algorithm to the movement of an

adatom and its initial and final environments, thermal fluctuations of islands

of adatoms could be investigated.

12.2.5 Ab initio molecular dynamics

No discussion of molecular dynamics would be complete without at least a

brief mention of the approach pioneered by Car and Parrinello (1985) which

combines electronic structure methods with classical molecular dynamics. In

this hybrid scheme a fictitious dynamical system is simulated in which the

potential energy is a functional of both electronic and ionic degrees of free-

dom. This energy functional is minimized with respect to the electronic

degrees of freedom to obtain the Born–Oppenheimer potential energy surface

to be used in solving for the trajectories of the nuclei. This approach has

proven to be quite fruitful with the use of density functional theory for the

solution of the electronic structure part of the problem and appropriately

chosen pseudopotentials.

The Lagrangian for the system is

L ¼ 2
X
i

ð
dr�ij _		iðrÞj2 þ

1

2

X
I

MI
_RR2
I � E½f	agRI �

þ 2
X
ij

�ij

ð
dr		

i ðrÞ	jðrÞ � 
ij

� �
;

ð12:8Þ

where E is the energy functional, 	i the single particle wave function,MI and

RI the ionic masses and positions respectively. �i is the fictitious electronic

mass and the fictitious dynamics is given by

_		iðr; tÞ ¼ � 1

2


E


		
i ðr; tÞ

: ð12:9Þ

(Note that the single particle wave functions play the role of fictitious classical

dynamic variables.) The �ij are Lagrangian multipliers that are used to

maintain the orthonormality of the single particle wave functions. The resul-

tant equations of motion are

�i
€		iðr; tÞ ¼ � 1

2


E


		
i ðr; tÞ

þ
X
j

�ij	jðr; tÞ; ð12:10aÞ

MI
€RRI ¼ � @E

@ €RRIðtÞ
: ð12:10bÞ

These equations of motion can then be solved by the usual numerical meth-

ods, e.g. the Verlet algorithm, and constant temperature simulations can be

performed by introducing thermostats or velocity rescaling. This ab initio

method is efficient in exploring complicated energy landscapes in which

both the ionic positions and electronic structure are determined simulta-

neously (Parrinello, 1997).
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12.3 QUASI-CLASSICAL SPIN DYNAMICS

Although the static properties of a large number of magnetic systems have

been well studied experimentally, theoretically and via simulation, the study

of the dynamic properties of magnetic systems is far less mature. The Monte

Carlo method is fundamentally stochastic in nature and in general there is no

correlation between the development of a system in Monte Carlo time and in

real time, although the static averages are the same (by construction). An

approach to the investigation of true time-dependent properties is to generate

initial states, drawn from a canonical ensemble using Monte Carlo methods,

and to use these as starting points for the integration of the coupled equations

of motion. For example, consider a system of N spins which interact with the

general Hamiltonian

H ¼ �J
X
hi;ji

ðSixSjx þ SiySjy þ �SizSjzÞ þ D
X
i

S2
iz þH

X
i

Siz; ð12:11Þ

where the first sum is over all nearest neighbor pairs, � represents exchange

anisotropy, D is the single ion anisotropy, and H is the external magnetic

field. There are a number of physical systems which are well approximated by

Eqn. (12.11), although for different systems one or more of the parameters

may vanish. For � ¼ 1 and D ¼ 0 this represents the isotropic Heisenberg

ferromagnet or the corresponding antiferromagnet for J > 0 or J < 0,

respectively:
For models with continuous degrees of freedom, real equations of motion

can be derived from the quantum mechanical commutator,

@ŜSi

@t
¼ � i

�h
½ŜSi;H�; ð12:12aÞ

by allowing the spin value to go to infinity and normalizing the length to

unity to yield

dSi

dt
¼ @H

@Si

� Si ¼ �Si �Heff ; ð12:12bÞ

where Heff is an ‘effective’ interaction field. For the isotropic Heisenberg

ferromagnet Heff ¼ �J
P

nn Sj and the time dependence of each spin, SrðtÞ,
can be determined from integration of these equations. These coupled equa-

tions of motion can be viewed as describing the precession of each spin about

an effective interaction field; the complexity arises from the fact that since all

spins are moving, the effective field is not static but rather itself constantly

changing direction and magnitude.

A number of algorithms are available for the integrations of the coupled

equations of motion which were derived in the previous sub-section. The

simplest approach is to expand about the current spin value using the time

step D as the expansion variable;

S�
i ðt þ DÞ ¼ S�

i ðtÞ þ D _SS�
i ðtÞ þ

1

2
D2 €SS�

i ðtÞ þ
1

3!
D3S

:::
�
i ðtÞ þ � � � ð12:13Þ
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where the � denotes the spin component. (Compare this equation with Eqn.

(12.3) for molecular dynamics.) The ‘new’ estimate may be made by simply

evaluating as many terms as possible in the sum, although this procedure

must obviously be truncated at some point. Typical values of D which deliver

reliable results to a reasonable maximum integration time tmax are in the

range of D ¼ 0:005. If the equation is truncated at the point shown in

Eqn. (12.13), the errors will be of order D4. A very simple improvement

can be made by implementing a ‘leapfrog’ procedure (in the spirit of Eqn.

(12.4)) to yield (Gerling and Landau, 1984)

S�
i ðt þ DÞ ¼ S�

i ðt � DÞ þ 2D _SS�
i ðtÞ þ

2

3!
D3S

:::�

i ðtÞ þ � � � : ð12:14Þ

The error in this integration is O(D5) and allows not only larger values of D to

be used but also allows us to extend the maximum integration time to

tmax � 100J�1. Several standard numerical methods can also be applied.

One excellent approach is to use a predictor–corrector method; fourth

order predictor–corrector methods have proven to be quite effective for

spin dynamics simulations. An example is the explicit four-step Adams–

Bashforth method (Burden et al., 1981) followed by an implicit Adams–

Moulton corrector step, a combination which also has a local truncation

error of D5 and which has proven to be quite successful. The first application

of this method requires that at least three time steps have already been taken;

these can initially be provided using the fourth order Runge–Kutta method,

starting with the initial state. Of course, this predictor–corrector method

requires that the spin configuration at four time steps must be kept in mem-

ory. Note that the conservation laws discussed earlier will only be observed

within the accuracy set by the truncation error of the method. In practice,

this limits the time step to typically D ¼ 0:01J�1 in d ¼ 3 (Chen and

Landau, 1994) for the isotropic model (D ¼ 0), where tmax � 200J�1. The

same method was used in d ¼ 2; with D ¼ 0:01J�1; tmax ¼ 400J�1 (Evertz

and Landau, 1996) could be achieved, and this was sufficient to provide an

excellent description of the dynamic structure factor for the two-dimensional

XY-model at the Kosterlitz–Thouless transition as shown in Fig. 12.4. This

result presents a real theoretical challenge, since none of the existing theore-

tical predictions (labeled NF (Nelson and Fisher, 1977) and Villain (1974) in

the figure) can explain either the central peak or the shape of the spin wave

peak. Note that the high frequency intensity falls off as a power law, in

agreement with the NF theory.

For a typical spin dynamics study the major part of the cpu time needed is

consumed by the numerical time integration. The biggest possible time step

is thus most desirable, however, ‘standard’ methods impose a severe restric-

tion on the size of D for which the conservation laws of the dynamics are

obeyed. It is evident from Eqn. (12.11) that jSij for each lattice site i and the

total energy are conserved. Symmetries of the Hamiltonian impose additional

conservation laws, so, for example, for D ¼ 0 and � ¼ 1 (isotropic

Heisenberg model) the magnetization m is conserved. For an anisotropic

12.3 Quasi-classical spin dynamics 373



Heisenberg model, i.e. � 6¼ 1 or D 6¼ 0, only the z-component mz of the

magnetization is conserved. Conservation of spin length and energy is parti-

cularly crucial, and it would therefore also be desirable to devise an algorithm

which conserves these two quantities exactly. In this spirit, a new, large time

step integration procedure, which is based on Trotter–Suzuki decomposi-

tions of exponential operators and conserves both spin length and energy

exactly for D ¼ 0, has been devised (Krech et al., 1998). Variants of this

method for more general models allow very large time steps but do not

necessarily conserve all quantities exactly. The conservation is nonetheless

good enough for practical application. These decomposition spin dynamics

methods have been used to study the simple cubic Heisenberg antiferro-

magnet, a model that is a very good representation of the physical system

RbMnF3. Disagreements between experiment and theory for the dynamic

critical exponent have existed since the 1970s for this system. The structure

factor determined from simulation was compared with new experimental data

and quantitative agreement was quite good at several temperatures (Tsai et

al., 2000). Monte Carlo simulations had previously been used to determine

the transition temperature to high precision, and a comparison at the transi-

tion temperature (see Fig. 12.5) showed quite clearly that a central peak was

present in both simulation and experiment. The lack of the central peak in

the mode coupling and renormalization group predictions must, therefore, be

traced to inadequacies in the theory. The difference in the location of the

spin-wave peak in the spin dynamics simulations suggest that improvements

in the model, e.g. by the inclusion of lattice vibrations, are needed if the

agreement at TN is to be quantitative. The estimate of the true, dynamic

critical exponent z agreed with experiment but was slightly below theoretical

predictions. A follow-up study (Tsai and Landau, 2003) examined finite size
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effects quite carefully and showed that both simulation and experiment were

likely to have difficulty reaching the asymptotic regime of q-values.

Another success of the spin dynamics approach resulted from simulations

of an anisotropic Heisenberg model designed to describe MnF2 (Bunker and

Landau, 2000). The simulations led to the prediction of a gap in the long-

itudinal spin wave frequency spectrum due to two-spin wave scattering, and

this behavior was subsequently observed experimentally by polarized neutron

scattering (Schweika et al., 2002). Moreover, the impetus to perform the

experiment actually came from the simulational results.

12.4 LANGEVIN EQUATIONS AND VARIATIONS
(CELL DYNAMICS)

An alternative approach to the study of a system in the canonical ensemble is

to allow the particles to undergo collisions with much lighter particles, the

collection of which plays the role of a heat bath. In the same way, if a system

has fluctuations on both very short and relatively long time scales, it is

possible to use a rather large time step and allow the effect of rapid fluctua-

tions to be described by a random noise plus a damping term. The relevant

equations to be solved are then a set of Langevin equations:

mi €rriðtÞ ¼ ��_rriðtÞ þ FiðtÞ þ �ðtÞ ð12:15Þ
where FiðtÞ is the net force acting on the ith particle, � is the friction

(damping) constant, and �ðtÞ is a random, uncorrelated noise with zero

mean. If the damping constant is chosen carefully the system will reach

equilibrium and the resultant dynamic properties will not be affected by

the choice of �. Such Langevin simulations were quite successful in the
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study of distortive phase transitions (Schneider and Stoll, 1978). In a differ-

ent context, Grest and Kremer (1986) used Langevin dynamics methods to

study polymers in a heat bath for different values of the friction. They found

that this method not only reproduced the Rouse model but remained effec-

tive at high densities and allowed differentiation between interchain couplings

and the solvent.

Langevin equations often result when one is not describing the system in

full atomistic detail but rather on a more coarse-grained level, e.g. binary

mixtures are described by a local concentration variable cðr; tÞ, fluctuating in

space ðrÞ and time (t). For a binary solid alloy as considered in Fig. 2.9, this

variable cðr; tÞ arises by averaging over the concentrations of lattice sites

contained in a cell of volume Ld (in d dimensions) centered at site r. It is

then possible to derive a non-linear differential equation for cðr; tÞ, supple-
mented by a random force. The resulting Langevin equation is used to

describe spinodal decomposition (see Chapter 2) and has been studied by

simulations. An efficient discretized version of this approach is known as ‘cell

dynamics’ technique (Oono and Puri, 1988).

12.5 MICROMAGNETICS

A method that is closely related to the Langevin approach has been used for

many years in applied magnetism. The Landau-Lifshitz-Gilbert (LLG)

equations of motion (Landau and Lifshitz, 1935; Gilbert, 1955) have been

used for decades to determine the time dependence of the magnetization in

diverse materials of practical importance to magnetic storage devices. In this

approach (known as micromagnetics), however, the magnetization is a coarse

grained variable rather than the atomic spin vector and typically phenomen-

ological values are taken for the effective damping coefficient. The time

development of the magnetization ~SSð~xx; tÞ at position x and time t is given

by the noisy form given in Eqn. 12.16 which can then be integrated in time


~SSð~xx; tÞ

t

¼ �~SS� 
Eðf~SSgÞ

~SSð~xxÞ

þ �� ŝs� ~SS� 
Eðf~SSgÞ

~SSð~xxÞ

� !
þ ~SS� ~��ð~xx; tÞ ð12:16Þ

using numerical techniques ðŝs ¼ ~SS=SÞ. (In Eqn. (12.16) � is the gyromagnetic

ratio, � is the damping constant, EfSg is the energy functional, and the final

term represents the Gaussian distributed random noise.) The results can then

be compared with experiment. Unfortunately, it is often quite difficult to

determine what the parameters should be from a fundamental starting point,

and the results are often in disagreement with experiment. In an effort to

lessen the gap between experiment and simulation Grinstein and Koch (2003)

recently showed how a temperature dependent renormalization group theory

could be used to determine the effective exchange coefficient in the equa-

tions. The implementation of this approach to permalloy (a favorite, impor-

tant material for the testing of methods in applied magnetism) showed a
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dramatic decrease in the predicted critical temperature to a value that is

roughly correct.

12.6 DISSIPATIVE PARTICLE DYNAMICS (DPPD)

In the context of simulating soft matter systems over mesoscopic (rather than

truly atomistic) scales of space and time, the idea of coarse-graining the

system so that groups of atoms are treated together as one effective ‘particle’

is attractive. Unlike the ‘united atom’ approach familiar from polymer simu-

lations in which one replaces several atoms, e.g. a CH2 group in an alkane

chain, by one ‘united atom’ but otherwise aims at a chemically realistic

description of the system, here the effective particle represents many atoms

and no attempt is made to provide a realistic description of particular materi-

als. Rather, generic features are to be elucidated qualitatively, and therefore

one chooses potentials between effective particles that are computationally

convenient. Thus, forces between particles are taken to be pair-wise and

decrease linearly with distance, r, from a finite maximum value of r ¼ 0 up

to maximum distance r ¼ rc, and the force is zero for all r � rc. Using

Newton’s equations of motion, i.e. carrying out Molecular Dynamics (MD)

simulations, such a choice allows much larger time steps than are normally

possible. Consequently, one may proceed to much longer times.

As the name of the method already indicates, one includes not only the

conservative forces as described above but also a random force and friction

forces (the latter two being related by a fluctuation-dissipation relation).

However, the method fundamentally differs from the standard Brownian

Dynamics method where one simulates a Langevin equation (see Sec.

12.4), because the friction force is not simply proportional to the velocity,

~vv, of an effective particle. Instead it is proportional to the relative velocity ~vvij
¼ ~vvj � ~vvi between a pair of particles – as a result, both the friction force and

the random forces are also pair-wise forces! A standard choice for the random

force is (Groot, 2004) ~FFR
ij ¼ �!ðrijÞr_ijz=

ffiffiffiffi

t

p
, where � characterizes the

strength of the random force, !ðrÞ ¼ 1� r for r < 1 and zero else, z is a

random variable with zero mean and unit variance, r
_

ij is a unit vector along

~rrij ¼ ~rrj � ~rri, and 
t the time step of the MD integration. The friction (or

drag) force is then

~FFD
ij ¼ � 1

2kBT
�!ðrijÞ
	 
2

r
_

ijð~vvij � r_~ijÞ:

This DPPD method can be shown to yield a Boltzmann distribution in

equilibrium corresponding to the NVT ensemble, but at the same time it

leads to the correct description of hydrodynamics (Espanol, 1995; Espanol

and Warren, 1995; Groot and Warren, 1997). This statement would be true

for neither the Brownian Dynamics method (momentum transport is not

described correctly) nor the ‘thermostat’ used in the context of MD simula-

tions to realize the NVT ensemble rather than the NVE ensemble.
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Consequently, the DPPD random and friction forces are now becoming

increasingly popular as a ‘thermostat’ in standard MD simulations (using

more realistic inter-particle forces, rather than the coarse-grained linear var-

iation mentioned above).

Although the DPPD approach has been proposed only rather recently

(Hoogerbrugge and Koelman, 1992), its applications are already rather wide-

spread (e.g. structure formation of block copolymer mesophases, including

effects of shear flow, surfactant solutions, biomembrane deformation and

rupture, etc.). A review of this method and related methods can be found

in Karttunen et al. (2004).

12.7 LATTICE GAS CELLULAR AUTOMATA

An inventive approach to the use of cellular automata to study fluid flow

(Frisch et al., 1986) incorporates the use of point masses on a regular lattice

for simulations in which space, time, and velocity are discretized. In two

dimensions, particles move on a triangular lattice, and particle number and

momentum are conserved when they collide. Each particle has a vector

associated with it which points along one of the lattice directions. On the

triangular lattice each point has six nearest neighbors, and thus only six

different values of velocity are allowed. The system progresses in time as a

cellular automaton in which each particle may move one nearest neighbor

distance in one time step. The system is updated by allowing particles which

collide to scatter according to Newton’s laws, i.e. obeying conservation of

momentum. Examples of collision rules are shown schematically in Fig. 12.6.

This ‘lattice gas cellular automata’ approach to fluid flow has been shown, at

least in the limit of low velocity, to be equivalent to a discrete form of the

Navier–Stokes equation, and represents a potentially very fast method to

study fluid flow from a microscopic perspective. In the case of collisions

which involve non-zero momentum this procedure is always used. If the

total momentum of colliding particles is zero, there is a degeneracy in the

resulting outcome (see Fig. 12.6) and the choice can be made by a prede-

termined ‘tie-breaker’ or through the use of a random number generator.

Lattice gas models have now been used extensively to examine a number of

different physical situations including flow in complex geometries, phase

separation, interface properties, etc. As a demonstration of the nature of
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the results that one may obtain, we show in Fig. 12.7 a typical flow pattern

obtained when a flat plate is inserted in front of the moving fluid.

A more complete description of lattice gas cellular automata, as well as

more extensive sample results, can be found elsewhere (Rothman and Zaleski,

1994).

12.8 LATTICE BOLTZMANN EQUATION

A development that has already found extensive application in problems of

fluid dynamics, complex fluids, polymers, etc., is the Lattice Boltzmann

Equation approach. An outgrowth of Lattice Gas Cellular Automata the

method replaces the Boolean variables ni at each site i, as described in the

previous section, with the corresponding ensemble-averaged populations

fi ¼ hnii. Noise problems are thereby circumvented because the fi are

themselves averaged quantities, but the limitation is the loss of information

about correlations. The details of specific applications turn out to be quite

important and are beyond the scope of the present treatment. For more

complete descriptions see Succi (2001) and Kendon et al. (2001).

12.9 MULTISCALE SIMULATION

For many problems in materials science and biological soft matter, non-trivial

structures occur over many length scales: chemical details on the scale of 1A
�

may be simultaneously important for non-trivial ordering phenomena on the

nanoscopic and mesoscopic scales. In principle one would like to deal with

systems of the linear dimension of a micrometer or larger, i.e. one would have

to deal with systems comprising billions of atoms. Sometimes there may be a

similar spread of time scales; e.g. in a glass-forming polymer melt the spec-

trum of relaxation times extends from picoseconds to macroscopic times.

Of course, there is no general solution to the challenge of mastering such

widely varying scales of length and time (Brandt et al., 2001); however, there
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are special cases where progress can be made by combining different types of

simulation algorithms that are suitable for different scales to treat a single

large-scale problem. Such an approach is termed ‘multiscale simulation’.

Such a special case may occur when great atomistic detail is required only

in a small region of a large-scale system. Consider, e.g., the problem of crack

propagation in a crystal (Fig. 12.2): the most important regions are in the

immediate neighborhood of the crack tip; however, some elastic distortions

due to the strain fields that are generated are felt quite far away from the

crack. For this problem, Abraham (2000) describes a newly proposed multi-

scale simulation approach as follows: in the immediate environment of the

crack tip(s) (i.e. a region of the order of 102 atoms) ab initio Molecular

Dynamics (Car and Parrinello, 1985) is used. Hence electronic structure

calculations enter the energetics in this highly non-linear and deformed

region of the crystal. Outside this ‘core’ a much larger region (� 106

atoms) is treated by classical MD methods, while elastic deformations yet

farther away from the crack tip(s) are described using a numerical implemen-

tation of the continuum theory of elasticity (i.e., the ‘finite element method’

[FEM]). Of course, the key challenge of such an approach is to identify a

robust ‘handshaking’ method to ‘glue together’ these complementary tech-

niques so that the results fit together in the transition zones where one

method gives way to the next one. This was done by defining overlap regions

where two methods were applied together, e.g., the atoms in the outer zone of

the Car-Parrinello region around the crack tip were also part of the region

treated by classical MD. A constraint was then enforced that the positions of

the same atoms were identical using both methods! For details about how

such a ‘handshaking’ between methods can be implemented we refer the

reader to the original literature.

Still different types of approaches are needed for simulations of polymeric

materials (Paul et al., 1991; Tschöp et al., 1998; Baschnagel et al., 2000;

Girard and Müller-Plathe, 2004). In amorphous (fluid or solid) polymers a

chemically realistic, atomic level description (based on torsional and bond

angle potentials derived from quantum chemistry, etc.) is indispensable to

account for the physical properties on the macroscale. At the same time,

however, the large macromolecules form (interpenetrating) random walk-

like coils, and mesoscopic structures may occur if block-copolymers or liquid

crystalline polymers are involved that may form ordered superstructures.

The approach attempted in the literature so far is to try a ‘mapping’ from

the chemically realistic scale to simplified models (e.g. lattice models like the

bond fluctuation model of polymers, see Sec. 4.7.3, or bead-spring type

models) using a coarse-graining procedure. One approach is to use each

effective bond of the coarse-grained model to represent a whole group of

subsequent ‘chemical monomers’ along the backbone of the chain. All the

parameters of this coarse-grained model (including the effective potentials for

the length and bond angles of the effective bonds, etc.) have to be derived

systematically from MD simulation of the chemically realistic model. Using

this information, the large scale structure of the polymers in the framework of
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the coarse-grained model can then be equilibrated by standard MC or MD

methods. If the goal is to consider properties that depend on chemical detail,

however, the effective bonds then need to be replaced by the corresponding

‘chemical monomers’ and re-equilibrated again (‘reverse mapping’, see, e.g.

Girard and Müller-Plathe, 2004). All of these methods are still under devel-

opment at the time of writing, and hence we refrain from providing any

details.

For problems such as the long range order of block copolymer meso-

phases, systems containing many thousands of polymer chains would be

desirable. Murat and Kremer (1998) suggested mapping a polymer chain

onto a soft ellipsoid, and they derived the parameters for such a model

from the bead-spring chain model. However, we are not aware that the full

gap from quantum chemistry to mesophase structures has been bridged.
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13 Monte Carlo methods outside of physics

13.1 COMMENTARY

In the preceding chapters we had described the application of Monte Carlo

methods in numerous areas that can be clearly identified as belonging to

physics. Although the exposition was far from complete, it should have

sufficed to give the reader an appreciation of the broad impact that Monte

Carlo studies has already had in statistical physics. A more recent occurrence

is the application of these methods in non-traditional areas of physics related

research. More explicitly, we mean subject areas that are not normally con-

sidered to be physics at all but which make use of physics principles at their

core. In some cases physicists have entered these arenas by introducing quite

simplified models that represent a ‘physicist’s view’ of a particular problem.

Often such descriptions are oversimplified, but the hope is that some essential

insight can be gained as is the case in many traditional physics studies. (A

recent, provocative perspective of the role of statistical physics outside of

physics has been presented by Stauffer, 2004.) In other cases, however,

Monte Carlo methods are being applied by non-physicists (or ‘recent physi-

cists’) to problems that, at best, have a tenuous relationship to physics. This

chapter is to serve as a brief glimpse of applications of Monte Carlo methods

‘outside’ of physics. The number of such studies will surely grow rapidly; and

even now, we wish to emphasize that we will make no attempt to be complete

in our treatment.

13.2 PROTEIN FOLDING

13.2.1 Introduction

One exceedingly important set of problems in modern biological science

center about obtaining an understanding of how proteins obtain their folded

structures and how to develop a predictive capability to determine what the

folded structure will be for an arbitrary protein. Proteins may be viewed

(somewhat simplistically) as linear polymers with the naturally occurring

amino acids as monomers. For a given sequence of amino acids we would

then like to know what structure will result after the protein has folded. This
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is an exceedingly difficult problem that has two distinct aspects that must

be examined. First of all, the nature of the model to be used must be

considered. The physical characteristics of proteins are complex, and, in

principle, covalent forces between atoms on the ‘backbone’, van der Waals

forces and hydrogen bonds between atoms on different parts of the protein,

and long range, shielded electrostatic forces describing the effects of solvent,

all need inclusion. Consequently, the corresponding range of independent

‘coordinates’ that need to be varied is huge. To date it has simply not been

possible to examine these problems using realistic Hamiltonians that include

all degrees of freedom, and some degree of simplification has been needed. A

reasonable compromise is then to use a somewhat simplified Hamiltonian to

describe the system in which a combination of bonded and non-bonded

forces is used. For simplicity the bond lengths and bond angles are kept

constant and the degrees of freedom are constrained to the rotations about

the fixed bonds, expressed in terms of dihedral angles (see, e.g., Hansmann

and Okamoto, 1999). Once this is done, the behavior of the system is given by

the usual formulae of statistical mechanics, e.g. the partition function

Z ¼
X

configurations i

e�Ei=kBT �
X

E

gðEÞe�E=kBT ð13:1Þ

where the 1st sum is over all configurations of the system, and the 2nd sum is

over all energies with gðEÞ being the density of states. As for spin glass

models discussed in Chapters 4, 5 and 7, the resultant energy landscape is

quite rough and standard Monte Carlo methods tend to be trapped in meta-

stable states. For the case of proteins this often means that the polymer folds,

but into a state that does not have the lowest free energy and that is widely

separated in phase space from the correct ground state. This, then, is a

challenging problem but one where the sophisticated methods described in

earlier chapters may be brought to bear.

13.2.2 Generalized ensemble methods

The umbrella sampling, multicanonical sampling, parallel tempering method

and Wang-Landau sampling discussed earlier are all suitable for the study of

protein folding. A ‘standard model’ for the testing of simulational methods is

Met-enkephalin which has the amino acid sequence Tyr-Gly-Gly-Phe-Met.

For this system the probability weight

wðEÞ ¼ 1 þ � E � Eoð Þ
nF

� ��nF

ð13:2Þ

was chosen with nF ¼ 19 and Eo ¼ EGS ¼ �12:2 kcal/mol (EGS being the

known ground state energy). As shown in Fig. 13.1, the canonical simulation

at T ¼ 50K is trapped in a low-lying metastable state whereas the general-

ized ensemble simulation explores both higher-lying and lower-lying states. A

multicanonical ensemble simulation had found earlier that the mean energy at

this temperature, i.e. in the canonical ensemble, should be �11.1 kcal/mol.
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Similar studies were carried out using parallel tempering, and this

approach proved to be effective in overcoming the problem of multiple

minima. (For a comparison of parallel tempering with canonical Monte

Carlo and molecular dynamics, see Hansmann, 1997.)

As an example of the ability of simulations to described folded structures,

in Fig.13.2 we show a comparison of the low energy conformation found

from simulation with the structure determined from X-ray data. The

superposition of the two structures shows that the simulation reproduces

the tertiary structure quite well. This is quite gratifying since it shows
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Fig. 13.1 Time

sequence of the energy

of simulations for

Met-enkephalin from a

regular canonical

simulation at

T ¼ 50K (dotted

curve) and from a

generalized ensemble

simulation (solid

curve). (After

Hansmann and

Okamoto, 1999.)

Fig. 13.2 Structure of

the C-peptide of

ribonuclease A: (black

sticks) lowest energy

state obtained from a

multicanonical Monte

Carlo study; (gray

sticks) the X-ray

structure. (After

Hansmann and

Okamoto, 1999.)



that the Monte Carlo simulation is well on its way to becoming a predictive

tool.

At the same time, the protein folding problem has also become a ‘yard-

stick’ against which the performance of various methods is measured with

respect to their ability to find the low-lying ground-state that corresponds to

the folded conformation of the protein model. The simplistic HP model (Dill,

1985; Lau and Dill, 1989) on the simple cubic lattice is already adequate to

serve as a ‘testing ground’. In this model, the protein is described as a

heteropolymer composed of two kinds of monomers (hydrophobic: H; and

polar: P) that form a self-avoiding walk on the lattice, with an attractive

interaction between hydrophobic segments which we take to be unity. A

famous example is the 103mer (Lattmann et al., 1994), whose ground state

energy was initially believed to be Emin ¼ �49 (Toma and Toma, 1996) until

recent refinements of the PERM algorithm (see Chapters 4 and 6) due to Hsu

et al. (2003a,b) found distinctly lower energies, namely Emin ¼ �54 and

Emin ¼ �55, respectively. More recently, a combination of these refined

PERM methods with multicanonical sampling (see Chapter 7) due to

Bachmann and Janke (2004) achieved a still lower value, namely

Emin ¼ �56, for this particular sequence of the 103mer HP model.

However, this is still probably not the final word on this problem, since

the same authors also obtained the full density of states for the system,

ranging over more than 50 orders of magnitude, but the degeneracy of the

state with Emin is still of the order of 1016. Therefore, it is likely that lower-

lying states exist and remain to be discovered!

13.2.3 Globular proteins: a case study

The understanding of globular protein crystallization is important for con-

quering many pathological diseases, and Monte Carlo simulations are begin-

ning to play a role for these systems. Pagan et al. (2004) simulated the ten

Wolde-Frenkel model which uses a modified Lennard-Jones pairwise poten-

tial whose range of attractive interaction is small compared to the protein

diameter. In this model, for particles a distance r apart, the interaction

potential is

V ðrÞ ¼
1; r < �

4 2
�2

1

½ðr=�Þ2 � 1
6 �
�

½ðr=�Þ2 � 1
3
� �

; r � �

8><
>: ð13:3Þ

where � is the hard core radius and " is the depth of the potential well. In

chemical potential-temperature space this model shows fluid-fluid coexis-

tence up to a critical point. One reason for examining this study so closely

is that they took advantage of multiple methods that we have described earlier

in this text. They employed Metropolis sampling (see Section 4.2) in the

grand-canonical ensemble and analyzed the data using histogram reweighting

(see Section 7.2), finite size scaling (see Section 4.2.3), and field mixing (see
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Section 4.2.3.5). Data were obtained for L � L � L simulation cells with L

varying from 6–10 � and with periodic boundary conditions. Long runs,

extending from 108 to 109 MCS, were used to take data, and distributions

of both the density and energy were constructed. A finite size scaling plot of

the distribution of the order parameter (the density) is shown in Fig. 13.3. A

field mixing analysis was used to determine the location of the phase coex-

istence region and the critical point. From the variation of the coexistence

densities as the critical density is approached they extracted an estimate for

the critical exponent � that is consistent with the three-dimensional Ising value.

13.3 ‘BIOLOGICALLY INSPIRED PHYSICS’

A number of interesting problems that have been examined by Monte Carlo

simulation can be loosely viewed as part of biology, but since the formulation

is closer to that of statistical physics instead of ‘real’ biology we will term

them as ‘biologically inspired physics’. Intriguing examples of such work

include the study of genealogical trees for simple neutral models of a closed

population with sexual reproduction and clearly separated generations

(Derrida et al., 2000) and investigations of inherently non-equilibrium mod-

els for self-propelled particles in biological systems (such as schools of fish) as

described by Czirók and Vicsek (2000). These latter systems have been

studied using finite difference equations with stochastic noise, as described

in the previous chapter, but provide a glimpse of another kind of ‘biologically

inspired’ system. Yet another example are the simple bit string models for

reproduction that have also been examined via simulation (de Oliveira et al.,

2003). These investigations yield fascinating results, although, as indicated

earlier, the connection to real biology is somewhat tenuous.
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Fig.13.3 Scaling for

the order parameter

(density) of the ten

Wolde-Frenkel model.

Shown for comparison

is the universal fixed-

point ordering

operator function

(solid curve). (From

Pagan et al., 2004.)



13.4 MATHEMATICS/STATISTICS

There has been interest in the mathematics community about various forms

of Monte Carlo algorithms with the early work by Hastings (1970) on Markov

Chain Monte Carlo. Of course, the nomenclature is somewhat different in

mathematics, but many of the same questions remain to be answered. (For

example, the classic approach is referred to as the ‘Metropolis-Hastings’

algorithm, and the non-linear relaxation time is termed the ‘burn in’ time.)

In a recent article, Hitchcock (2003) described the history of the ‘infiltration’

of Monte Carlo simulations into the statistics community. (The article also

referred to the first serious Monte Carlo ‘experiment’ of which we are aware:

in 1777, Georges Louis Comte de Buffon attempted to estimate the value of 	
by repeatedly throwing a needle onto a grid of parallel lines and measuring

how often the needle landed on a line.) Recently, Mustonen and Rajesh

(2003) have used Wang-Landau sampling (see Section 7.8) to solve a problem

in combinatorial number theory. Simulations allowed the treatment of inte-

gers that were 40 times larger than those amenable to study by exact enu-

meration. A more general description of the use of Monte Carlo simulations

in statistics can be found in the book by Gilks et al. (1996).

13.5 SOCIOPHYSICS

It has become somewhat fashionable to use Monte Carlo simulations to

attempt to predict, or at least understand, sociological phenomena. As a

simple example, Stauffer (2002) has described the use of the Sznajd model

(Sznajd-Weron and Sznajd, 2000) as a simple approach to studying how

opinions are changed by contact between different individuals. Each site of

a lattice carries an Ising spin, i.e. can be up or down, and two parallel

neighbors ‘convince’ their neighbors to have the same direction. One can

begin with different distributions (possibly random) of up and down spins

and, of course, there may be modification of the rules used to determine how

neighbors are ‘convinced’, including spins that cannot be convinced at all.

Whether or not this model, or similar variants, can truly add to our under-

standing of social behavior, including voter opinions, is arguably uncertain. A

summary of recent simulations in sociophysics, along with some specific

examples that have an emphasis on hierarchical and consensus models, has

been provided by Stauffer (2003).

13.6 ECONOPHYSICS

Over the past decade or two numerous physicists have entered the world of

finance in substantial number, but much of the work that is done in that area

seems to have little relationship to physics. Here we adopt the term ‘econo-

physics’ to have the broad meaning that Stanley et al. (1999) gave to the phrase:

‘Econophysics describes work being done by physicists in which financial and
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economic systems are treated as complex systems.’ Indeed, power laws and

universal behavior, two of the hallmarks of statistical physics, can be identified

in analyses of existing financial data. For a general overview of the nature of

the state of ‘econophysics’ we direct the interested reader to the proceedings

of the 2002 International Econophysics Conference (Stanley et al., 2003).

A number of research studies have attempted to directly apply some of the

lessons learned in the earlier part of this textbook to problems of economics.

For example, da Silva and Stauffer (2001) identified clusters of parallel spins

in an Ising square lattice as groups of traders acting together within the

context of a particular stock market model. They produced their data by

performing standard Metropolis simulations but emphasized finite size

effects by fixing spins at the upper and lower system boundaries. Early

simulations treated this as a percolation model (see Chapter 3); consequently

there were no correlations between traders. By averaging over results for all

temperatures they were able to get return distributions that were in reason-

able agreement with reality.

Hammel and Paul (2002) performed simple sampling Monte Carlo

simulations of a trader-based model for stock market dynamics and found

a ‘stationary state’ of the model. The model used differs quite substantially

from the Ising model and attempts to represent, at least in some simple way,

the ‘dynamics’ expected on the trading floor. (Attempts to describe the

behavior by a simple reaction-diffusion equation produced results that

were incompatible with market phenomenology.) The model used by

Hammel and Paul (2002) includes equal populations of buyers and sellers

which perform random walks on discrete prices that they bid and ask. The

price idea of a trader changes with a given probability that is one of the input

parameters. The size of the change in price idea depends upon recent history,

and whenever a trade occurs the buyer and seller exchange identities. They

found a log-normal distribution of bid and asked prices relative to the current

market price and determined that time dependence (in Monte Carlo time) for

the parameters that characterized the distribution.

While intriguing in many ways, the simulations that have been performed

using models of statistical physics may prove to be little more than academic

exercises. They could nonetheless eventually lead to a better understanding

of the complex issues involved in real world economics and finance. Of

course, simulations of more sophisticated models are already finding direct

application in real investment situations. As a tangible example we cite the

case of a major investment bank that advertised guidance under the general

rubric of ‘Monte Carlo for the Masses’ and offered a yearly subscription to a

modeling program.

13.7 ‘TRAFFIC’ SIMULATIONS

The use of computers to study automobile traffic is far from new, but the

influence of Monte Carlo simulations in areas emanating from a more liberal
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interpretation of the word ‘traffic’ are becoming plentiful. Of course, simula-

tions of automobile traffic flow are probably best known in the statistical

physics community within the context of the Nagel-Schreckenberg model

(Nagel and Schreckenberg, 1992). The model introduces a number of vehi-

cles, Nveh, moving in the same directions with different, discrete values of the

speed. At each time step the arrangement of the vehicles is updated, in

parallel, including acceleration, deceleration (due to other vehicles), rando-

mization of speed, and a stepwise forward motion of the vehicles. Depending

on the values of the parameters used, free-flowing traffic, traffic jams, or the

coexistence of the two may be found. (For a more complete treatment of this

subject see Chowdury et al., 1997, and references therein.) Direct simulation

Monte Carlo simulations have also been used to study vehicular traffic flow

(Waldeer, 2003). Flow is modeled by a Boltzmann-like master equation and

different possible interaction profiles and algorithms are evaluated. In several

cases comparison could be made with analytic theory, with good agreement

resulting; and, using a two velocity dependent distance threshold, comparison

could be made with measured data. Agreement is qualitative at medium and

high densities, but at low densities non-interacting driver behavior is not

taken into account with sufficient detail.

An intriguing simulational study of a traffic related problem was made by

Tang and Ong (1988) who examined the damping of road noise by foliage

lining the streets of Singapore. A simple model was constructed that included

both the reflection of noise between the buildings on opposite sides of the

road and noise attenuation by the leaf canopy lining the road. Sound waves

are regarded as a shower of particles and both reflection and absorption might

occur in the canopy. Both test and measured noise spectra could be used and

different approximations were used for leaf vibrational resonance modes.

(The characteristics of the leaf canopy were chosen to closely mimic that

of the giant angsana trees normally found lining the roads in Singapore.)

They followed up to 106 randomly directed sound waves in determining

overall reflection and attenuation of noise.. The conclusion that they reached

was that the trees do not substantially affect traffic noise at ground level

because the reflection dominates, but at higher building stories the leaf

canopy does reduce traffic noise, particularly at the high end of the spectrum.

Monte Carlo simulations have also been applied to the examination of

different kinds of airport traffic. The simulation of airplane takeoffs and

(randomized) landings for a mixture of different kinds of aircraft was used

to help optimize the scheduling patterns (Pitfield and Jerrard, 1999). This

approach was applied to Rome Fiumucino International Airport, and by

segregating the landings by aircraft type, capacity could be increased to the

point that airport expansion could be shelved. Pitfield et al. (1998) also

applied Monte Carlo simulation to look for potentially conflicting ground

movements at a new (Seoul) airport. Their goal was to use random events,

drawn from a ‘realistic’ cumulative distribution, to simulate the movement of

aircraft on the ground, both for takeoffs and landings. The goal was to

determine the amount of conflict between towed aircraft and departing and
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arriving flights. The results showed that neither the number of conflicts nor

the holding time was very high for the planned pattern and that more costly

alternatives were unnecessary.

A somewhat related but quite different ‘traffic’ problem relates to flow of

electricity through a telephone company electronic switching system whose

components were subject to failure. Monte Carlo simulations were already

playing a role in this area several decades ago. For example, Malec (1971)

performed simulations of a simple ‘Tri-switch’ (redundant) model to assess

the likelihood of a system failure assuming a given distribution of random

failure of individual components and availability of only a single repairman.

Multiple kinds of random number distributions were chosen for comparison

including uniform, exponential, normal, and log-normal (see Section 2.2.5 for

a description of how to generate different types of random number distribu-

tions). He was able to estimate the mean time to system outage as a function

of the mean time to repair of the individual components. Although a large

number of trials was not made, the data were already adequate to show that

simulations were useful as predictive tools and for testing proposed design

changes.

13.8 MEDICINE

Understanding gene expression data from newly developed gene chips, with

the subsequent potential benefits to medical technology, is a daunting task.

To overcome the inherent complexity of the data analysis ‘superparamagnetic

clustering techniques’ that exploit the properties of phase transitions in dis-

ordered Potts ferromagnets have been developed. A quantitative measure of

topological inhomogeneity, �, was developed by Agrawal (2002) and was

used to determine the interaction neighborhood from colon cancer data

(Agrawal and Domany, 2003). This information was used to construct a

q ¼ 20 Potts model that was then studied using Monte Carlo simulations.

They found that the width of the superparamagnetic domain coincides with

the minimum in �. The clustering solutions obtained by superparamagnetic

clustering are robust against noise inherent in the data.

Another area in medicine in which Monte Carlo simulations are playing a

significant role is in the development of physics research tools for medical

use. One such example is in the design of medical imaging devices for emis-

sion tomography. Assié et al. (in press) provide an overview of the validation

of Monte Carlo generated data against real data obtained from PET (positron

emission tomography) and SPECT (single photon emission computerized

tomography) cameras. Clearly, in this area Monte Carlo is useful only if it

can produce quantitatively reliable data under quite realistic circumstances.

Monte Carlo simulations have also been developed for the assessment of

radiotherapy distribution (Leal et al., 2004). Complete with its own graphical

user interface, the program runs on a Beowulf cluster using PVM for

parallelization.
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14 Outlook

Within the contents of this book we have attempted to elucidate the essential

features of Monte Carlo simulations and their application to problems in

statistical physics. We have attempted to give the reader practical advice as

well as to present theoretically based background for the methodology of the

simulations as well as the tools of analysis. New Monte Carlo methods will be

devised and will be used with more powerful computers, but we believe that

the advice given to the reader in Section 4.8 will remain valid.

In general terms we can expect that progress in Monte Carlo studies in the

future will take place along two different routes. First, there will be a con-

tinued advancement towards ultra high resolution studies of relatively simple

models in which critical temperatures and exponents, phase boundaries, etc.

will be examined with increasing precision and accuracy. As a consequence,

high numerical resolution as well as the physical interpretation of simulational

results may well provide hints to the theorist who is interested in analytic

investigation. On the other hand, we expect that there will be a tendency to

increase the examination of much more complicated models which provide a

better approximation to physical materials. As the general area of materials

science blossoms, we anticipate that Monte Carlo methods will be used to

probe the often complex behavior of real materials. This is a challenge

indeed, since there are usually phenomena which are occurring at different

length and time scales. As a result, it will not be surprising if multiscale

methods are developed and Monte Carlo methods will be used within mul-

tiple regions of length and time scales. We encourage the reader to think of

new problems which are amenable to Monte Carlo simulation but which have

not yet been approached with this method.

Lastly, it is likely that an enhanced understanding of the significance of

numerical results can be obtained using techniques of scientific visualization.

The general trend in Monte Carlo simulations is to ever larger systems

studied for longer and longer times. The mere interpretation of the data is

becoming a problem of increasing magnitude, and visual techniques for prob-

ing the system (again over different scales of time and length) must be

developed. Coarse-graining techniques can be used to clarify features of

the results which are not immediately obvious from inspection of columns

of numbers. ‘Windows’ of various size can be used to scan the system looking
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for patterns which develop in both space and time; and the development of

such methods may well profit from interaction with computer science.

Clearly improved computer performance is moving swiftly in the direction

of parallel computing. Because of the inherent complexity of message passing,

it is likely that we shall see the development of hybrid computers in which

large arrays of symmetric (shared memory) multiprocessors appear. (Until

much higher speeds are achieved on the Internet, it is unlikely that non-local

assemblies of machines will prove useful for the majority of Monte Carlo

simulations.) We must continue to examine the algorithms and codes which

are used for Monte Carlo simulations to insure that they remain well suited to

the available computational resources.

We strongly believe that the utility of Monte Carlo simulations will con-

tinue to grow quite rapidly, but the directions may not always be predictable.

We hope that the material in this book will prove useful to the reader who

wanders into unfamiliar scientific territory and must be able to create new

tools instead of merely copying those that can be found in many places in the

literature. If so, our efforts in developing this textbook will have been worth-

while.
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Appendix

Since the thrust of the homework problems is for the student to write, debug,

and run ‘homemade’ programs, we will not provide a compendium of simu-

lational software. Nonetheless, to provide some aid to the student in the

learning process, we will offer a few programs that demonstrate some of

the basic steps in a Monte Carlo simulation. We do wish to make the reader

aware, however, that these program do not have all of the ‘bells and whistles’

which one might wish to introduce in a serious study but are merely simple

programs that can be used to test the students’ approach.

Program 1 Test a random number generator
Note, as an exercise the student may wish to insert other random number

generators or add tests to this simple program.
c**************************************************************

c This program is used to perform a few very simple tests of a random

c number generator. A congruential generator is being tested

c**************************************************************

Real*8 Rnum(100000),Rave,R2Ave,Correl,SDev

Integer Iseed,num

open(Unit=1,file=’result_testrng_02’)

PMod = 2147483647.0D0

DMax = 1.0D0/PMod

c*******

c Input

c*******

write(*,800)

800 format(’enter the random number generator seed ’)

read(*,921) Iseed

921 format(i5)

write(*,801) Iseed

write(1,801) Iseed

801 format(’ The random number seed is ’, I8)

write(*,802)

802 format(’enter the number of random numbers to be generated’)

read(*,921) num

write(*,803) num

write(1,803)num

803 format (’number of random numbers to be generated = ’,i8)

c******************************

c Initialize variables, vectors

c******************************
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do 1 i=2,10000

1 Rnum(i)=0.0D0

Rave=0.D0

Correl=0.0D0

R2Ave=0.0D0

SDev=0.0D0

c*************************

c Calculate random numbers

c*************************

Rnum(1)=Iseed*DMax

Write(*,931) Rnum(1),Iseed

Do 10 i=2,num

Rnum(i)=cong16807(Iseed)

if (num.le.100) write(*,931) Rnum(i),Iseed

931 format(f10.5,i15)

10 continue

Rave=Rnum(1)

R2Ave=Rnum(1)**2

Do 20 i=2,num

Correl=Correl+Rnum(i)*Rnum(i-1)

Rave=Rave+Rnum(i)

20 R2Ave=R2Ave+Rnum(i)**2

Rave=Rave/num

SDev=Sqrt((R2Ave/num-Rave**2)/(num-1))

Correl=Correl/(num-1)-Rave*RAve

c*******

c Output

c*******

write(*,932) Rave,SDev,Correl

932 format(’Ave. random number = ’,F10.6, ’ +/-’, F10.6,

1 / ’ ‘‘nn’’-correlation = ’ F10.6)

write(1,932) Rave,SDev,Correl

999 format(f12.8)

close (1)

stop

end

FUNCTION Cong16807(ISeed)

c******************************************************

c This is a simple congruential random number generator

c******************************************************

INTEGER ISeed,IMod

REAL*8 RMod,PMod,DMax

RMod = DBLE(ISeed)

PMod = 2147483647.0D0

DMax = 1.0D0/PMod

RMod = RMod*16807.0D0

IMod = RMod*DMax

RMod = RMod - PMod*IMod

cong16807=rmod*DMax

Iseed=Rmod

RETURN

END
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Program 2 A good routine for generating a table of random numbers
C***************************************************************

C This program uses the R250/R521 combined generator described in:

C A. Heuer, B. Duenweg and A.M. Ferrenberg, Comp. Phys. Comm. 103, 1

C 1997). It generates a vector, RanVec, of length RanSize 31-bit random

C integers. Multiply by RMaxI to get normalized random numbers. You

C will need to test whether RanCnt will exceed RanSize. If so, call

C GenRan again to generate a new block of RanSize numbers. Always

C remember to increment RanCnt when you use a number from the table.

C***************************************************************

IMPLICIT NONE

INTEGER RanSize,Seed,I,RanCnt,RanMax

PARAMETER(RanSize = 10000)

PARAMETER( RanMax = 2147483647 )

INTEGER RanVec(RanSize),Z1(250+RanSize),Z2(521+RanSize)

REAL*8 RMaxI

PARAMETER ( RMaxI = 1.0D0/(1.0D0*RanMax) )

COMMON/MyRan/RanVec,Z1,Z2,RanCnt

SAVE

Seed = 432987111

C*****************************************

C Initialize the random number generator.

C*****************************************

CALL InitRan(Seed)*

C***************************************************************

c If the 10 numbers we need pushes us past the end of the RanVec vector,

C call GenRan. Since we just called InitRan, RanCnt = RanSize we must

c call it here.

C***************************************************************

IF ((RanCnt + 10) .GT. RanSize) THEN

C** Generate RanSize numbers and reset the RanCnt counter to 1

Call GenRan

END IF

Do I = 1,10

WRITE(*,*) RanVec(RanCnt + I - 1),RMaxI*RanVec(RanCnt + I - 1)

End Do

RanCnt = RanCnt + 10

C***************************************************************

C Check to see if the 10 numbers we need will push us past the end

C of the RanVec vector. If so, call GenRan.

C***************************************************************

IF ((RanCnt + 10) .GT. RanSize) THEN

C** Generate RanSize numbers and reset the RanCnt counter to 1

Call GenRan

END IF

Do I = 1,10

WRITE(*,*) RanVec(RanCnt + I - 1),RMaxI*RanVec(RanCnt + I - 1)

End Do

RanCnt = RanCnt + 10

END
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SUBROUTINE InitRan(Seed)

C***************************************************************

C Initialize the R250 and R521 generators using a congruential generator

C to set the individual bits in the 250/521 numbers in the table. The

C R250 and R521 are then warmed-up by generating 1000 numbers.

C***************************************************************

IMPLICIT NONE

REAL*8 RMaxI,RMod,PMod

INTEGER RanMax,RanSize

PARAMETER( RanMax = 2147483647 )

PARAMETER(RanSize = 100000)

PARAMETER ( RMaxI = 1.0D0/(1.0D0*RanMax) )

INTEGER Seed,I,J,K,IMod,IBit

INTEGER RanVec(RanSize),Z1(250+RanSize),Z2(521+RanSize)

INTEGER RanCnt

COMMON/MyRan/RanVec,Z1,Z2,RanCnt

SAVE

RMod = DBLE(Seed)

PMod = DBLE(RanMax)

C***********************************

C Warm up a congruential generator

C***********************************

Do I = 1,1000

RMod = RMod*16807.0D0

IMod = RMod/PMod

RMod = RMod - PMod*IMod

End Do

C***************************************************************

C Now fill up the tables for the R250 & R521 generators: This

C requires random integers in the range 0–> 2*31 1. Iterate a

C strange number of times to improve randomness.

C***************************************************************

Do I = 1,250

Z1(I) = 0

IBit = 1

Do J = 0,30

Do K = 1,37

RMod = RMod*16807.0D0

IMod = RMod/PMod

RMod = RMod - PMod*IMod

End Do

C** Now use this random number to set bit J of X(I).

IF (RMod .GT. 0.5D0*PMod) Z1(I) = IEOR(Z1(I),IBit)

IBit = IBit*2

End Do

End Do

Do I = 1,521

Z2(I) = 0

IBit = 1

Do J = 0,30

Do K = 1,37

RMod = RMod*16807.0D0

IMod = RMod/PMod

RMod = RMod - PMod*IMod

End Do

C** Now use this random number to set bit J of X(I).

IF (RMod .GT. 0.5D0*PMod) Z2(I) = IEOR(Z2(I),IBit)
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IBit = IBit*2

End Do

End Do

C***************************************************************

C Perform a few iterations of the R250 and R521 random number generators

C to eliminate any effects due to ‘poor’ initialization.

C***************************************************************

Do I = 1,1000

Z1(I+250) = IEOR(Z1(I),Z1(I+147))

Z2(I+521) = IEOR(Z2(I),Z2(I+353))

End Do

Do I = 1,250

Z1(I) = Z1(I + 1000)

End Do

Do I = 1,521

Z2(I) = Z2(I + 1000)

End Do

C***************************************************************

C Set the random number counter to RanSize so that a proper checking

C code will force a call to GenRan in the main program.

C***************************************************************

RanCnt = RanSize

RETURN

END

SUBROUTINE GenRan

C***************************************************************

C Generate vector RanVec (length RanSize) of pseudo-random 31-bit

C integers.

C***************************************************************

IMPLICIT NONE

INTEGER RanSize,RanCnt,I

PARAMETER(RanSize = 100000)

INTEGER RanVec(RanSize),Z1(250+RanSize),Z2(521+RanSize)

COMMON/MyRan/RanVec,Z1,Z2,RanCnt

SAVE

C***************************************************************

C Generate RanSize pseudo-random nubmers using the individual gen-

erators

C***************************************************************

Do I = 1,RanSize

Z1(I+250) = IEOR(Z1(I),Z1(I+147))

Z2(I+521) = IEOR(Z2(I),Z2(I+353))

End Do

C***************************************************************

C Combine the R250 and R521 numbers and put the result into RanVec

C***************************************************************

Do I = 1,RanSize

RanVec(I) = IEOR(Z1(I+250),Z2(I+521))

End Do

C***************************************************************

C Copy the last 250 numbers generated by R250 and the last 521 numbers

C from R521 into the working vectors (Z1), (Z2) for the next pass.

C***************************************************************

Do I = 1,250

Z1(I) = Z1(I + RanSize)

End Do
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Do I = 1,521

Z2(I) = Z2(I + RanSize)

End Do

C****************************************

C Reset the random number counter to 1.

C****************************************

RanCnt = 1

RETURN

END

Program 3 The Hoshen–Kopelman cluster finding routine
c***************************************************************

c lx,ly = lattice size along x,y

c ntrymax = number of lattices to be studied for each concentration

c iclmax = number of clusters (including those of 0 elements) found

c in a lattice configuration for a given concentration

c ioclmax = number of different cluster sizes found

c ns(1,j) = cluster size, j=1,ioclmax

c ns(2,j) = number of clusters of that size, j=1,ioclmax

c ninf = number of infinite clusters

c ninf/ntrymax = probability of infinite cluster

c

c For more details on the method, see:

c J. Hoshen and R. Kopelman, Phys. Rev. B14, 3428 (1976).

c***************************************************************

Parameter(lxmax=500,lymax=500)

Parameter(nnat=lxmax*lymax,nclustermax=nnat/2+1)

Integer isiti(lxmax,lymax)

Integer list(nnat),ncluster(nnat),nlabel(nclustermax)

Integer ibott(lxmax),itop(lxmax),ileft(lymax),iright(lymax)

Integer iperc(100),nsize(nclustermax),ns(2,nclustermax)

Character*40 fout

c************

c Input data

c************

read(5,*)lx

read(5,*)ly

read(5,*)fout

if (lx.gt.lxmax) stop ’lx too big’

if (ly.gt.lymax) stop ’ly too big’

c******************

c List of the sites

c******************

num=0

do j=1,lx

do i=1,ly

num=num+1

isiti(i,j)=num

enddo

enddo

nat=num

c***************

c Initialize

c***************

ninf=0
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iocl=0

ns(1,icl)=0

ns(2,icl)=0

do num=1,nat

list(num)=0

ncluster(num)=0

enddo

do icl=1,nclustermax

nsize(icl)=0

enddo

open(unit=50,file=fout,status=’unknown’,form=’formatted’)

c******************

c Input spins

c******************

do iy=1,ly

read(5,*) (list(isiti(ix,iy)),ix=1,lx)

enddo

c************************

c Analysis of the cluster

c************************

icl=0

if (list(1).eq.1) then

icl=icl+1

ncluster(1)=icl

nlabel(icl)=icl

endif

do num=2,lx

if (list(num).eq.1) then

if (list(num-1).eq.1) then

ivic1=ncluster(num-1)

ilab1=nlabel(ivic1)

ncluster(num)=ilab1

icheck=1

else

icl=icl+1

ncluster(num)=icl

nlabel(icl)=icl

endif

endif

enddo

do jj=1,ly-1

num=jj*lx+1

if (list(num).eq.1) then

if (list(num-lx).eq.1) then

ivic2=ncluster(num-lx)

ilab2=nlabel(ivic2)

ncluster(num)=ilab2

icheck=1

else

icl=icl+1

ncluster(num)=icl

nlabel(icl)=icl

endif

endif

do num=jj*lx+2,(jj+1)*lx

if (list(num).eq.1) then

if (list(num-1).eq.1) then
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ivic1=ncluster(num-1)

ilab1=nlabel(ivic1)

if (list(num-lx).eq.1) then

ivic2=ncluster(num-lx)

ilab2=nlabel(ivic2)

imax=max(ilab1,ilab2)

imin=min(ilab1,ilab2)

ncluster(num)=imin

nlabel(imax)=nlabel(imin)

do kj=1,icl

if (nlabel(kj).eq.imax) nlabel(kj)=imin

enddo

icheck=1

else

ncluster(num)=ilab1

icheck=1

endif

else

if (list(num-lx).eq.1) then

ivic2=ncluster(num-lx)

ilab2=nlabel(ivic2)

ncluster(num)=ilab2

icheck=1

else

icl=icl+1

ncluster(num)=icl

nlabel(icl)=icl

endif

endif

endif

enddo

if (icheck.eq.0) then

write(*,*) ’no possible percolation’

go to 2000

endif

icheck=0

enddo

iclmax=icl

c*************************************************

c Determination of the number of infinite clusters

c*************************************************

io=0

do num=1,lx

itest=0

if (list(num).eq.1) then

ilab=nlabel(ncluster(num))

call conta(num,ilab,ibott,itest,io,lx)

endif

enddo

iomax=io

in=0

do num=(ly-1)*lx+1,nat

itest=0

if (list(num).eq.1) then

ilab=nlabel(ncluster(num))

call conta(num,ilab,itop,itest,in,lx)

endif
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enddo

inmax=in

il=0

do num=1,nat,lx

itest=0

if (list(num).eq.1) then

ilab=nlabel(ncluster(num))

call conta(num,ilab,ileft,itest,il,ly)

endif

enddo

ilmax=il

ir=0

do num=lx,nat,lx

itest=0

if (list(num).eq.1) then

ilab=nlabel(ncluster(num))

call conta(num,ilab,iright,itest,ir,ly)

endif

enddo

irmax=ir

nperc=0

nperc1=0

np=0

do ii=1,iomax

do jj=1,inmax

if (itop(jj).eq.ibott(ii)) then

nperc=nperc+1

np=np+1

iperc(np)=nperc

endif

enddo

enddo

npmax=np

itest2=0

do ii=1,irmax

do jj=1,ilmax

if (ileft(jj).eq.iright(ii)) then

do np=1,npmax

if (ileft(jj).eq.iperc(np)) itest2=1

enddo

if (itest2.eq.0) nperc=nperc+1

endif

enddo

enddo

if (nperc.gt.0) nperc1=1

if (nperc.gt.0) ninf=ninf+1

call size(nat,iclmax,nsize,nlabel,ncluster,ns,iocl,

* nclustermax)

ioclmax=iocl

fl=1.0/float(nat)

do icl=1,ioclmax

fl1=log(float(ns(1,icl)))

fl2=log(float(ns(2,icl))*fl)

write (50,*) ns(1,icl),ns(2,icl),float(ns(2,icl))*fl,f11,f12

enddo

write (*,*) ’Number of cluster sizes = ’,ioclmax

write (*,*) ’Number of infinite clusters =’,ninf
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2000 continue

stop

end

SUBROUTINE size(nat,iclmax,nsize,nlabel,ncluster,ns,iocl,nclmax)

integer nlabel(nclmax),ncluster(nat),nsize(iclmax)

integer ns(2,nclmax)

do num=1,nat

do ncl=1,iclmax

if (nlabel(ncluster(num)).eq.ncl) nsize(ncl)=nsize(ncl)+1

enddo

enddo

write(*,*)’Number of clusters = ’,iclmax

do ncl=1,iclmax

write(*,*)’ Cluster # ’,ncl,’, size = ’,nsize(ncl)

enddo

write(*,*)’’

do ncl=1,iclmax

if (nsize(ncl).gt.0) then

if (iocl.eq.0) then

iocl=iocl+1

ns(1,iocl)=nsize(ncl)

ns(2,iocl)=1

else

itest3=0

do i=1,iocl

if (nsize(ncl).eq.ns(1,i)) then

ns(2,i)=ns(2,i)+1

itest3=1

endif

enddo

if (itest3.eq.0) then

iocl=iocl+1

ns(1,iocl)=nsize(ncl)

ns(2,iocl)=1

endif

endif

endif

enddo

return

end

SUBROUTINE conta(num,ilab,iconta,itest,io,ll)

Integer iconta(ll)

if (io.eq.0) then

io=io+1

iconta(io)=ilab

itest=1

else

do ii=1,io

if (ilab.eq.iconta(ii)) itest=itest+1

enddo

if (itest.gt.1) stop ’error in iconta’

if (itest.eq.0) then

io=io+1

iconta(io)=ilab

endif
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endif

return

end

SUBROUTINE ass(rint,rn,ipos,ll)

zero=1.d-6

do nn=1,ll

rmax=nn*rint

rmin=(nn-1)*rint

if (((rn-rmin).ge.zero).and.((rn-rmax).lt.zero)) then

ipos=nn

go to 100

endif

enddo

100 return

end

Program 4 The one-dimensional Ising model
c***************************************************************

c This simple program performs a Monte Carlo simulation of a 1-dim

c Ising model with a periodic boundary. Parameters are inputted

c from the screen. Sweeps in either temperature or field can be run.

c Data output is to the screen and to a data file

c***************************************************************

Logical new

Real*4 Jint

Common/index/ nrun

Common/sizes/n,nsq

Common/param/beta,betah

Common/inparm/ temp,field,Jint

open(Unit=1,file=’result_1d_Ising_MCB.dat’)

new=.true.

write(*,900)

write(1,900)

900 format(’ Monte Carlo simulation of the d=1 Ising model’)

Iseed=12345

write(*,2929) Iseed

2929 format(’ random number seed is ’, I8)

Inrg=ran(iseed)

c****************************

c enter input parameters:

c****************************

write(*,905)

905 format(’ enter n [length of the chain]’)

read(*,910) n

910 format(i10)

write(*,912)

912 format(’ enter the coupling constant’)

read(*,920) Jint

write(*,915)

915 format(’ enter the initial temperature’)

read(*,920) temp

920 format(f20.6)

write(*,925)

925 format(’ enter the temperature increment’)

read(*,920) tempi
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write(*,930)

930 format(’ enter the initial magnetic field’)

read(*,920) field

write(*,935)

935 format(’ enter the magnetic field increment’)

read(*,920) fieldi

write(*,940)

940 format(’ enter the number of runs’)

read(*,910) numrun

write(*,945)

945 format(’ enter number of MC-steps ’)

read(*,910) mcstps

write(*,950)

950 format(’ enter the number of steps discarded for equilibrium’)

read(*,910) ntoss

nint=1

write(*,955) n,mcstps,ntoss

write(1,955) n,mcstps,ntoss

955 format(/’ 1-dimensionalIsingchainoflength’,1x,i3/1x,i9,’mc-

*steps/site with ’,1x,i8,’ mcs/s discarded to reach equilibrium ’/)

write(*,960) Jint

write(1,960) Jint

960 format(’ coupling constant = ’,f8.4)

ncount=mcstps/nint

temp=temp-tempi

field=field-fieldi

do 1111 jrun=1,numrun

nrun=jrun

call results(-1)

temp=temp+tempi

field=field+fieldi

c****************************************************

c Check the temperature to prevent underflow/overflow

c****************************************************

if(abs(temp).lt.1.0e-5) then

write(*,6666)

6666 format(’ Stop the simulation; this temperature is too cold!’)

goto 6677

endif

beta=Jint/temp

betah=field/temp

c*********************************

c Calculate flipping probabilities

c*********************************

call carlo(new)

if(ntoss.ge.1) call monte(ntoss,Irng)

c*********************************

c Plot lattice after equilibration

c*********************************

write (*,970)

970 format (’New run: Picture of the lattice after equilibration:’)

call picture

c**************************************

c Do a simulation and calculate results

c**************************************

do 1 jmc=1,ncount

call monte(nint,Irng)
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call core(n)

call results(0)

1 continue

c**************************************************

c Now, output results and a snapshot of the lattice

c**************************************************

call results(1)

write (*,975)

975 format (’A picture of the lattice at the end of the run:’)

call picture

write(*,980)

980 format(//)

1111 continue

6677 call results(2)

close(1)

stop

end

SUBROUTINE core(n)

c***********************************************************

c Calculate the energy and magnetization for a configuration

c***********************************************************

Integer*2 Ispin(80)

Real*8 e(20),wn

Common/corrs/ e

Common/spins/Ispin

ne1=0

nh1=0

jm=n

do 1 j=1,n

ne1=ne1+Ispin(j)*Ispin(jm)

nh1=nh1+Ispin(j)

jm=j

1 continue

wn=1.0d0/(n)

e(1)=ne1*wn

e(2)=nh1*wn

return

end

SUBROUTINE picture

c**********************************

c Produce a snapshot of the lattice

c**********************************

Integer*2 Ispin(80)

Character plus,minus,ising(80)

Common/spins/Ispin

Common/sizes/n,nsq

data plus,minus/’+’,’-’/

do 2 j=1,n

ising(j)=plus

if(Ispin(j).ne.1) ising(j)=minus

2 continue

write(*,200) (ising(k),k=1,n)

200 format(1x,80a1)

return

end
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SUBROUTINE monte(mcstps,Irng)

c********************************

c Perform a Monte Carlo step/site

c********************************

Integer*2 Ispin(80)

Integer*2 neigh(20)

Real*4 prob(9,3),rn

Common/spins/Ispin

Common/sizes/n,nsq

Common/trans/ prob

nm1=n-1

if(nm1.eq.0) nm1=1

do 1 mc=1,mcstps

jmc=0

do 2 jj=1,n

j=n*RAN(Irng)+1.0e-06

jp=j+1

if(jp.gt.n) j=1

jm=j-1

if(jm.lt.1) jm=n

rn=RAN(Irng)

jmc=jmc+1

nc=Ispin(j)

n4=Ispin(jm)+Ispin(jp)

n4=nc*n4+3

nh=nc+2

if(rn.gt.prob(n4,nh)) goto 6

Ispin(j)=-nc

6 continue

2 continue

1 continue

return

end

SUBROUTINE carlo(new)

c**********************************************

c Calculate the table of flipping probabilities

c**********************************************

Logical new

Integer*2 Ispin(80)

Real*4 prob(9,3)

Common/spins/Ispin

Common/sizes/n,nsq

Common/trans/ prob

Common/param/beta,betah

nsq=n*n

if((abs(betah).gt.30.0).or.(abs(beta).gt.30.0)) then

write(*,6666)

6666 format(’ Stop the simulation; the temperature is too cold!’)

stop

endif

do 11 j=1,5

do 11 jh=1,3

prob(j,jh)=exp(-2.0*beta*(j-3)-2.0*betah*(jh-2))

11 continue

if(.not.new) return

new=.false.
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do 2 j=1,n

Ispin(j)=1

2 continue

write(*,950)

950 format(’initial state:’)

call picture

write(*,960)

960 format(//)

return

end

SUBROUTINE results(lll)

c***************

c Output results

c***************

Real*8 e(99),ee(99),am(99),amm(99),am4(99),U(99)

Real*8 dam(99),de(99),spheat(99),cor(20),wnum

Real temper(99),fields(99)

Common/inparm/ temp,field,Jint

Common/sizes/n,nsq

Common/index/l

Common/corrs/cor

if(lll) 1,2,3

1 continue

e(l)=0.0d0

ee(l)=0.0d0

am(l)=0.0d0

amm(l)=0.0d0

am4(l)=0.0d0

num=0

return

2 continue

num=num+1

e(l)=e(l)+cor(1)

ee(l)=ee(l)+cor(1)*cor(1)

am(l)=am(l)+cor(2)

amm(l)=amm(l)+cor(2)*cor(2)

am4(l)= am4(l)+cor(2)**4

return

3 continue

if(lll.gt.1) goto 4

write(*,99)

99 format(/t4,’T’,t10,’H’,t17,’U4’,t25,’E’,t31,’E*E’,

* t39,’dE**2’,t50,’M’,t58,’M*M’,t66,’dM**2’,t76,’C’)

wnum=1.0d0/num

temper(l)=temp

fields(l)=field

e(l)=e(l)*wnum

ee(l)=ee(l)*wnum

am(l)=am(l)*wnum

amm(l)=amm(l)*wnum

am4(l)=am4(l)*wnum

de(l)=ee(l)-e(l)*e(l)

dam(l)=amm(l)-am(l)*am(l)

U(l)=1.0d0-am4(l)/(3.0d0*amm(l)**2)

fn=1.0d0*n

spheat(l)=fn*de(l)/(temper(l)**2)
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write(*,100) temper(l),fields(l), U(l),e(l),ee(l),de(l),

* am(l),amm(l),dam(l),spheat(l)

return

4 continue

write(*,900)

900 format(’Summary of the results:’)

write(*,99)

write(1,99)

do 55 j=1,l

write(*,100) temper(j),fields(j),U(j),e(j),ee(j),de(j),

* am(j),amm(j),dam(j),spheat(j)

write(1,100) temper(j),fields(j),U(j),e(j),ee(j),de(j),

* am(j),amm(j),dam(j),spheat(j)

100 format(2f6.3, 3f8.4,f8.4,f9.5,f9.5,f9.5,f7.3)

55 continue

return

end

Program 5 The bond fluctuation method
Note, this program contains yet another random number generator.

c***************************************************************

c This program simulates a simple 3-dim lattice model for polymers

c using the athermal bond-fluctuation method. For more details see:

c I. Carmesin and K. Kremer, Macromolecules 21, 2878 (1988).

c***************************************************************

Implicit none

Integer seed, nrmeas, mcswait

Character*50 infile,outfile,outres

include ‘‘model.common’’

include ‘‘lattice.common’’

write(*,*) ’input file for the old configuration:’

read(*,’(a50)’) infile

write(*,*) infile

write(*,*) ’output file for the new configuration:’

read(*,’(a50)’) outfile

write(*,*) outfile

write(*,*) ’output file for measurements:’

read(*,’(a50)’) outres

write(*,*) outres

write(*,*) ’time lapse between two measurements:’

read(*,*) mcswait

write(*,*) mcswait

write(*,*) ’number of measurements:’

read(*,*) nrmeas

write(*,*) nrmeas

write(*,*) ’seed for the random number generator:’

read(*,*) seed

write(*,*) seed

c********************************

c Initialize the bond vectors

c********************************

call bdibfl

c*****************************************************

c Initialize the bond angles and index for the bond angles

c*****************************************************
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call aninbfl

c****************************************

c Initialize the table for the allowed moves

c****************************************

call inimove

c*************************************************

c read in the configuration and initialize the lattice

c*************************************************

call bflin(infile)

c******************

c MC simulation part

c******************

call bflsim(mcswait,nrmeas,seed,outres)

c*****************************

c write out the end configuration

c*****************************

call bflout(outfile)

end

SUBROUTINE aninbfl

c***********************************************

c This program calculates the possible bond-angles

c***********************************************

Implicit none

Real skalp(108,108), winkel(100), pi

Integer indx(100), index, i, j, k, double, new(88), sawtest

Logical test

include ‘‘model.common’’

c**********************************

c Initializing the set of bond angles

c**********************************

pi = 4.0 * atan(1.0)

index = 1

do 410 i=1,108

do 410 j=1,108

winkel(index) = 5.0

test = .false.

sawtest = (bonds(i,1)+bonds(j,1))**2 +

* (bonds(i,2)+bonds(j,2))**2 +

* (bonds(i,3)+bonds(j,3))**2

if(sawtest.ge.4) then

test = .true.

skalp(i,j) = bonds(i,1)*bonds(j,1) +

* bonds(i,2)*bonds(j,2) +

* bonds(i,3)*bonds(j,3)

skalp(i,j) = skalp(i,j) /(bl(i)*bl(j))

skalp(i,j) = min(skalp(i,j),1.0)

skalp(i,j) = max(skalp(i,j),-1.0)

skalp(i,j) = pi - acos(skalp(i,j))

do 411 k=1,index

if(abs(skalp(i,j)-winkel(k)).le.0.001) then

test = .false.

angind(i,j) = k

endif

411 continue

if(test) then

winkel(index) = skalp(i,j)
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angind(i,j) = index

index = index + 1

winkel(index) = 5.0

endif

else

angind(i,j) = 100

endif

410 continue

do 417 i=1,108

do 417 j=1,108

if(angind(i,j).eq.100) angind(i,j) = index

417 continue

call indexx(index,winkel,indx)

do 412 i=1,index

angles(i) = winkel(indx(i))

new(indx(i)) = i

412 continue

do 413 i=1,108

do 413 j=1,108

angind(i,j) = new(angind(i,j))

413 continue

return

end

SUBROUTINE bdibfl

c*************************************************************

c This subroutine creates the allowed bond-set and passes it back.

**************************************************************

Implicit none

Integer max, ipegel, i, j, k, index, ind

Integer startvec(6,3), zielvec(50,3),testb(3),sumvec(3)

Integer dumvec(50,3), bondnr, newbond(3), dummy

Logical test, foundbond

include ‘‘model.common’’

c***********************************

c INITIALIZING POSSIBLE BONDVECTORS

c***********************************

startvec(1,1) = 2

startvec(1,2) = 0

startvec(1,3) = 0

startvec(2,1) = 2

startvec(2,2) = 1

startvec(2,3) = 0

startvec(3,1) = 2

startvec(3,2) = 1

startvec(3,3) = 1

startvec(4,1) = 2

startvec(4,2) = 2

startvec(4,3) = 1

startvec(5,1) = 3

startvec(5,2) = 0

startvec(5,3) = 0

startvec(6,1) = 3

startvec(6,2) = 1

startvec(6,3) = 0

max = 0

do 210 i=1,6
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ind = 1

do 211 j=1,2

do 212 k=1,3

zielvec(ind,1) = startvec(i,1)

zielvec(ind,2) = startvec(i,2)

zielvec(ind,3) = startvec(i,3)

ind = ind + 1

zielvec(ind,1) = startvec(i,1)

zielvec(ind,2) = startvec(i,2)

zielvec(ind,3) = - startvec(i,3)

ind = ind + 1

zielvec(ind,1) = startvec(i,1)

zielvec(ind,2) = - startvec(i,2)

zielvec(ind,3) = startvec(i,3)

ind = ind + 1

zielvec(ind,1) = startvec(i,1)

zielvec(ind,2) = - startvec(i,2)

zielvec(ind,3) = - startvec(i,3)

ind = ind + 1

zielvec(ind,1) = - startvec(i,1)

zielvec(ind,2) = startvec(i,2)

zielvec(ind,3) = startvec(i,3)

ind = ind + 1

zielvec(ind,1) = - startvec(i,1)

zielvec(ind,2) = startvec(i,2)

zielvec(ind,3) = - startvec(i,3)

ind = ind + 1

zielvec(ind,1) = - startvec(i,1)

zielvec(ind,2) = - startvec(i,2)

zielvec(ind,3) = startvec(i,3)

ind = ind + 1

zielvec(ind,1) = - startvec(i,1)

zielvec(ind,2) = - startvec(i,2)

zielvec(ind,3) = - startvec(i,3)

ind = ind + 1

dummy = startvec(i,1)

startvec(i,1) = startvec(i,2)

startvec(i,2) = startvec(i,3)

startvec(i,3) = dummy

212 continue

dummy = startvec(i,1)

startvec(i,1) = startvec(i,2)

startvec(i,2) = dummy

211 continue

dumvec(1,1) = zielvec(1,1)

dumvec(1,2) = zielvec(1,2)

dumvec(1,3) = zielvec(1,3)

ipegel = 2

do 213 k=1,48

index = 1

test = .false.

333 if((.not.test).and.(index.lt.ipegel)) then

test = ((zielvec(k,1).eq.dumvec(index,1)).and.

* (zielvec(k,2).eq.dumvec(index,2))).and.

* (zielvec(k,3).eq.dumvec(index,3))

index = index + 1

goto 333
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endif

if(.not.test) then

dumvec(ipegel,1) = zielvec(k,1)

dumvec(ipegel,2) = zielvec(k,2)

dumvec(ipegel,3) = zielvec(k,3)

ipegel = ipegel + 1

endif

213 continue

do 214 j=1,ipegel-1

bonds(max+j,1) = dumvec(j,1)

bonds(max+j,2) = dumvec(j,2)

bonds(max+j,3) = dumvec(j,3)

214 continue

max = max + ipegel - 1

210 continue

do 220 i=1,108

bl2(i) = bonds(i,1)**2 + bonds(i,2)**2 + bonds(i,3)**2

bl(i) = sqrt(bl2(i))

220 continue

return

end

SUBROUTINE bflin(infile)

c***************************************************************

c This subroutine reads in an old configuration. The first line of the

c configuration file contains the number of chains and degree of poly-

c merization. The chain conformations are stored in consecutive lines:

c One line contains x, y and z coordinates of the start monomer of the

c chain, and the next lines each contain 10 integers which are the

c numbers of the bonds connecting adjacent monomers. For each chain

c the last bond number is 109, indicating a chain end without a bond.

c This works only for chains with length N=k*10. The coordinates of

c monomers 2 to N are then reconstructed from this information.

c***************************************************************

Implicit none

Character*50 infile

Integer i, j, jj, k, kd, kk, xp, yp, zp, xp1, yp1, zp1, nb,base

Include ‘‘model.common’’

Include ‘‘lattice.common’’

open(11,file=infile,form=’formatted’,status=’old’)

read(11,*) nrchains,polym

ntot = nrchains * polym

nb = polym / 10

do 1 j=1,nrchains

base = polym * (j-1)

read(11,*) monpos(base+1,1),monpos(base+1,2),monpos

(base+1,3)

do 2 jj = 0,nb-1

read(11,*) (monbd(k+10*jj+base),k=1,10)

2 continue

do 3 k=2,polym

do 3 kd=1,3

monpos(base+k,kd) = monpos(base+k-1,kd) +

* bonds(monbd(base+k-1),kd)

monlatp(base+k,kd) = mod(monpos(base+k,kd),ls) + 1

if(monlatp(base+k,kd).le.0) then

monlatp(base+k,kd) = monlatp(base+k,kd) + ls
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endif

3 continue

1 continue

monbd(0) = 109

monbd(ntot+1) = 109

c************************************************************

c These are the arrays for the periodic boundary conditions.

c************************************************************

do 10 i=1,ls

ip(i) = i+1

ip2(i) = i+2

im(i) = i-1

10 continue

ip(ls) = 1

ip2(ls-1) = 1

ip2(ls) = 2

im(1) = ls

c***************************************************************

c Now we initialize the lattice, setting all occupied vertices to unity

c***************************************************************

do 4 j=1,ls

do 4 k=1,ls

do 4 kk=1,ls

latt(j,k,kk) = 0

4 continue

do 5 j=1,ntot

xp = monlatp(j,1)

yp = monlatp(j,2)

zp = monlatp(j,3)

xp1 = ip(xp)

yp1 = ip(yp)

zp1 = ip(zp)

latt(xp,yp,zp) = 1

latt(xp1,yp,zp) = 1

latt(xp,yp1,zp) = 1

latt(xp,yp,zp1) = 1

latt(xp1,yp1,zp) = 1

latt(xp1,yp,zp1) = 1

latt(xp,yp1,zp1) = 1

latt(xp1,yp1,zp1) = 1

5 continue

end

SUBROUTINE bflout(outfile)

c***************************************************************

c Stores the final configuration of the simulation into a configura-

c tion file for use as a start configuration for a continuation run.

c***************************************************************

Implicit none

Character*50 outfile

Integer j, jj, k, nb, base

include ‘‘model.common’’

open(13,file=outfile,form=’formatted’,status=’unknown’)

write(13,*) nrchains,polym

nb = polym / 10

do 1 j=1,nrchains

base = polym*(j-1) + 1
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write(13,*) monpos(base,1),monpos(base,2),monpos(base,3)

do 2 jj = 0,nb-1

base = polym * (j-1) + 10 * jj

write(13,’(10I4)’) (monbd(k+base),k=1,10)

2 continue

1 continue

end

SUBROUTINE bflsim(mcswait,nrmeas,seed,outres)

c***************************************************************

c Performs the actual Monte Carlo simulation using jumps to nearest-

c neighbor sites as the only type of moves.

c***************************************************************

Implicit none

Double precision r2m,r4m,rg2m,rg4m,lm,l2m

Double precision rgnorm, blnorm, accept

Real u(97), c, cd, cm

Integer mcswait, nrmeas, seed, dir

Integer i97, j97, imeas, iwait, ind, mono, xp, yp, zp

Integer xm1, xp1, xp2, ym1, yp1, yp2, zm1, zp1, zp2

Iinteger newbl, newbr, testlat

Logical test

Character*50 outres

include ‘‘model.common’’

include ‘‘lattice.common’’

Common/raset1/ u,c,cd,cm,i97,j97

Common/static/ r2m,r4m,rg2m,rg4m,lm,l2m

open(12,file=outres,form=’formatted’,status=’unknown’)

c**************************************************

c Initialize the cumulative measurement variables.

c**************************************************

r2m = 0.0d0

r4m = 0.0d0

rg2m = 0.0d0

rg4m = 0.0d0

lm = 0.0d0

l2m = 0.0d0

accept = 0.0d0

c***************************************

c Initialize the random number generator

c***************************************

call rmarin(seed)

c*********************************************************

c loop over the number of measurements we wish to perform.

c*********************************************************

do 10 imeas=1,nrmeas

c***************************************************************

c loop over the number of Monte Carlo steps between two measurements

c***************************************************************

do 20 iwait=1,mcswait

call ranmar(rand,3*ntot)

ind = 1

mono = ntot * rand(ind) + 1

dir = 6 * rand(ind+1) + 1

newbl = move(monbd(mono-1),dir)

newbr = move(monbd(mono),dir)
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test = (newbl.eq.0).or.(newbr.eq.0)

if(.not.test) then

xp = monlatp(mono,1)

yp = monlatp(mono,2)

zp = monlatp(mono,3)

if(dir.eq.1) then

c*************************

c jump in +x direction

c*************************

xp2 = ip2(xp)

xp1 = ip(xp)

yp1 = ip(yp)

zp1 = ip(zp)

testlat = latt(xp2,yp,zp) + latt(xp2,yp1,zp) +

* latt(xp2,yp,zp1) + latt(xp2,yp1,zp1)

if(testlat.eq.0) then

c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,1) = monpos(mono,1) + 1

monlatp(mono,1) = xp1

monbd(mono-1) = newbl

monbd(mono) = newbr

c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xp2,yp,zp) = 1

latt(xp2,yp1,zp) = 1

latt(xp2,yp,zp1) = 1

latt(xp2,yp1,zp1) = 1

latt(xp,yp,zp) = 0

latt(xp,yp1,zp) = 0

latt(xp,yp,zp1) = 0

latt(xp,yp1,zp1) = 0

accept = accept + 1.0d0

endif

endif

if(dir.eq.6) then

c*************************

c jump in -x direction

c*************************

xm1 = im(xp)

xp1 = ip(xp)

yp1 = ip(yp)

zp1 = ip(zp)

testlat = latt(xm1,yp,zp) + latt(xm1,yp1,zp) +

* latt(xm1,yp,zp1) + latt(xm1,yp1,zp1)

if(testlat.eq.0) then

c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,1) = monpos(mono,1) - 1

monlatp(mono,1) = xm1

monbd(mono-1) = newbl

monbd(mono) = newbr
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c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xm1,yp,zp) = 1

latt(xm1,yp1,zp) = 1

latt(xm1,yp,zp1) = 1

latt(xm1,yp1,zp1) = 1

latt(xp1,yp,zp) = 0

latt(xp1,yp1,zp) = 0

latt(xp1,yp,zp1) = 0

latt(xp1,yp1,zp1) = 0

accept = accept + 1.0d0

endif

endif

if(dir.eq.2) then

c*************************

c jump in +y direction

c*************************

xp1 = ip(xp)

yp1 = ip(yp)

yp2 = ip2(yp)

zp1 = ip(zp)

testlat = latt(xp,yp2,zp) + latt(xp1,yp2,zp) +

* latt(xp,yp2,zp1) + latt(xp1,yp2,zp1)

if(testlat.eq.0) then

c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,2) = monpos(mono,2) + 1

monlatp(mono,2) = yp1

monbd(mono-1) = newbl

monbd(mono) = newbr

c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xp,yp2,zp) = 1

latt(xp1,yp2,zp) = 1

latt(xp,yp2,zp1) = 1

latt(xp1,yp2,zp1) = 1

latt(xp,yp,zp) = 0

latt(xp1,yp,zp) = 0

latt(xp,yp,zp1) = 0

latt(xp1,yp,zp1) = 0

accept = accept + 1.0d0

endif

endif

if(dir.eq.5) then

c**************************

c jump in -y direction

c**************************

xp1 = ip(xp)

yp1 = ip(yp)

ym1 = im(yp)

zp1 = ip(zp)

testlat = latt(xp,ym1,zp) + latt(xp1,ym1,zp) +

* latt(xp,ym1,zp1) + latt(xp1,ym1,zp1)

if(testlat.eq.0) then
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c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,2) = monpos(mono,2) - 1

monlatp(mono,2) = ym1

monbd(mono-1) = newbl

monbd(mono) = newbr

c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xp,ym1,zp) = 1

latt(xp1,ym1,zp) = 1

latt(xp,ym1,zp1) = 1

latt(xp1,ym1,zp1) = 1

latt(xp,yp1,zp) = 0

latt(xp1,yp1,zp) = 0

latt(xp,yp1,zp1) = 0

latt(xp1,yp1,zp1) = 0

accept = accept + 1.0d0

endif

endif

if(dir.eq.3) then

c*************************

c jump in +z direction

c*************************

xp1 = ip(xp)

yp1 = ip(yp)

zp1 = ip(zp)

zp2 = ip2(zp)

testlat = latt(xp,yp,zp2) + latt(xp1,yp,zp2) +

* latt(xp,yp1,zp2) + latt(xp1,yp1,zp2)

if(testlat.eq.0) then

c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,3) = monpos(mono,3) + 1

monlatp(mono,3) = zp1

monbd(mono-1) = newbl

monbd(mono) = newbr

c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xp,yp,zp2) = 1

latt(xp1,yp,zp2) = 1

latt(xp,yp1,zp2) = 1

latt(xp1,yp1,zp2) = 1

latt(xp,yp,zp) = 0

latt(xp1,yp,zp) = 0

latt(xp,yp1,zp) = 0

latt(xp1,yp1,zp) = 0

accept = accept + 1.0d0

endif

endif

if(dir.eq.4) then

c*************************

c jump in -z direction

c*************************

Appendix 419



xp1 = ip(xp)

yp1 = ip(yp)

zp1 = ip(zp)

zm1 = im(zp)

testlat = latt(xp,yp,zm1) + latt(xp1,yp,zm1) +

* latt(xp,yp1,zm1) + latt(xp1,yp1,zm1)

if(testlat.eq.0) then

c****************************************

c new monomer positions and new bonds

c****************************************

monpos(mono,3) = monpos(mono,3) - 1

monlatp(mono,3) = zm1

monbd(mono-1) = newbl

monbd(mono) = newbr

c***************************************************************

c set the newly occupied vertices to one and the old to zero.

c***************************************************************

latt(xp,yp,zm1) = 1

latt(xp1,yp,zm1) = 1

latt(xp,yp1,zm1) = 1

latt(xp1,yp1,zm1) = 1

latt(xp,yp,zp1) = 0

latt(xp1,yp,zp1) = 0

latt(xp,yp1,zp1) = 0

latt(xp1,yp1,zp1) = 0

accept = accept + 1.0d0

endif

endif

endif

ind = ind + 3

20 continue

c******************************************

c calculation of equilibrium properties

c******************************************

call chainst

10 continue

c**********************************

c normalization of measurements

c**********************************

rgnorm = nrchains*nrmeas

blnorm = rgnorm*(polym-1)

r2m = r2m / rgnorm

r4m = r4m / rgnorm

rg2m = rg2m / rgnorm

rg4m = rg4m / rgnorm

lm = lm / blnorm

l2m = l2m / blnorm

accept = accept/(1.0d0*ntot*mcswait*nrmeas)

c**********************************

c output of measured quantities

c**********************************

write(12,*) ’Mean squared end-to-end distance: ’,r2m

write(12,*) ’Mean quartic end-to-end distance: ’,r4m

write(12,*) ’Mean squared radius of gyration : ’,rg2m

write(12,*) ’Mean quartic radius of gyration : ’,rg4m

write(12,*) ’Mean bond length : ’,lm

write(12,*) ’Mean squared bond length : ’,l2m
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write(12,*) ’Mean acceptance rate : ’,accept

end

SUBROUTINE chainst

c***************************************************************

c This subroutine calculates some simple chain properties, e.g. the

c average end-to-end distance, radius of gyration and bond length.

c***************************************************************

Implicit none

Double precision r2m,r4m,rg2m,rg4m,lm,l2m

Double precision r2,r4,rg2,rg4,rcm(3),dpolym

Integer base, mon1, mon2, i, j

Common/static/r2m,r4m,rg2m,rg4m,lm,l2m

include ‘‘model.common’’

include ‘‘lattice.common’’

dpolym = polym*1.0d0

c***************************************************************

c Calculate 2nd and 4th moment of the end-to-end vector of the chains

c***************************************************************

do 10 i=1,nrchains

mon1 = polym*(i-1) + 1

mon2 = polym*i

r2 = (monpos(mon2,1) - monpos(mon1,1)) ** 2 +

* (monpos(mon2,2) - monpos(mon1,2)) ** 2 +

* (monpos(mon2,3) - monpos(mon1,3)) ** 2

r4 = r2 * r2

r2m = r2m + r2

r4m = r4m + r4

10 continue

c***************************************************************

c Calculate 2nd and 4th moments of the radius of gyration of the chains

c***************************************************************

do 20 i=1,nrchains

rcm(1) = 0.0d0

rcm(2) = 0.0d0

rcm(3) = 0.0d0

base = polym*(i-1)

do 21 j=1,polym

mon1 = base + j

rcm(1) = rcm(1) + monpos(mon1,1)

rcm(2) = rcm(2) + monpos(mon1,2)

rcm(3) = rcm(3) + monpos(mon1,3)

21 continue

rcm(1) = rcm(1) / dpolym

rcm(2) = rcm(2) / dpolym

rcm(3) = rcm(3) / dpolym

rg2 = 0.0d0

do 22 j=1,polym

mon1 = base + j

rg2 = rg2 +(monpos(mon1,1) - rcm(1)) **2 +

* (monpos(mon1,2) - rcm(2)) **2 +

* (monpos(mon1,3) - rcm(3)) **2

22 continue

rg2 = rg2 / dpolym

rg4 = rg2 * rg2

rg2m = rg2m + rg2
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rg4m = rg4m + rg4

20 continue

c***************************************************************

c Calculate the 1st and 2nd moments of the bond length

c***************************************************************

do 30 i=1,nrchains

base = polym*(i-1)

do 30 j=1,polym-1

mon1 = base + j

lm = lm + bl(monbd(mon1))

l2m = l2m + bl2(monbd(mon1))

30 continue

end

SUBROUTINE INDEXX(N,ARRIN,INDX)

DIMENSION ARRIN(N),INDX(N)

DO 11 J=1,N

INDX(J)=J

11 CONTINUE

L=N/2+1

IR=N

10 CONTINUE

IF(L.GT.1)THEN

L=L-1

INDXT=INDX(L)

Q=ARRIN(INDXT)

ELSE

INDXT=INDX(IR)

Q=ARRIN(INDXT)

INDX(IR)=INDX(1)

IR=IR-1

IF(IR.EQ.1)THEN

INDX(1)=INDXT

RETURN

ENDIF

ENDIF

I=L

J=L+L

20 IF(J.LE.IR)THEN

IF(J.LT.IR)THEN

IF(ARRIN(INDX(J)).LT.ARRIN(INDX(J+1)))J=J+1

ENDIF

IF(Q.LT.ARRIN(INDX(J)))THEN

INDX(I)=INDX(J)

I=J

J=J+J

ELSE

J=IR+1

ENDIF

GO TO 20

ENDIF

INDX(I)=INDXT

GO TO 10

END
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SUBROUTINE inimove

c***********************************

Implicit none

Integer i, j, k, new(6,3)

Logical test

include ‘‘model.common’’

do 1 i=1,108

new(1,1) = bonds(i,1) + 1

new(1,2) = bonds(i,2)

new(1,3) = bonds(i,3)

new(2,1) = bonds(i,1)

new(2,2) = bonds(i,2) + 1

new(2,3) = bonds(i,3)

new(3,1) = bonds(i,1)

new(3,2) = bonds(i,2)

new(3,3) = bonds(i,3) + 1

new(4,1) = bonds(i,1)

new(4,2) = bonds(i,2)

new(4,3) = bonds(i,3) - 1

new(5,1) = bonds(i,1)

new(5,2) = bonds(i,2) - 1

new(5,3) = bonds(i,3)

new(6,1) = bonds(i,1) - 1

new(6,2) = bonds(i,2)

new(6,3) = bonds(i,3)

do 2 j=1,6

test = .false.

do 3 k=1,108

test = (new(j,1).eq.bonds(k,1)).and.

* (new(j,2).eq.bonds(k,2)).and.(new(j,3).eq.-

bonds(k,3))

if(test) then

move(i,j) = k

else

move(i,j) = 0

endif

3 continue

2 continue

1 continue

do 4 i=1,6

move(109,i) = 109

4 continue

end

SUBROUTINE RANMAR(RVEC,LEN)

C***************************************************************

C Random number generator proposed in: G. Marsaglia and A. Zaman,

C Ann. Appl. Prob. 1, 462 (1991). It generates a vector ’RVEC’ of

C length ’LEN’ OF pseudorandom numbers; the commonblock includes

C everything needed to specify the state of the generator.

C***************************************************************

DIMENSION RVEC(*)

COMMON/RASET1/U(97),C,CD,CM,I97,J97

DO 100 IVEC=1,LEN

UNI = U(I97) - U(J97)

IF(UNI.LT.0.) UNI = UNI + 1.

U(I97) = UNI
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I97 = I97 - 1

IF(I97.EQ.0) I97 = 97

J97 = J97 - 1

IF(J97.EQ.0) J97 = 97

C = C - CD

IF(C.LT.0.) C = C + CM

UNI = UNI - C

IF(UNI.LT.0.) UNI = UNI + 1.

RVEC(IVEC) = UNI

100 CONTINUE

RETURN

END

SUBROUTINE RMARIN(IJKL)

C***************************************************************

C Initializes RANMAR. The input value should be in the range:

C 0 <= IJKL <= 900 000 000 . To obtain the standard values in the

C MARSAGLIA - ZAMAN PAPER (I=12, J=34, K=56, L=78) PUT IJKL = 54217137

C***************************************************************

COMMON/RASET1/U(97),C,CD,CM,I97,J97

IJ = IJKL / 30082

KL = IJKL - IJ * 30082

I = MOD(IJ/177,177) + 2

J = MOD(IJ,177) + 2

K = MOD(KL/169,178) + 1

L = MOD(KL,169)

C WRITE(*,*) ’RANMAR INITIALIZED: ’,IJKL,I,J,K,L

DO 2 II=1,97

S = 0.

T = 0.5

Do 3 JJ=1,24

M = MOD(MOD(I*J,179)*K,179)

I = J

J = K

L = MOD(53*L+1,169)

IF(MOD(L*M,64).GE.32) S = S + T

3 T = 0.5 * T

2 U(II) = S

C = 362436. / 16777216.

CD = 7654321. / 16777216.

CM = 16777213. / 16777216.

I97 = 97

J97 = 33

RETURN

END

c lattice.common

c***************************************************************

c ls = the linear size of the lattice in lattice constants

c nmax = the maximum number of monomers on the lattice

c maxch = the maximum number of chains.

C nmax, maxch > the requirements for the standard melt simulation: a

C volume fraction of 0.5 translates into 4000 monomers on the lattice

c Monomer positions and bonds are stored in arrays indexed by the

c number (n*k + j) for the j-th monomer in the k-th chain. Fake bonds

c lead to monomer 1 and from the last monomer so we won’t have to
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c distinguish between them and the other monomers (same for chain

ends).

C***************************************************************

Integer ls, nmax, maxch

Parameter (ls=40, nmax=10001, maxch=500)

c**********************************************

c For use with real random numbers and ranmar

c**********************************************

Real rand(3*nmax)

Integer latt(ls,ls,ls),monbd(-1:nmax),monpos(nmax,3),

* monlatp(nmax,3),ip(ls),ip2(ls),im(ls),

* nrchains,polym,nrends,ntot

Common/lattice/ rand,latt,monbd,monpos,monlatp,ip,ip2,im,

* nrchains,polym,nrends,ntot

c model.common

c******************************************************

Real angles(0:100),

Real bl(108),bl2(108)

Integer bonds(110,3),angind(110,110),move(109,6)

Common/model/ angles,bl,bl2,bonds,angind,move
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ab initio atomistic thermodynamics 120
ab initio molecular dynamics 371
absorbing Markov chain Monte Carlo

(MCAMC) 146
adsorbed monolayers 20, 226
adsorbed polymers 240
adsorption isotherm 201
alloys 45, 115, 162, 171
amphiphilic molecules 114
anisotropic finite size scaling 329, 330
anisotropic Heisenberg chain 290
annealed averaging 162, 334
ANNNI model 109
antiferromagnet 22, 123, 157, 292, 311,

326, 334
quantum 278, 293, 311

anti-phase domain 61
argon 365
Asukara-Oosawa model 203
attrition problem 63

ballistic deposition 343
Baxter model 110
Baxter–Wu model 110
bead-spring model 237, 240, 245
Bethe ansatz 294
biased estimation 93, 102, 246
biased particle insertions 214
bicritical point 158, 318
binary mixture 203, 212, 237, 376
blockspins 319, 322
Blume–Emery–Griffiths (BEG) model

114
Blume–Capel model 188, 326
bond fluctuation model 124, 237, 242
bond orientational order 207, 208
Bose statistics 285
boundary conditions 74

antiperiodic 75, 88, 182
antisymmetric 75
free edge 75, 177
hyperspherical 76
mean-field 76

periodic 74
screw periodic 74, 100

boundary value problems 51
branched polymers 125, 232
broad histogram method (BHMC) 262
broken symmetry 24
Brownian dynamics algorithm 247
Brownian motion 242, 243

canonical ensemble 10, 121, 162, 183, 251,
262, 263

capillary condensation 179
capillary waves 89, 178
Car–Parinello method 371
Casimir effect 181, 268
cell dynamics method 375
cellular automata 121, 340, 378
central limit theorem 29
checkerboard decomposition 73, 106, 115,

144, 149
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chiral symmetry 357
classical spin models 142, 150, 153, 277
clock model 111
cluster 56, 116, 137, 140, 141, 147, 337

aggregation 340
counting 59
flipping 137, 141, 154, 301
size distribution 58, 116, 337

coarse-graining 228, 232, 235, 237, 315
coarsening 42, 244
coexisting phases 87, 115, 123, 197, 211
collapse transition 127
collective diffusion 119
colloidal dispersions 227
commensurate superstructures 226, 227
commutator 156, 283, 286
competing interactions 105
complex fluids 114, 213, 227
compressibility 197, 208, 209
computer speed 189
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configurational bias Monte Carlo (CBMC)
method 130, 214, 245

congruential method 34, 187
conservation laws 40, 118, 333
continuity equation 118, 120
corrections to scaling 78, 80, 232, 258, 260
correlation function 13, 17, 101, 109, 142,

163, 231, 324, 326
correlation length 16, 18, 44, 68, 77, 170,

178, 185, 209, 240, 315
correlation time 31, 44, 92, 103
corrugation potentials 227
cost function 168
Coulomb interaction 224, 232
crack propagation 366
critical exponents 16, 18, 56, 61, 69, 77,

109, 129, 257, 318, 323
critical micelle concentration (cmc) 230
critical relaxation 98
critical slowing down 43, 44, 94, 98, 142
critical temperature 14, 43, 77, 80, 94, 103,
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255, 258, 316, 319, 325, 358

crosslinks 232, 285, 336
crossover 20, 22, 317
crystal growth 331
crystals 194, 201, 217, 233, 282
cumulants 78, 80, 85, 107, 167, 172, 210,

257, 258, 352
cutoffs of potentials 222, 366

damage spreading 182, 342
Debye law 284
de Broglie wavelength 198, 281

thermal 198, 281
decimation 319
deconfinement transition 357
decoupled cell method 302
demon algorithm 120
density of states 251, 270
deposition 331
detailed balance 70, 121
diatomic molecules 228
diffusion 39, 115, 117, 242, 243, 331, 343,

345
limited aggregation 338

direct simulation Monte Carlo 55
disorder average 160
dissipative particle dynamics 377, 378
distributed array processor (DAP) 167
domain growth 42, 112, 333
domain wall 61, 88
driven lattice gas 328, 329
Dulong–Petit law 277
dynamic critical exponent 44, 94, 99, 102,

138, 326
dynamic ensemble 121

dynamic finite size scaling 103, 342, 346
dynamic MCRG 326

econophysics 169, 388, 389
Eden model 337
Edwards–Anderson model 113
Edwards–Anderson order parameter 113
Edwards–Wilkinson model 343
Einstein relation 234
elastic interactions 171
energy cumulant 85
energy landscape 165, 263
entanglements 240, 243
entropy 9, 172, 198, 277
epsilon expansion 318
equal weight rule 84, 239
equations of motion 156, 363, 372
equilibrium polymers 130
equipartition theorem 281
ergodicity 24, 73, 96
ergodic time 105
errors 30, 186

statistical 30, 91, 142, 186, 246, 256, 257
systematic 93, 187, 256, 257

evaporation 331
event-driven Monte Carlo 54, 145
Ewald summation 224
excluded volume interaction 125, 128, 232
expanded ensemble method 144

fast multipole method 225
fatty acid molecule 228, 229
fermions 278, 286, 293, 298
fermion determinants 306
Fermi statistics 285
ferromagnet 68, 79, 82, 140, 251, 255
field mixing 86
film growth 342
finite size effects 77, 80, 82, 86, 130, 172,

175, 185, 240, 257, 284
finite size scaling 77, 80, 82, 86, 94, 130,

161, 167, 172, 186, 205, 207, 240,
241, 257, 258, 284, 330

fixed point 316, 317, 322
Flory model 130
Flory–Huggins theory 238
flow diagram 316
fluctuation dissipation relation 247
fluctuation relations 11, 12, 81, 98, 152,

166, 208, 209, 284
fluctuations 11, 25, 72, 161, 162, 163, 179,

207, 214
fluid flow 55, 378
fluids 86, 87, 114, 177, 194
fluid–solid transition 207, 208
force bias sampling 246
Fortuin–Kasteleyn theorem 137
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fractal dimension 338
fracture 366
free energy 8, 9, 15, 18, 23, 77, 172, 181,

198, 215, 244, 251, 254, 317
Frenkel–Ladd method 174
friction coefficient 247, 375
frustration 113, 165

gas–liquid transition 205, 212, 273
Gaussian distribution 12, 30, 83, 97, 207
Gaussian ensemble 123, 183
gelation 336
geometric parallelization 150
Gibbs ensemble 212, 213
Ginzburg criterion 25, 41
Glashow–Weinberg–Salam (GWS) theory

354
Glauber dynamics 72, 153
globular proteins 386
grand canonical ensemble 11, 26, 122, 130,

162, 198, 201, 212
Green’s function Monte Carlo (GFMC)

278, 309
Griffiths singularities 163
groundstate 60, 106, 111, 174, 266, 277,

281, 309
growing walks 65
growth algorithms 188

hadrons 357
Hamming distance 182
Handscomb method 303
hard-core bosons 308, 310
hard-core potential 195
hard-core square well fluid 205, 206
hard disks 194, 207
harmonic approximation 281
heatbath algorithm 153, 155, 352
Heisenberg chain 290, 292, 303
Heisenberg model 17, 20, 76, 150, 153,

154, 156, 171, 260, 302, 311, 319,
372, 375

Heisenberg uncertainty principle 277
Hele–Shaw cell 339, 340
3helium 285
4helium 285
herringbone structure 287, 288
Higgs mechanism 354
histogram 172, 252, 254, 256, 262

broad histogram method (BHMC) 262
single histogram method 254
multihistogram method 261

Hoshen–Kopelman algorithm 59, 138
Hubbard model 298, 306
hybrid algorithms 148, 155, 371
hybrid Monte Carlo 148, 155
hydrodynamic slowing down 45, 120

hyperscaling 19
hysteresis 172, 198, 352

ideal gas 194, 197, 198, 199, 215, 252
identity switch 203
importance sampling 31, 32, 51, 68, 137
improved estimators 142
incommensurate order 109, 226
initial configurations 71, 96, 352
interdiffusion 39, 117, 119
interface flipping algorithm 182
interface roughening 182
interfaces 75, 176, 179, 182, 197, 212, 267,

359
interfacial free energy 244, 267, 359
internal energy 8, 9, 11 15, 72, 78, 173,

196, 251, 291, 353
invaded cluster algorithm 142, 143, 144
inverse Monte Carlo 184, 185
inverse MCRG 327
inverse power law potential 195
irreversible processes 328
Ising model 8, 16, 22, 25, 68, 78, 79, 93,

99, 104, 120, 139, 141, 144, 145, 154,
164, 178, 188, 189, 251, 254, 255,
257, 258, 316, 320, 321, 324, 341,
352, 359

in transverse field 288
Ising spin glass 113, 165, 167
isotope effects 283

jackknife method 186
jamming coverage 348
Jordan–Wigner transformation 294

Kardar–Parisi–Zhang (KPZ) equation 344
Kauffman model 341
Kawasaki model 115
Keating potential 172
kinetic Monte Carlo 344
Kosterlitz–Thouless transition 18, 21,

112, 156, 158, 373

lagged Fibonacci generator 35
lamellar phases 114, 227
Landau theory 23, 25
Langevin equation 242, 247, 375
Langmuir monolayers 228
Laplace’s equation 51
large cell renormalization 320
lattice Boltzmann equation 379
lattice gas cellular automata 378
lattice gas model 25, 174, 226
lattice gauge model 156, 350
leapfrog algorithm 373
Lee–Kosterlitz method 175
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Lennard-Jones fluid 86, 195, 197, 222,
229, 273

Lennard-Jones interaction 86, 128, 195,
197, 222, 227, 236, 237, 365

Lifshitz line 132
Lifshitz–Slyozov theory 42
linear response 118
liquid crystalline systems 227
Liouville equation 39
Liu-Luijten algorithm 221, 230, 231
living polymers 130
long range forces 223

macromolecules 63, 177, 231
magnetization 16, 19, 41, 72, 77, 79, 81,

173, 251, 254, 267, 376
Markov chain 31, 146
Ma’s MCRG 322
master equation 31, 39, 43, 70
mean-square displacement 234, 281
medicine 391
melting 210, 211, 227
mesophases 231
metastable states 40, 41, 82, 168, 352
Metropolis algorithm 127, 151, 155, 179,
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